188 research outputs found
Automatic quantification of microvessel density in urinary bladder carcinoma
Seventy-three TUR-T biopsies from bladder carcinoma were evaluated regarding microvessel density, defined as microvessel number (nMVD) and cross-section endothelial cell area (aMVD). A semi-automatic and a newly developed, automatic image analysis technique were applied in immunostainings, performed according to an optimized staining protocol. In 12 cases a comparison of biopsy material and the corresponding cystectomy specimen were tested, showing a good correlation in 11 of 12 cases (92%). The techniques proved reproducible for both nMVD and aMVD quantifications related to total tumour area. However, the automatic method was dependent on high immunostaining quality. Simultaneous, semi-automatic quantification of microvessels, stroma and epithelial fraction resulted in a decreased reproducibility. Quantification in ten images, selected in a descending order of MVD by subjective visual judgement, showed a poor observer capacity to estimate and rank MVD. Based on our results we propose quantification of MVD related to one tissue compartment. When staining quality is of high standard, automatic quantification is applicable, which facilitates quantification of multiple areas and thus, should minimize selection variability. © 1999 Cancer Research Campaig
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
Social entrepreneurs in challenging places: A Delphi study of experiences and perspectives
Social Enterprises have grown in number and scope in response to reductions in state-provided welfare and increasing ambition to improve social conditions. While a range of issues have been identified in the literature as affecting the ability of Social Enterprises to successfully conduct their activities, there is currently a dearth of research into the relative influence of these factors. This study explores and ranks the challenges faced by social entrepreneurs in South Wales. Based on a Delphi study with 21 social entrepreneurs, government policy-developers and scholars, it presents a hierarchy of 14 factors, useful instruments for informing social entrepreneurs and policy-makers about the way social enterprises are managed, and how national and local policy should be developed. As part of this, the study also identifies four novel factors that affect the sustainability of social enterprises: ‘Professionalisation of Marketing’, ‘Perception of Validity’, ‘Leadership’ and ‘Situatedness’
Long gamma-ray bursts and core-collapse supernovae have different environments
When massive stars exhaust their fuel they collapse and often produce the
extraordinarily bright explosions known as core-collapse supernovae. On
occasion, this stellar collapse also powers an even more brilliant relativistic
explosion known as a long-duration gamma-ray burst. One would then expect that
long gamma-ray bursts and core-collapse supernovae should be found in similar
galactic environments. Here we show that this expectation is wrong. We find
that the long gamma-ray bursts are far more concentrated on the very brightest
regions of their host galaxies than are the core-collapse supernovae.
Furthermore, the host galaxies of the long gamma-ray bursts are significantly
fainter and more irregular than the hosts of the core-collapse supernovae.
Together these results suggest that long-duration gamma-ray bursts are
associated with the most massive stars and may be restricted to galaxies of
limited chemical evolution. Our results directly imply that long gamma-ray
bursts are relatively rare in galaxies such as our own Milky Way.Comment: 27 pages, 4 figures, submitted to Nature on 22 August 2005, revised 9
February 2006, online publication 10 May 2006. Supplementary material
referred to in the text can be found at
http://www.stsci.edu/~fruchter/GRB/locations/supplement.pdf . This new
version contains minor changes to match the final published versio
Mechanism of IL-12 mediated alterations in tumour blood vessel morphology: analysis using whole-tissue mounts
Angiogenesis is a multistep process that is limited and carefully regulated in normal adult tissue, but in tumours this regulation is disrupted and the process remains ‘switched on’ (Hanahan and Folkman, 1996). Ample experimental data support the fact that tumour growth requires access to blood vessels and subsequent expansion of host vessels to provide nutrients for the growing tumour mass (Folkman, 1995a). Furthermore, many studies in a variety of tumour types have reported a correlation between the extent of tumour vasculature and poor prognosis or increased metastases (Weidner et al, 1991; Folkman, 1995b; Weidner and Folkman, 1996). Thus, accurate assessment of the vasculature of tumours could provide valuable information regarding treatment outcomes and the likelihood of metastatic spread to other sites. Angiogenesis can be regulated by a variety of factors. Several cytokines produced by immune cells also have been shown to affect the process of angiogenesis. One of the most noteworthy is interleukin (IL)-12, which is produced by antigen presenting cells (APC), such as macrophages and dendritic cells (DC) in response to bacterial stimuli or other inflammatory cytokines. Thus, IL-12 plays an important role in both the innate and adaptive immune responses (Trinchieri, 1998). Owing to its central role in stimulating immunity, it has been examined for possible therapeutic effects in the treatment of tumours. In addition to its effects on the immune system, IL-12 has also been shown to inhibit angiogenesis (Voest et al, 1995; Sgadari et al, 1996). Despite studies in both experimental models and in patients (reviewed in Trinchieri and Scott, 1999), and clear demonstrations of therapeutic efficacy, relatively little is known about how it alters vessel formation within tumours. In part, this is due to the difficulty in assessing the three-dimensional structure of vessels and other cellular components within the tumour. Assessment of tumour vessels is generally based on immunohistochemistry of tumour sections. Although use of this technique has led to a great deal of important information, these procedures are extremely time consuming and provide only a limited two-dimensional view of the vessels. This makes it very difficult to visualise the structure of the microvasculature and identify differences among different tumour types or changes following treatment regimens. To more easily and accurately visualise vessels within tumours, we developed a whole-tissue mount technique that provides a three-dimensional view of the tumour vasculature relative to other components of the tumour tissue. This technique was first validated by studying vessels from transgenic mice that express green fluorescent protein (GFP) (Wu et al, 2000), and then used to investigate the mechanism by which IL-12 influences the vessel architecture within B16 tumours
An upper limit to the masses of stars
There is no accepted upper mass limit for stars. Such a basic quantity
escapes both theory, because of incomplete understanding of star formation, and
observation, because of incompleteness in surveying the Galaxy. The Arches
cluster is ideal for such a test, being massive enough to expect stars at least
as massive as 400 solar masses, and young enough for its most massive members
to still be visible. It is old enough to be free of its natal molecular cloud,
and close enough, and at a well-established distance, for us to discern its
individual stars. Here I report an absence of stars with initial masses greater
than 130 M_Sun in the Arches cluster, where the typical mass function predicts
18. I conclude that this indicates a firm limit of 150 M_Sun for stars as the
probability that the observations are consistent with no limit is 10^-8.Comment: To appear in Nature, March 10, 2005, Vol. 34, No. 7030, 192 (ST ScI
Eprint #1645). More files can be found at http://www.stsci.edu/~fige
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Longitudinal study of DNA methylation during the first 5 years of life.
Background: Early life epigenetic programming influences adult health outcomes. Moreover, DNA methylation levels have been found to change more rapidly during the first years of life. Our aim was the identification and characterization of the CpG sites that are modified with time during the first years of life. We hypothesize that these DNA methylation changes would lead to the detection of genes that might be epigenetically modulated by environmental factors during early childhood and which, if disturbed, might contribute to susceptibility to diseases later in life. Methods: The study of the DNA methylation pattern of 485577 CpG sites was performed on 30 blood samples from 15 subjects, collected both at birth and at 5 years old, using Illumina® Infinium 450 k array. To identify differentially methylated CpG (dmCpG) sites, the methylation status of each probe was examined using linear models and the Empirical Bayes Moderated t test implemented in the limma package of R/Bioconductor. Surogate variable analysis was used to account for batch effects. Results: DNA methylation levels significantly changed from birth to 5 years of age in 6641 CpG sites. Of these, 36.79 % were hypermethylated and were associated with genes related mainly to developmental ontology terms, while 63.21 % were hypomethylated probes and associated with genes related to immune function. Conclusions: Our results suggest that DNA methylation alterations with age during the first years of life might play a significant role in development and the regulation of leukocyte-specific functions. This supports the idea that blood leukocytes experience genome remodeling related to their interaction with environmental factors, underlining the importance of environmental exposures during the first years of life and suggesting that new strategies should be take into consideration for disease prevention
- …