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Abstract 

Background:  Early life epigenetic programming influences adult health outcomes. Moreover, DNA methylation 
levels have been found to change more rapidly during the first years of life. Our aim was the identification and char‑
acterization of the CpG sites that are modified with time during the first years of life. We hypothesize that these DNA 
methylation changes would lead to the detection of genes that might be epigenetically modulated by environmental 
factors during early childhood and which, if disturbed, might contribute to susceptibility to diseases later in life.

Methods:  The study of the DNA methylation pattern of 485577 CpG sites was performed on 30 blood samples from 
15 subjects, collected both at birth and at 5 years old, using Illumina® Infinium 450 k array. To identify differentially 
methylated CpG (dmCpG) sites, the methylation status of each probe was examined using linear models and the 
Empirical Bayes Moderated t test implemented in the limma package of R/Bioconductor. Surogate variable analysis 
was used to account for batch effects.

Results:  DNA methylation levels significantly changed from birth to 5 years of age in 6641 CpG sites. Of these, 
36.79 % were hypermethylated and were associated with genes related mainly to developmental ontology terms, 
while 63.21 % were hypomethylated probes and associated with genes related to immune function.

Conclusions:  Our results suggest that DNA methylation alterations with age during the first years of life might play a 
significant role in development and the regulation of leukocyte-specific functions. This supports the idea that blood 
leukocytes experience genome remodeling related to their interaction with environmental factors, underlining the 
importance of environmental exposures during the first years of life and suggesting that new strategies should be 
take into consideration for disease prevention.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
DNA methylation is an epigenetic mechanism that regu-
lates different genome functions, including gene expres-
sion, which may intervene in physiological events such 
as cell lineage determination, cell differentiation, cell 
maturation and tissue-specific gene expression [1, 2]. 
Much of a person’s epigenomic pattern is established 
during embryogenesis and early development of the fetus 

[3]. However, genomic DNA methylation is known to be 
sensitive to environmental stimuli and changes during 
lifetime and with aging [4]. Some epigenomic modifica-
tions over time are important in development, but oth-
ers occur stochastically [5, 6]. These alterations in DNA 
methylation patterns have been suggested to account for 
many age-related diseases [7–10]. For instance, age-asso-
ciated alterations in DNA methylation have been found 
to be involved in the initiation and progression of cancer 
and certain chronic diseases [11].

The relationship between DNA methylation levels and 
age has already been demonstrated [12–16]. In fact, the 
use of DNA methylation data has been proposed as a 
method of measuring biological aging and it is possible 
to predict the age of a tissue based on its methylation 
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pattern at specific CpG sites [12, 13, 17–19]. However, 
most studies exploring age-associated DNA methyla-
tion changes have been carried out on adults and have 
focused on aspects such as cell senescence, longevity, 
cancer, stem cell functions and chronological age [18, 
20–25]. Reports on DNA methylation patterns during 
early childhood are still scarce [26–30]. The characteriza-
tion of DNA methylation patterns during the first years 
of life is an ongoing task, and data from longitudinal 
studies are more revealing. DNA methylation levels have 
been shown to change rapidly during early development, 
with more pronounced changes in the immediate post-
natal years, while methylation levels at many sites tend to 
stabilize beyond age 7 [31].

Additionally, early life conditions can predispose the 
fetus to a range of adult health outcomes, and DNA 
methylation seems to play an important role in this pro-
cess [32, 33]. For instance, the time immediately before 
and after birth may be a sensitive period related to pro-
gramming cardiometabolic risk [34, 35]. Adult health 
outcomes are therefore determined not only by conven-
tional risk factors experienced in adult life, but also by 
early life programming [36], which has been shown to be 
mediated by DNA methylation [37].

Due to the influence of early life epigenetic program-
ming on health outcomes and the fact that DNA methyl-
ation levels seem to change more rapidly during the first 
years of life, the identification of CpG sites that are modi-
fied by age in infants would lead to the detection of genes 
that might be epigenetically modulated by environmental 
factors during early childhood. If disturbed, these might 
contribute to susceptibility to specific diseases later in life 
[38, 39].

Thus, the aims of this study were: (1) the identification 
of CpG sites with changes in DNA methylation levels 
measured longitudinally between cord blood samples and 
peripheral blood samples at 5 years after birth in a group 
of 15 children. Children who were small (SGA), appro-
priate (AGA), and large for gestational age (LGA), and 
normal weight or overweight/obese at 5  years old were 
included; and (2) the characterization of the genomic 
distribution and functional relationships of age-modified 
CpG sites during early childhood.

Results
In order to identify DNA methylation changes with time 
during the first 5 years of life, the methylation patterns of 
484103 CpG sites in cord and 5-year-old blood samples 
from the same 15 subjects were compared. We found that 
the DNA methylation levels of 6641 CpG sites changed 
as a function of age. Specifically, 2443 probes (36.79  %) 
were hypermethylated with time, corresponding to 1407 
genes; and 4198 probes (63.21 %) corresponding to 2640 

genes, were hypomethylated with time. Hierarchical clus-
tering of all samples using the dmCpGs enabled each 
sample to be correctly classified into its corresponding 
age group (Fig. 1).

To characterize these dmCpG sites from a func-
tional genomics point of view, we first determined their 
distribution within the different regions of the CpG 
islands [40]. Hypermethylated probes were enriched 
in CpG island shores, while hypomethylated CpG sites 
were enriched in non CpG islands (CGIs) (Pearson’s 
Chi squared test; p  <  0.001, OR =  1.60 and p  <  0.001, 
OR =  1.91, respectively) (Fig.  2a). In terms of genomic 
location, hypermethylated CpG sites were enriched 
mainly in exons (Pearson’s Chi squared test; p  <  0.001, 
OR  =  1.37), and hypomethylated probes in introns 

Fig. 1  Clustered heatmap showing the methylation levels across all 
samples for the hyper- and hypo-methylated CpG sites. Methylation 
levels range from dark blue (no methylation) to light yellow (100 % 
methylated). Dendrograms were computed using Euclidean distance 
and a complete cluster agglomeration method. Both age groups are 
clustered correctly and methylation values have a homogeneous 
intra-group profile. YEAR5 stands for samples of DNA isolated from 
blood that was collected from individuals when they were 5 years-
old. CORD stands for samples of DNA isolated from cord blood that 
was collected at birth from the same individuals
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(Pearson’s Chi squared test; p  <  0.001, OR  =  1.41) 
(Fig.  2b). There was no statistically significant relation-
ship between both hyper- and hypomethylated CpG sites 
and their respective distances to centromeres. On the 
other hand, only hypomethylated probes have a statisti-
cally significant change in their distance to telomeres 
(Fig. 3), but with a minimal effect size measured by Cliff ’s 
Delta (D) (Wilcoxon test; p < 0.001, D = −0.0017), which 
seems to be non-biologically relevant.

To distinguish the chromatin marks associated with 
the dmCpG sites showing changes over time, the DNA 
sequences identified in our study were analyzed against 
previously reported data on a collection of histone modi-
fications and chromatin modifiers in 10 different cell types 
obtained from healthy individuals, (see “Methods” sec-
tion), where hematologic cells are also represented. In 
the present study, we found statistically significant asso-
ciations of hypermethylated CpGs with the repressive his-
tone mark H3K27me3 and the polycomb group protein 
EZH2 in most differentiated ENCODE cell lines (Fisher’s 
exact test; p < 0.05) (Fig. 4). This is in line with previously 
published data [41, 42]. Similarly, hypomethylated probes 
were here associated with regions enriched in H3K4me1 
(Fisher’s exact test; p < 0.05) (Fig. 4). This has been shown 
previously, where age-associated changes of DNA meth-
ylation were studied in differentiated and adult stem cells 
[41].

The analysis of the gene ontology (GO) of the genes 
associated with the differentially methylated probes 
showed that both hyper- and hypomethylated genes were 
significantly enriched (FDR <0.05) in specific GO terms 
of biological processes, molecular functions and cellular 
components (Tables  1, 2). Hypermethylated genes were 

associated with biological processes related to develop-
ment and cell adhesion, with molecular functions related 
to sequence-specific DNA binding, and cellular compo-
nents such as dendrite or axon (Table  1). On the other 
hand, hypomethylated genes were associated with bio-
logical processes related to immune system regulation, 
with molecular functions related to antigen binding and 
intracellular signalling, and with cellular components 
related to the MHC protein complex and cytoskeleton 
(Table 2).

To analyze whether methylation changes with time 
were associated with birth weight or being overweight 
at 5  years of age, the comparative analysis was per-
formed considering these two variables. No significant 
DNA methylation changes were found in relation to 
SGA group, or to being overweight at 5  years old (nor-
mal weight/overweight). It was not possible to determine 
whether there was an association between the SGA and 
being overweight at 5 years old, due to the fact that none 
of the individuals that were overweight at 5  years old 
belonged to the group of subjects who were SGA.

Discussion
The present longitudinal study focuses on the dynam-
ics and the context of DNA methylation changes dur-
ing early childhood in peripheral blood leukocytes. Data 
were compiled from 30 blood samples corresponding to 
15 individuals at two time points (umbilical cord at birth, 
and 5 years after birth). It was shown that DNA methyla-
tion levels are modified as a function of age in 6641 CpG 
sites, most of them being hypomethylated. In hyper- and 
hypomethylated CpG sites, DNA methylation changes 
were significantly associated with intragenic regions, 
with exons and introns respectively. This implies that 
these DNA methylation changes are non-randomly dis-
tributed and specifically occur in discrete regions of the 
genome.

To further examine the features of the identified 
dmCpGs, the GO terms related to the genes associated 
with the differentially methylated probes were charac-
terized. Both hyper- and hypomethylated sites were sig-
nificantly enriched in specific GO terms of biological 
processes, molecular functions and cellular components. 
Specifically, it was found that genes with age-hyper-
methylated CpG sites were enriched in biological pro-
cesses related to different tissue morphogenesis and 
development. This is in line with previous studies where 
increased DNA methylation was involved in silencing 
developmental genes [43].

Regarding hypomethylation with age, this study sup-
ports findings from previous reports where CpG sites, 
which are age-hypomethylated in the first 2 or 5 years 
following birth, are enriched in immune-related 

Fig. 2  Genomic characterization of the dmCpGs with time. a Stacked 
bar chart describing the proportion of CpG sites in the selected 
subsets of interest according to their CpG Island status and relative to 
the background Illumina® 450 k (All) proportions. Hypermethylated 
probes are enriched in CpG island shores while hypomethylated CpG 
sites are enriched in non CpG islands (CGIs) (Pearson’s Chi squared 
test; p < 0.001, OR = 1.60 and p < 0.001, OR = 1.91, respectively). b 
Stacked bar chart showing the proportion of selected CpG sites with 
respect to their genomic location and relative to the background (All). 
Hypermethylated CpG sites are enriched mainly in exons (Pearson’s 
Chi squared test; p < 0.001, OR = 1.37), and hypomethylated probes 
in introns (Pearson’s Chi squared test; p < 0.001, OR = 1.41)
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genes [26, 29]. Taking into account that a decrease 
in DNA methylation levels at promoter regions is 
known to enable gene expression [44], DNA methyla-
tion changes with age during the first years of life in 
human leukocytes may be closely associated with cell 
differentiation, and commitment to lymphoid and 
myeloid lineages [45]. These results thus denote that 
differences in DNA methylation associated with age 
may not only be triggered by stochastic DNA methyla-
tion changes [24, 46], but may also be related to the 
immune system function [26]. Additionally, age-hypo-
methylated CpGs sites were enriched in genes related 
to the MHC protein complex. This finding is in line 
with a recent study in samples from birth to 5  years 
old, where DNA methylation levels in class I and class 
II MHC molecules were found to decrease with age 
[26].

To explain the mechanisms that mediate the DNA 
methylation changes observed during aging, an increas-
ing number of studies have focused on the identification 
of the factors determining the dynamics of DNA meth-
ylation. For instance, genes that are hypermethylated in 
blood during aging have been recently associated with 
the presence of bivalent chromatin domains in embry-
onic stem cells [21, 42, 47, 48], as well as with repressive 
histone marks (H3K27me3/H3K9me3) in differentiated 
cells [41, 42]. The results of the present study indicate 
the presence of the same repressive histone marks found 
in differentiated cells in the sequences that are hyper-
methylated with time during the first 5  years of life in 
leukocytes. This finding supports the notion that these 
repressive histone marks are related to DNA methylation 
gain during aging, independent of the type of cell or its 
potential, as previously described [41].

Fig. 3  Distance to centromere (a, b) and telomere (c, d) of differentially methylated probes. a, b Violin plots showing the distribution of the distance 
to centromeres for the hypermethylated (a) and hypomethylated (b) CpG sites (In) with respect to those sites belonging to the Illumina® 450 k 
microarray but not included in the corresponding subset of interest (Out). There is no statistically significant relationship between both hyper- and 
hypomethylated CpG sites and their distance to centromeres. c, d Violin plots showing the distribution of the distance to telomeres for the hyper‑
methylated (c) and hypomethylated (d) CpG sites (In) with respect to those sites belonging to the Illumina® 450 k microarray but not included in 
the corresponding subset of interest (Out). Only hypomethylated probes have a statistically significant change in their distance to telomeres, but 
with a minimal effect size (Wilcoxon test; p < 0.001, D = −0.0017)
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The present data also show a strong enrichment in the 
active chromatin mark H3K4me1 in age-hypomethylated 
sequences, which is in line with the data provided for 
hypomethylated sequences in MSCs and differentiated 
cells during aging [41]. This finding points towards this 
histone modification being of use as a cell-type-inde-
pendent chromatin signature of DNA hypomethylation 
during aging. Additionally, a recent study indicated cor-
respondence of H3K4me1 with enhancers [49], and an 
association between DNA hypomethylation within spe-
cific transposable elements and tissue-specific enhancer 
marks [50]. This suggests that H3K4me1-associated DNA 
hypomethylation could play a role in tissue-specific epi-
genetic gene regulation and the deregulation of gene 
expression during aging [51]. More studies, however, are 
required to clarify the mechanisms managing the meth-
ylation machinery to the age-modified loci during this 
time window.

A major issue in age-related DNA methylation stud-
ies is hematologic cell heterogeneity [52, 53], due to the 
fact that DNA methylation is usually measured in unfrac-
tionated blood. In order to adjust the model of analysis, 
a Surogate Variable Analysis (SVA)-based approach was 
applied, as described in Leek et  al. [54] (see “Methods” 
section for details). This ensured that cell heterogeneity 

had a minimal impact on the blood DNA methylation 
data.

One limitation of the present study was that between-
group differences with respect to variables such as 
SGA or being overweight at 5 years of age could not be 
adequately evaluated. This was due to the number of 
individuals belonging to each category analyzed being 
insufficient or too unequally distributed between groups 
to allow for comparisons and analysis. A larger number 
of individuals should be incorporated to a future study to 
address this issue.

Several studies have explored DNA methylation pat-
terns during early childhood [26–31]. For instance, blood 
samples from 3 months and 5 years of age were analyzed 
using the HumanMethylation450 BeadChip in the lon-
gitudinal study performed by Acevedo et  al. [26]. This 
provided a total of 794 CpG sites where 330 CpG sites 
(41.5 %) were age-methylated and 464 CpG sites (58.4 %) 
were age-demethylated. When comparing with their 
results, it was found that 144 (43.64  %) of their hyper-
methylated and 208 (44.83  %) of their hypomethylated 
probes were identified by the present study (Fig. 5). Com-
mon GO terms (related to MHC protein complex) were 
also found when analyzing probes that were hypomethyl-
ated in both studies (Table 2). Furthermore, the tendency 

Fig. 4  Heatmaps showing the association between the location of hypermethylated (a) and hypomethylated (b) CpG sites and enriched regions 
for several chromatin marks and cell lines. Chromatin marks peak location information for each cell line was extracted from the ENCODE BROAD 
Histone project information available at the UCSC Genome Browser. Associations between CpG site and chromatin mark peak locations were tested 
using a Fisher’s exact test. P values were adjusted for multiple comparisons and only those falling under a 0.05 FDR threshold are shown as colored 
spots in the heatmap. The base-2 logarithm of the odds ratio (OR) was used as a measure of effect size. Associations with higher effect sizes are 
drawn in darker shades of red. There are statistically significant associations of hypermethylated (a) CpGs with the repressive histone mark H3K27me3 
and the polycomb group protein EZH2 in most differentiated ENCODE cell lines. On the other hand, hypomethylated probes are associated with 
regions enriched in H3K4me1 (b)
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of a loss of methylation with age was corroborated in our 
set of samples. Additionally, other studies have identi-
fied different regions with changes in DNA methylation 
with age [27–31]. The possible differences in the CpG 
sites found in the literature could be explained due to dis-
parities in the cell type (buccal epithelium, mononuclear 
cells, blood…), methodologies (HumanMethylation450 
and/or 27 BeadChip), ages included in the study, meth-
ods of analysis, or purpose of the studies, for instance.

Methods
Selection of participants
Parents of newborns born at term (gestational 
age  ≥37  weeks) in the General Hospital, University of 
Valencia, Spain, after uncomplicated pregnancies and in 
the absence of perinatal illness were randomly invited to 
participate in the study. Exclusion criteria were multiple 
gestations, cesarean section, and that parents were plan-
ning to move out of the area after delivery. Gestational 
age at birth was ascertained according to the method of 
Ballard et al. [55], and the general characteristics of ges-
tation and delivery for each participant were obtained 
from routine obstetrical records. Subjects were divided 
according to birth weight (BW) and gestational age—
SGA, <10th percentile for their sex; AGA, between 10th–
90th percentile; and LGA,  >90th percentile [56]. The 
subjects were followed-up at 5 years of age and all meas-
urements were taken at birth and at 5 years. At birth all 
parents gave informed consent for their children to par-
ticipate in the study, and the Committee for the Protec-
tion of Human Subjects of the Hospital General approved 
the study according to the Declaration of Helsinki.

Anthropometric parameters
At 5  years, body weight was recorded to the nearest 
0.1 kg using a standard beam balance scale with the sub-
jects wearing light indoor clothing and no shoes. Height 
was recorded to the nearest 0.5 cm using a standardized 
wall-mounted height board. Body mass index (BMI) and 
the corresponding standard deviation were calculated, 
with BMI being the weight in kilograms divided by the 
square of the height in meters. Subjects with a BMI rang-
ing from the 85th to 95th percentile were defined as 
being overweight [57] while they were defined as obese 
when having a BMI above the 95th percentile [58].

In total, 15 subjects were enrolled in this study. Eight of 
the 15 subjects (53.3 %) (2 boys/6 girls) were SGA and the 
other seven (46.7  %) (4 boys/3 girls) were AGA or LGA. 
Four individuals were overweight/obese at 5 years old (BMI 
between 17 and 21.4), none of whom were SGA (Table 3).

Sample collection, DNA extraction, and quantification
Blood samples were collected from 15 subjects at the 
two testing times. First, cord blood samples were taken 
at birth, and second, peripheral venous blood samples 
were taken from each child during their fifth year of 
life. Genomic DNA was extracted with the RealPure kit 
(RealPure, REAL, Durviz, Ref: RBMEG01) and quantified 
with the Nanodrop-2000C Spectrophotometer. A DNA 
quality check was performed with Quant-iT PicoGreen 
dsDNA reagent.

Table 1  Gene ontology analysis of  hypermethylated 
GpG sites from  birth to  5  years of  age (with RR  >2 and  Q 
Value <0.001)

RR relative risk is a measure of effect size describing the change of proportions 
between our selected set of genes and a given term

Q value Q value is the result from the adjustment of P values in order to control 
the false discovery rate (FDR) using the Benjamini-Hochberg method

Onthology Term RR Q_value

Biological_process Digestive tract morpho‑
genesis

6.3551 2.25E−05

Biological_process Homophilic cell adhesion 4.6179 7.02E−09

Biological_process Digestive tract development 3.6972 0.0001

Biological_process Locomotory behavior 3.6791 1.77E−07

Biological_process Cell–cell adhesion 3.6197 1.63E−07

Biological_process Digestive system develop‑
ment

3.3312 0.00035

Biological_process Hindbrain development 3.1444 0.00072

Biological_process Cell fate commitment 2.7058 0.00011

Biological_process Behavior 2.4935 2.83E−08

Biological_process Embryonic organ morpho‑
genesis

2.4633 0.00027

Biological_process Single-organism behavior 2.3998 3.88E−05

Biological_process Cell adhesion 2.3899 4.55E−13

Biological_process Regionalization 2.381 0.00015

Biological_process Biological adhesion 2.3795 4.55E−13

Biological_process Brain development 2.2605 4.09E−08

Biological_process Pattern specification process 2.2365 5.37E−05

Biological_process Central nervous system 
development

2.2029 5.18E−10

Biological_process Muscle structure develop‑
ment

2.1471 0.00017

Biological_process Embryonic morphogenesis 2.1396 1.59E−05

Biological_process Embryonic organ develop‑
ment

2.0979 0.00047

Biological_process Skeletal system development 2.0909 0.00035

Molecular_function Sequence-specific DNA 
binding

2.0117 2.71E−06

Cellular_component Dendrite 2.3717 1.38E−05

Cellular_component Axon 2.2741 0.00099

Cellular_component Somatodendritic compart‑
ment

2.1637 4.07E−06
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Illumina® Infinium 450 k data preprocessing
The study of the DNA methylation pattern of 485577 
CpG sites was performed using Illumina® Infinium 450 k 
array and the IDAT files from the microarray were pro-
cessed further using the R/Bioconductor package minfi 
[59]. In order to adjust for the different probe design 
types present in the 450  k architecture, red and green 
signals from the IDAT files were corrected using the 
SWAN algorithm [60]. No background correction or 
control probe normalization was applied. Probes where 
at least two samples had detection p values over 0.01 
were filtered out. In accordance with Du et al. [61], both 
Beta values and M values were computed and employed 
across the analysis pipeline. M values were used for all 
the statistical analyses, assuming homoscedasticity, while 
Beta values were mostly used for the intuitive interpreta-
tion and visualization of the results.

Batch effect correction
Surrogate Variable Analysis (SVA) [54] was employed to 
capture the heterogeneity of the underlying methylation 

data and to account for possible batch effects or con-
founding variables that might be of interest. Coefficients 
for the detected surrogate variables (SVs) were later 
added to the phenotypical data and included in the defi-
nition of a model in order to detect differentially meth-
ylated probes (DMPs). The R/Bioconductor package sva 
[62] implementation was used to estimate the number 
of SVs and their coefficients, using both age group (new-
borns/five year olds) and gender as covariates of interest, 
and only one intercept term as a null background model. 
Multidimensional scaling (MDS) was employed as a visu-
alization tool whenever there was a need to illustrate the 
influence of possible confounders on the data.

White blood cell heterogeneity adjustment
Cellular heterogeneity is a main source of variation in 
Epigenomic studies [63]. Each cell type has a different 
Epigenomic profile, and variations of the different sub-
populations can often be confounded with the pheno-
type of interest, resulting in a higher rate of both false 
positives and negatives. This is especially true when using 

Table 2  Gene ontology analysis of hypomethylated GpG sites from birth to 5 years of age (with RR >2 and Q value <0.01)

RR relative risk is a measure of effect size describing the change of proportions between our selected set of genes and a given term

Q value Q value is the result from the adjustment of P values in order to control the false discovery rate (FDR) using the Benjamini-Hochberg method

Onthology Term RR Q_value

Biological_process Stress fiber assembly 23.288 0.00494

Biological_process Positive regulation of T cell mediated immunity 4.9028 0.0066

Biological_process Regulation of T cell mediated immunity 4.7907 0.00156

Biological_process Positive regulation of cell killing 4.4359 0.00494

Biological_process Response to type I interferon 3.502 0.00586

Biological_process Interferon-gamma-mediated signaling pathway 3.3269 0.00653

Biological_process Maintenance of protein location in cell 3.0629 0.00181

Biological_process Cellular response to interferon-gamma 2.9322 0.00494

Biological_process Maintenance of location in cell 2.9052 0.00191

Biological_process Response to interferon-gamma 2.6615 0.00496

Biological_process Actin cytoskeleton organization 2.0415 9.66E−05

Biological_process Actin filament-based process 2.0231 3.32E−05

Molecular_function Antigen binding 3.8842 0.00174

Molecular_function Rho guanyl-nucleotide exchange factor activity 3.3577 0.00237

Molecular_function Ras guanyl-nucleotide exchange factor activity 3.0522 0.00023

Molecular_function Guanyl-nucleotide exchange factor activity 2.2431 0.00345

Cellular_component MHC class I protein complex 11.685 0.00637

Cellular_component MHC protein complex 7.2337 0.0005

Cellular_component Integral component of lumenal side of endoplasmic reticulum membrane 4.8966 0.00844

Cellular_component Lumenal side of membrane 4.8966 0.00844

Cellular_component Lumenal side of endoplasmic reticulum membrane 4.8966 0.00844

Cellular_component Main axon 3.9646 0.00124

Cellular_component Cortical cytoskeleton 3.0207 0.00807

Cellular_component Axon part 2.4846 0.00206

Cellular_component Ruffle 2.1639 0.00663
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whole blood as our main tissue, due to its highly variable 
subpopulation composition. This is especially relevant 
if we take into account the number of Epigenomic stud-
ies that have been published and that use whole blood as 
their main tissue.

One of the most common approaches to dealing with 
blood cellular heterogeneity is the Houseman method 
[53], which uses a methylation database of several, pure-
lineage samples in order to compute an approximation to 
the real subpopulation percentages. Using this informa-
tion, the method is able to adjust the original methylation 
dataset and generate a new one where the confounder 
influence has been removed. Several other methods have 
been proposed that expand on this concept, and some 
of them do not even require having a purified samples 
methylation database in advance [64].

However, there are also other approaches to the detec-
tion of confounding factors that do not need information 
about the Epigenomic profiles of the different cell sub-
types. SVA [54], for example, is a general framework for 
the detection of structured variability patterns over the 
residuals of a previously fitted model using the main phe-
notype of interest. In general, SVA is not only able to cap-
ture the variation due to cellular heterogeneity, but also 
due to other factors, some of them possibly unknown to 
the researcher.

After an exploratory analysis of the data, it was decided 
to use SVA to capture the main confounding factors in 

our dataset, and to include them in our model. This 
resulted in a better fitted model than those based on the 
Houseman method alone, which suggested that in our 
case SVA is able to capture the cellular subpopulations 
proportion variations occurring in our data.

Detection of differentially methylated probes
Significant methylation of a probe was determined by 
the moderated t test implemented in the R/Bioconduc-
tor package limma [65]. A linear model, with methylation 
level as response and all the combinations of age group, 
birth weight and overweight at 5 years as the main covar-
iate of interest, was fitted to the methylation data. Sur-
rogate Variables generated using SVA and information 
regarding the gender and pair ID of the samples was also 
included in the model definition. Contrasts were then 
defined as the linear combinations of the different val-
ues the main covariate of interest could take, in order to 
represent the different questions arising from the model 
design. Each contrast generated a coefficient and P value 
for each probe. P values were corrected for multiple test-
ing using the Benjamini-Hochberg method for control-
ling the false discovery rate (FDR). A FDR threshold of 
0.05 was employed to determine DMPs.

Histone enrichment analysis
In order to analyze the enrichment of histone marks 
for a subset of probes, the information contained in the 
UCSC Genome Browser Broad Histone track from the 
ENCODE Project was used. Histone mark peaks were 
downloaded for every combination of cell line and anti-
body. For each track, a 2 × 2 contingency table was built 
to represent the partition of the whole set of possible 
probes in the microarray with respect to their member-
ship of the subset of interest and the overlap between the 
probes and the histone peaks. A Fisher’s exact test was 
used to determine whether there was a significant enrich-
ment of the selected histone mark for the subset of inter-
est. P values were adjusted for multiple comparisons 
using the Benjamini-Hochberg method for controlling 
the FDR. A significance level of 0.05 was used to deter-
mine whether the given combination of histone mark 
and cell line presented a significant change in proportion. 
Additionally, the base-2 logarithm of the odds ratio (OR) 
was used as a measure of effect size.

Genomic region analysis
The probes in the microarray were assigned to a genomic 
region according to their position relative to the tran-
script information extracted from the R/Bioconductor 
package TxDb.Hsapiens.UCSC. hg19.knownGene (pack-
age version 3.0.0). A probe was said to be in a promoter 

Fig. 5  Venn diagram showing the intersections of the identified 
hyper- and hypo-methylated CpG sites and those described in 
Acevedo et al. [26]. There is a general consensus over the methylation 
direction of change between our results and the selected literature. 
Similarities and differences among the corresponding subsets are 
also shown
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region if it was located in a region up to 2 kb upstream 
of the transcription start site (TSS) of any given tran-
script. Similarly, a set of mutually exclusive regions were 
defined inside the transcripts, namely 5UTR, 3UTR, first 
exon, exon and intron. A probe could only belong to one 
of these categories, and when anyone overlapped with 
two or more of these regions in different transcripts, it 
was assigned to the region with the higher level of prec-
edence (i.e. in the same order as stated above). If a probe 
was not assigned to any of these special regions, it was 
labeled by default as intergenic. A contingency table was 
built for each of the subsets, partitioning the complete set 
of probes according to membership of a given category 
and the subset of interest. A Pearson’s χ2 test was used to 
determine if there was a significant change in proportion 
between the number of probes marked as belonging to a 
given region inside and outside the subset of interest. A 
significance level of 0.05 and the effect size as measured 
by the odds ratio (OR) were employed for this test.

CpG Island status analysis
The CpG island locations used in the analyses were 
obtained from the R/Bioconductor package FDb.Infini-
umMethylation.hg19 [66]. The generation procedure of 
these CpG Islands is described by Wu et  al. [40] CpG 
shores were defined as the 2kbp regions flanking a CpG 
island. CpG shelves were defined as the 2kbp region 
either upstream or downstream of each CpG shore. 
Probes not belonging to any of the regions previously 
mentioned were assigned to the special category non-
CpG island. Each probe was assigned to only one of the 
categories. A 4 × 2 contingency table was constructed for 
every subset of probes in order to study the association 
between the given subset and the different CpG island 
categories. A Chi squared test was used to determine 
whether any of the categories had a significant associa-
tion with the given subset. For each of the CpG island 
status levels, a 2 × 2 contingency table was defined and 
another Chi squared test was used to independently eval-
uate the association of the given subset with each status 
level. A significance level of 0.05 was employed for all 
tests. Effect size was reported as the Odds Ratio for each 
of the individual tests.

Gap distance analysis
Distance from both the centromere and telomere was 
measured for each of the probes in the Human Meth-
ylation450 microarray. In order to find significant dif-
ferences between the probes inside the subset of interest 
and those in the background, a Wilcoxon non-paramet-
ric test was used. Again, a significance level of 0.05 was 
employed for all tests, and Cliff ’s Delta (D) was used as a 
measure of effect size.

Microarray background correction
Although it is sometimes referred to as a genome wide 
solution, the Infinium450  k microarray only covers 
a fraction of the entire genome. In its 27  k predeces-
sor, the probes were mainly located at gene promoter 
regions, while in addition to the promoter probes, the 
Infinium450  k includes probes located inside genes 
and in intergenic regions [67]. The irregular distribu-
tion of probes can lead to unwanted biases when study-
ing whether a selected subset of probes is enriched with 
respect to any functional or clinical mark. In this study, 
a reference to the background distribution of features 
was included in every type of statistical test performed 
in order to prevent the conclusions from being driven by 
the irregular distribution of probes. In qualitative tests 
(CpG island status, genomic region and histone mark 
enrichment), the contingency matrix was built to repre-
sent the background distribution of the microarray. Thus 
any significant result would indicate a departure from the 
fixed background distribution, and so avoid any manu-
facturer bias.

Gene ontology analysis and annotation
Probe sets were converted to gene sets by using the 
annotation information present in the R/Bioconductor 
package TxDb.Hsapiens.UCSC.hg19.knownGene (Carl-
son M. TxDb.Hsapiens.UCSC.hg19.knownGene: Annota-
tion package for TxDb object(s).). A probe was assigned 
to a gene if the probe was contained within the union 
of all the genomic regions represented by the different 
transcripts belonging to that gene, or in a 2kbp region 
upstream of the corresponding TSS. Probes converted 
in this way can be assigned to zero (intergenic probes) or 
more genes. After gene conversion, each subset of inter-
est was analyzed using the HOMER software tool [68]. 
The software was configured to use the whole set of genes 
represented in the HumanMethylation450 architecture 
as a background. HOMER tested the genes in each sub-
set of interest against 21 different databases, including 
the Gene Ontology (GO) Biological Process, Molecular 
Function and Cellular Component ontologies, as well as 
KEGG and Reactome pathway databases, among others.

Conclusions
The present study provides a group of 6641 CpG sites 
that change their methylation levels from birth to 5 years 
of age in human blood leukocytes. Age-hypermethyl-
ated CpG sites are associated with genes related mainly 
to development, suggesting that DNA methylation-
changes with age during the first years of life might play 
a significant role in the regulation of differentiation and 
leukocyte-specific functions. Conversely, genes with 
age-hypomethylated sites both reveal an immunological 
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window of opportunity in childhood and indicate that 
blood leukocytes experience a genome remodeling, 
which is related to interaction with environmental fac-
tors. This underlines the importance of environmental 
exposures during the first years of life and highlights the 
need to take this into consideration in new strategies for 
disease prevention.
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