420 research outputs found

    Ring-shaped bifocal lens used for fluorescent self-referenced holographic imaging

    Get PDF
    We propose an alternative and simple solution to self-referenced digital holographic imaging based on a ring-shaped bifocal lens, without the need of any mirrors, polarizers or spatial light modulators. We discuss the imaging properties of the ring-shaped bifocal lens in self-referenced holography. The easy applicability of this bifocal lens is demonstrated on a realized microscope setup for volumetric observation of freely moving fluorescent objects, based on a conventional light microscope

    Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI

    Get PDF
    PURPOSE: PET using radiolabelled amino acids has become a promising tool in the diagnostics of gliomas and brain metastasis. Currently, amide proton transfer (APT) chemical exchange saturation transfer (CEST) MR imaging is evaluated for brain tumour imaging. In this hybrid MR-PET study, we compared in brain tumours with 3D data derived from APT-CEST MRI and amino acid PET using O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET). METHODS: Eight patients with gliomas were investigated simultaneously with 18F-FET PET and APT-CEST MRI using a 3T MR-BrainPET scanner. CEST imaging was based on a steady-state approach using a B1 average power of 1μT. B0 field inhomogeneities were corrected and parametric images of magnetisation transfer ratio asymmetry (MTRasym) and differences to the extrapolated semi-solid magnetisation transfer reference method, APT# and nuclear Overhauser effect (NOE#), were calculated. Statistical analysis of the tumour-to-brain ratio of the CEST data was performed against PET data using the non-parametric Wilcoxon test. RESULTS: A tumour-to-brain ratio derived from APT# and 18F-FET presented no significant differences and no correlation was found between APT# and 18F-FET PET data. Distance between local hot spots APT# and 18F-FET were different (average 20 ± 13 mm, range 4 - 45 mm). CONCLUSION: For the first time CEST images were compared with 18F-FET in a simultaneous MR-PET measurement. Imaging findings derived from18F-FET PET and APT CEST MRI seems to provide different biological information. The validation of imaging findings by histological confirmation is necessary, ideally using stereotactic biopsy

    Wavefront shaping with disorder-engineered metasurfaces

    Get PDF
    Recently, wavefront shaping with disordered media has demonstrated optical manipulation capabilities beyond those of conventional optics, including extended volume, aberration-free focusing and subwavelength focusing. However, translating these capabilities to useful applications has remained challenging as the input–output characteristics of the disordered media (P variables) need to be exhaustively determined via O(P) measurements. Here, we propose a paradigm shift where the disorder is specifically designed so its exact input–output characteristics are known a priori and can be used with only a few alignment steps. We implement this concept with a disorder-engineered metasurface, which exhibits additional unique features for wavefront shaping such as a large optical memory effect range in combination with a wide angular scattering range, excellent stability, and a tailorable angular scattering profile. Using this designed metasurface with wavefront shaping, we demonstrate high numerical aperture (NA > 0.5) focusing and fluorescence imaging with an estimated ~2.2 × 10^8 addressable points in an ~8 mm field of view

    Productive Hepatitis C Virus Infection of Stem Cell-Derived Hepatocytes Reveals a Critical Transition to Viral Permissiveness during Differentiation

    Get PDF
    Primary human hepatocytes isolated from patient biopsies represent the most physiologically relevant cell culture model for hepatitis C virus (HCV) infection, but these primary cells are not readily accessible, display individual variability, and are largely refractory to genetic manipulation. Hepatocyte-like cells differentiated from pluripotent stem cells provide an attractive alternative as they not only overcome these shortcomings but can also provide an unlimited source of noncancer cells for both research and cell therapy. Despite its promise, the permissiveness to HCV infection of differentiated human hepatocyte-like cells (DHHs) has not been explored. Here we report a novel infection model based on DHHs derived from human embryonic (hESCs) and induced pluripotent stem cells (iPSCs). DHHs generated in chemically defined media under feeder-free conditions were subjected to infection by both HCV derived in cell culture (HCVcc) and patient-derived virus (HCVser). Pluripotent stem cells and definitive endoderm were not permissive for HCV infection whereas hepatic progenitor cells were persistently infected and secreted infectious particles into culture medium. Permissiveness to infection was correlated with induction of the liver-specific microRNA-122 and modulation of cellular factors that affect HCV replication. RNA interference directed toward essential cellular cofactors in stem cells resulted in HCV-resistant hepatocyte-like cells after differentiation. The ability to infect cultured cells directly with HCV patient serum, to study defined stages of viral permissiveness, and to produce genetically modified cells with desired phenotypes all have broad significance for host-pathogen interactions and cell therapy

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    Get PDF
    Peer reviewe
    corecore