
ar
X

iv
:a

st
ro

-p
h/

06
03

53
7v

2 
 5

 M
ay

 2
00

6

Long γ-ray bursts and core-collapse supernovae have dif-
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When massive stars exhaust their fuel they collapse and often produce the extraordinarily

bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also

powers an even more brilliant relativistic explosion knownas a long-duration γ-ray burst.

One would then expect that longγ-ray bursts and core-collapse supernovae should be found

in similar galactic environments. Here we show that this expectation is wrong. We find that

the long γ-ray bursts are far more concentrated on the very brightest regions of their host

galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long

γ-ray bursts are significantly fainter and more irregular tha n the hosts of the core-collapse

supernovae. Together these results suggest that long-duration γ-ray bursts are associated

with the most massive stars and may be restricted to galaxiesof limited chemical evolution.

Our results directly imply that long γ-ray bursts are relatively rare in galaxies such as our

own Milky Way.

It is an irony of astrophysics that stellar birth is most spectacularly marked by the deaths

of massive stars. Massive stars burn brighter and hotter than smaller stars, and exhaust their fuel

far more rapidly. Therefore a region of star formation filledwith low mass stars still early in

their lives, and in some cases still forming, may also host massive stars already collapsing and

producing supernovae. Indeed, with the exception of the nowfamous Type Ia supernovae , which
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have been so successfully used for cosmological studies1, 2 and which are thought to be formed by

the uncontrolled nuclear burning of stellar remnants comparable in mass to the sun3, all supernovae

are thought to be produced by the collapse of massive stars. The collapse of the very most massive

stars (tens of solar masses) is thought to leave behind either black holes or neutron stars, depending

largely on the state of chemical evolution of the material that formed the star, while the demise of

stars between approximately 8 and 20 solar masses produces only neutron stars4.

Gamma-ray bursts (GRBs), like supernovae, are a heterogeneous population. GRBs can

be divided into two classes: short, hard bursts, which last between milliseconds and about two

seconds and have hard high-energy spectra, and long, soft bursts, which last between two and tens

of seconds, and have softer high-energy spectra5. Only very recently have a few of the short bursts

been well localized, and initial studies of their apparent hosts suggest that these bursts may be

formed by the binary merger of stellar remnants6, 7. In contrast, the afterglows of over eighty long

GRBs (LGRBs) have been detected in the optical and/or radio.And as a result of these detections,

it has become clear that LGRBs, like core-collapse supernovae, are related to the deaths of young,

massive stars. It is these objects, born of the deaths of massive stars, that we study here.

LGRBs are generally found in extremely blue host galaxies8–11which exhibit strong emission

lines12, 13 suggesting a significant abundance of young, very massive stars. Furthermore while the

light curves of the optical transients (OTs) associated with LGRBs are often dominated by radiation

from the relativistic outflow of the GRB, numerous LGRBs haveshown late-time “bumps” in their

light-curves consistent with the presence of an underlyingSN14–16. In several cases spectroscopic
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evidence has provided confirmation of the light of a SN superposed on the OT17–20. Indeed, given

the large variations in the brightnesses of OTs and supernovae, and the limited observations on

some GRBs, it seems plausible thatall LGRBs have an underlying SN21. Furthermore, while the

energy released in a LGRB often appears to the observer to be orders of magnitude larger than that

of a supernovae, there is now good evidence suggesting that most LGRBs are highly collimated and

often illuminate only a few percent of the sky22, 23. When one takes this into account, the energy

released in LGRBs more closely resembles that of energetic supernovae. However, not all core-

collapse supernovae may be candidates for the production ofGRBs. The supernovae with good

spectroscopic identifications so far associated with GRBs have been Type Ic – that is cc supernovae

which show no evidence of hydrogen or helium in their spectra. (Type Ib supernovae, which

are often studied together with Type Ic, have spectra which are also largely devoid of hydrogen

lines but show strong helium features.) A star may thereforeneed to lose its outer envelope if a

GRB is to be able to burn its way through the stellar atmosphere24. Studies which have compared

the locations Type Ib/c supernovae with the more numerous Type II supernovae (cc supernovae

showing hydrogen lines) in local galaxies so far show no differences in either the type of host or

the placement of the explosion on the host25, 26. This result led Ref. 25 to argue cc supernovae

all come from the same mass range of progenitor stars, but that Type Ib/c supernovae may have

had their envelopes stripped by interaction with a binary stellar companion. Whether Type Ic

supernovae come from single stars, or binary stars, or both,it is very likely that only small fraction

of these supernovae produce GRBs27.

Given the common massive stellar origins of cc supernovae and LGRBs, one might expect
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that their hosts and local environments might be quite similar. It has long been argued that cc super-

novae should track the blue light in the universe (the light from massive stars is blue), both in their

distribution among galaxies and within their host galaxiesthemselves. One would expect similar

behavior from LGRBs, and indeed rough evidence for such a correlation has been reported28. Here

we use the high resolution available from Hubble Space Telescope (HST) images, and an analyti-

cal technique developed by us that is independent of galaxy morphology, to study the correlation

between these objects and the light of their hosts. We also compare the sizes, morphologies and

brightnesses of the LGRB hosts with those of the supernovae.Our results reveal surprising and

substantial differences between the birth places of these cosmic explosions. We find that while

cc supernovae trace the blue-light of their hosts, GRBs are far more concentrated on the brightest

regions of their hosts. Furthermore, while the hosts of cc supernovae are approximately equally di-

vided between spiral and irregular galaxies, the overwhelming majority of GRBs are on irregulars,

even when we restrict the GRB sample to the same redshift range as the SN sample. We argue that

these results may be best understood if GRBs are formed from the collapse of extremely massive,

low-metallicity stars.

1 The Sample

Over forty LGRBs have been observed withHSTat various times after outburst.HST is unique

in its capability to easily resolve the distant hosts of these objects. Shown in Figure 1 is a mosaic

of HSTimages of the hosts of forty-two bursts. These are all LGRBs with public data which had

an afterglow detected with better than three-sigma significance and a position sufficiently well
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localized to determine a host galaxy. A list of all the GRBs used in this work can be found in

Tables 1—3 of the Supplementary Material.

The supernovae discussed in thisArticle were all discovered as part of theHubbleHigher

z Supernova Search29, 30, which was done in cooperation with theHSTGOODS survey31. The

GOODS survey observed two∼ 150 sq. arcminute patches of sky five times each in epochs sepa-

rated by forty-five days. Supernovae were identified by imagesubtraction. In this paper we discuss

only the cc supernovae identified in this survey. A list of thesupernovae used is presented in Table

4 of the Supplementary Material, and images of the supernovae hosts can be seen in Figure 2.

2 Positions of GRBs and supernovae on their Hosts

If LGRBs do in fact trace massive star formation, then in the absence of strong extinction we should

find a close correlation between their position on their hostgalaxies and the blue light of those

galaxies. However, many of the GRB hosts and quite a few of thesupernovae hosts are irregular

galaxies made up of more than one bright component. As a result the common astronomical

procedure of identifying the centroid of the galaxy’s light, and then determining the distance of the

object in question from the centroid is not particularly appropriate for these galaxies – the centroid

of light may in fact lie on a rather faint region of the host (examine GRBs 000926 and 020903 in

Figure 1 for excellent illustrations of this effect). We therefore have developed a method which is

independent of galaxy morphology. We sort all of the pixels of the host galaxy image from faintest

to brightest and ask what fraction of the total light of the host is contained in pixels fainter than or
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equal to the pixel containing the explosion. If the explosions track the distribution of light, then

the fraction determined by this method should be uniformly distributed between zero and one. (A

detailed exposition of this method can be found in the supplementary materials).

As can be seen in Figure 3, the cc supernovae do track the lightof their hosts as well as

could be expected given their small number statistics. A Kolmogornov-Smirnov (KS) test finds

that the distribution of the supernovae is indistinguishable from the distribution of the underlying

light. The situation is clearly different for LGRBs. As can be seen in Figure 3, the GRBs do not

simply trace the blue light of the hosts, rather they are far more concentrated on the peaks of light

in the hosts than the light itself. A KS test rejects the hypothesis that GRBs are distributed as the

light of their hosts with a probability greater than 99.98%.Furthermore, this result is robust: it

shows no dependence on GRB host size or magnitude. And in spite of the relatively small number

of SN hosts on which a comparison can be made, the two populations are found by the KS test to

be drawn from different distributions with∼ 99% certainty. In the next section of this paper we

show that the surprising differences in the locations of these objects on the underlying light of their

hosts may be due not only to the nature of their progenitor stars but also that of their hosts.

3 A Comparison of the Host Populations

An examination of the mosaics of the GRB and SN hosts (Figures1 and 2) immediately shows a

remarkable contrast – only one GRB host in this set of 42 galaxies is a grand-design spiral, while

nearly half of the SN hosts are grand-design spirals. One might wonder if this effect is due to a
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difference in redshift distribution – the cc supernovae discovered by the GOODS collaboration all

lie at z < 1.2, while LGRBs can be found at much larger redshifts where grand-design spirals

are rare to non-existent. Yet if we restrict the GRB population to z < 1.2 (and thus produce a

population with a nearly identical mean and standard deviation in redshift space compared to the

GOODS cc supernovae), the situation remains essentially unchanged: only one out of the eighteen

GRB hosts is a grand-design spiral. (For a detailed comparison of GRB hosts to field galaxies,

rather than the SN selected galaxies shown here, see Ref. 32).

Were the difference in spiral fraction the only indication of a difference in the host popula-

tions, we could not rule out random chance – given the small number statistics both populations are

barely consistent with each other and a spiral fraction of∼ 25%. However, the host populations

differ strongly in ways other than morphology.

In Figure 4 we compare the 80% light radius (r80) and absolute magnitude distributions

of the GRB and supernovae hosts. Included in the comparison are all LGRBs with known red-

shiftsz < 1.2 at the time of submission and the 16 cc supernovae of GOODS with spectroscopic

or photometric redshifts (See the Supplementary Tables fora complete list of the GRBs, super-

novae and associated parameters used in this study). The small minority of GRB hosts in this

redshift range withoutHST imaging are compared only in absolute magnitude and not in size.

The absolute magnitudes have been derived from the observedphotometry using a cosmology of

Ωm = 0.27, Λ = 0.73, andH0 = 71kms−1Mpc−1, and the magnitudes have been corrected for

foreground Galactic extinction33. For a technical discussion of the determination of the magnitude
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and size of individual objects, please see the Supplementary Materials.

As can be readily seen the two host populations differ substantially both in their intrinsic

magnitudes and sizes. The GRB hosts are fainter and smaller than the SN hosts. Indeed KS tests

reject the hypothesis that these two populations are drawn from the same population with greater

than 98.6% and 99.7% certainty for the magnitude and size distributions, respectively.

4 Discussion

Although the evidence is now overwhelming that both cc supernovae and LGRBs are formed by the

collapse of massive stars, our observations show that the distribution of LGRBs and cc supernovae

on their hosts, and the nature of their hosts themselves are substantially different. How then can

this be? We propose here that these surprising findings are the result of the dependence of the

probability of GRB formation on the state of the chemical evolution of massive stars in a galaxy.

Even before the association of LGRBs with massive stars had been established, a number of

theorists had suggested that these objects could be formed by the collapse of massive stars, which

would leave behind rapidly spinning black holes. An accretion disk about the black hole would

power the GRB jet. These models, sometimes referred to as “hypernovae” or “collapsar” models

implicitly require very massive stars, since only stars greater than about18 solar masses form

black holes. But in fact it was widely suspected that even more massive stars would be required –

if only to provide the required large energies, and to limit the numbers of supernovae progressing

to GRBs.
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We conclude that LGRBs do indeed form from the very most massive stars and this is the

reason that they are even more concentrated on the blue lightof their hosts than the light itself.

The most massive stars (O stars) are frequently found in large associations. These associations can

be extremely bright, and can indeed provide the peak of the light of a galaxy – particularly if that

galaxy is a faint, blue irregular, as are the GRB hosts in general. Indeed, a connection of LGRBs

with O-stars (and perhaps Wolf-Rayet stars) is a natural one– given the strong emission lines

(including Ne [III]) seen in many of these hosts12, 13and the evidence for possible strong winds off

of the progenitors of the GRBs seen in absorption in some LGRBspectra34, 35.

However, O stars are found in galaxies of all sizes. Indeed, studies of the Magellanic clouds

suggest the initial distribution of masses of stars at formation in these dwarf galaxies is essentially

identical to that in our much larger spiral, the Milky Way36. Therefore, a difference in the initial

mass function of stars is unlikely to be responsible for the differences between the hosts. We

propose that the fundamental differences between the LGRB and SN host populations is not their

size or luminosity, but rather their metallicity, or chemical evolution. Some evidence of this already

exists. The hosts of seven LGRBs (GRBs 980425 (P. M. Vreeswijk, personal communication),

99071213, 02090337, 03032338, 03032917, 03120339 and 05073040) have measurements of or limits

on their metallicity, and in all cases the metallicity is less than one-third solar. The small size and

low luminosity of the GRB hosts is then a result of the well known correlation between galaxy

mass and metallicity (see Ref. 41 and references therein).

But why do LGRBs choose low-metallicity galaxies? This may be a direct result of the evo-
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lution of the most massive stars. It has recently been proposed that metal rich stars with masses

of tens of solar masses have such large winds off their surfaces (due to the photon pressure on

their metal rich atmospheres) that they lose most of their mass before they collapse and produce

supernovae4. As a result they leave behind neutron stars, not the black holes necessary for LGRB

formation. Ironically, stars of 15-30 solar masses may still form black holes, as they do not pos-

sess radiation pressure sufficient to drive off their outer envelopes. Direct evidence for this scenario

comes from recent work showing that the Galactic soft gamma-ray repeater, SGR 1820-06, is in

a cluster of extremely young stars of which the most massive have only started to collapse42 –

yet, the progenitor of SGR 1820-06 collapsed to a neutron star, not a black hole. Recent obser-

vations of winds from very massive (Wolf-Rayet) stars provide further support for this scenario:

outlfows from the low-metallicity stars in the LMC are substantially smaller than those seen from

more metal-rich Galactic stars43. The possible importance of metallicity in LGRB formation has

therefore not escaped the notice of theorists44, 45.

A preference for low-metallicity may also explain one of themost puzzling results of GRB

host studies. None of the LGRB hosts is a red, sub-millimeterbright galaxy. These highly dust-

enshrouded galaxies at redshifts of∼ 1− 3 are believed to be the site of a large fraction of the star

formation in the distant universe46. And while some LGRB hosts do show sub-mm emission, none

has the red colors characteristic of the majority of this population. However, it is likely that these

red dusty galaxies have substantial metallicities at all redshifts. The low-metallicity of hosts may

also help explain the fact that a substantial fraction of high-redshift LGRB hosts display strong

Lyman-alpha emission47.
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All well classified supernovae associated with LGRBs are Types Ic, presumably because the

presence of a hydrogen envelope about the collapsing core can block the emergence of a GRB

jet24. Thus only those supernovae whose progenitors have lost some, but not too much mass, ap-

pear to be candidates for the formation of a GRB. Given the large numbers of Type Ic supernovae

in comparison to the estimated numbers of LGRBs however, it is likely that only a small fraction

of Ic supernovae produce LGRBs. Indeed, even the number of unusually energetic Type Ib/Ic su-

pernovae appears to dwarf the LGRB population48. Another process, perhaps the spin-up of the

progenitor in a binary27, may decide which Type Ic supernovae produce LGRBs. Interestingly, it

was the similar distribution of supernovae on their hosts, and particularly the fact that Type Ib/Ic

were no more correlated than Type II supernovae with the UV bright regions of their hosts, that

led Ref 25 to the conclusion that Type Ib/Ic form from binaries. LGRBs clearly track light differ-

ently than the general Type Ic population. However the samples used by Refs 25, 26 were from

supernovae largely discovered on nearby massive galaxies –dwarf irregular hosts are underrepre-

sented in these samples. It will be particularly interesting to see whether large unbiased SN surveys

presently underway produce similar locations for their supernovae.

We do not know, however, what separates the small fraction oflow-metallicity Type Ic su-

pernovae which turn into LGRBs from the rest of the population. Potentially, the answer is the

amount of angular momentum available in the core to form the jet. In this case, the preference for

low-metallicity may indicate that single star evolution dominates over binary interaction in form-

ing LGRBs. Deep, high spectral resolution studies of LGRB afterglows may provide insight here,

by allowing a studies of the winds off of the progenitor and any binary companion.
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Only a small fraction of LGRBs are found in spiral galaxies, even in LGRBs with redshifts

z < 1 where spirals are much more common. However, the local metallicity in spirals is known

to be anti-correlated with distance from the center of the galaxy. Thus one might expect LGRBs

in spirals to violate the trend we have seen for the general LGRB population and avoid the bright

central regions of their hosts. The present number of LGRBs known in spirals is still too small

to test this prediction. But a sample size a few times larger should begin to allow such a test.

Additionally, a survey of the metallicity of the hosts of theGOODS supernovae should find a higher

average metallicity than that seen in GRB hosts. Finally, iflow-metallicity is indeed the primary

variable in determining whether LGRBs are produced, then aswe observe higher redshifts, where

metallicities are lower than in most local galaxies, LGRBs should be more uniformly distributed

among star-forming galaxies. Indeed, some evidence of thismay already be present in the data32.

LGRBs, however, are potentially visible to redshifts as high asz ∼ 10. At significant redshifts,

where the metallicities of even relatively large galaxies are expected to be low, we may find that

LGRBs do become nearly unbiased tracers of star formation.
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Figure I: A mosaic of GRB host galaxies imaged by HST. Each individual image corresponds

to a square region on the sky3.′′75 on a side. These images were taken with the Space Telescope

Imaging Spectrograph (STIS), Wide-Field and Planetary Camera 2 (WFPC2) and the Advanced

Camera for Surveys (ACS) onHST. In cases where the location of the GRB on the host is known

to better than0.′′15, the position of GRB is shown by a green mark. If the positional error is

smaller the the point spread function of the image (0.′′07 for STIS and ACS,0.′′13 for WFPC2)

the position is marked by a cross-hair, otherwise the positional error is indicated by a circle. The

STIS images were all taken in white light (no filter) and in most cases the WFPC2 and ACS image

are in the F606W filter (though in a few cases where images in this filter were not available we

have used images in F555W or F775W). The STIS and F606W imagescan be thought of as broad

”V” or visual images, and are, for galaxies exhibiting typical colors of GRB hosts, the single most

sensitive settings for these cameras. F555W is close to the ground-based Johnson V-band, and

F775W corresponds to the ground-based Johnson I-band. Due to the redshifts of the hosts, these

images generally correspond to blue or ultra-violet imagesof the hosts in their rest frame, and thus

detect light largely produced by the massive stars in the hosts.

Figure 2: A mosaic of cc SN host galaxies imaged withHSTas part of the GOODS program.

Each image in the mosaic has a width of7.′′5 on the sky, and thus two times the field-of-view of

each image in the GRB mosaic. The position of each SN on its host galaxy is marked. In all cases,

these positions are known to sub-pixel accuracy. supernovae in the GOODS sample were identified

by [30] as either Type Ia or cc supernovae based on their colors, luminosities and light curves, as

data allowed (a SN going off near the beginning or end of one ofthe multi-epoch observing runs
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would have much less data, and sometimes poor color information). Thus bright Type Ib and Ic

supernovae, which have colors and luminosities similar to Type Ia supernovae, would have likely

been classified as Type Ia (unless a grism spectrum was taken –however only a small fraction of

objects were observed spectroscopically). On the other hand fainter Type Ib and Ic supernovae

(MB ∼
> −18) could in principle be identified from photometric data; however, in practice the data

were rarely sufficient for a clear separation from other cc supernovae. Based on surveys of nearby

galaxies, one might expect approximately 20% of the cc supernovae to be Type Ib or Ic49, 50.

Figure 3: The locations of the explosions in comparison to the host light. For each object an

arrow indicates the fraction of total host light in pixels fainter than or equal to the light in the pixel

at the location of the transient. The cumulative fraction ofGRBs or supernovae found at a given

fraction of the total light is shown as a histogram. The blue arrows and histogram correspond to

the GRBs and the red arrows and histogram correspond to the supernovae. Were the GRBs and

supernovae to track the light identically, their histograms would follow the diagonal line. While

the supernovae positions do follow the light within the statistical error, the GRBs are far more

concentrated on the brightest regions of their hosts. Thus while the probability of a SN exploding

in a particular pixel is roughly proportional to the surfacebrightness of the galaxy at that pixel,

the probability of a GRB a given location effectively goes asa higher power of the local surface

brightness.

Figure 4: A comparison of the absolute magnitude and size distributions of the GRB and SN

hosts. In the main panel, the cc SN hosts are represented as red squares and the LGRB hosts as blue
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circles. The absolute magnitudes of the hosts are shown on the x-axis and the lengths of the semi-

major axes of the hosts on the y-axis. The plot is then projected onto the two side panels where a

histogram is displayed for each host population in each of the dimensions - absolute magnitude and

semi-major axis. Shown as blue arrows are the absolute magnitudes of GRB hosts withz < 1.2

that have been detected from the ground but have not yet been observed by HST. These hosts are

only included in the absolute magnitude histogram. The hosts of GRBs are both smaller and fainter

than those of supernovae.
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