1,054 research outputs found

    A comparative study on the storage of yam chips (gbodo) and yam flour (elubo)

    Get PDF
    Comparative study on the storability of yam chips and yam flour was carried out on traditionally processed and stored yam chips (gbodo) and yam flour (elubo) over a period of three months. Their keeping qualities were accessed at intervals by determining the nutritive qualities and the microbial properties of both samples. During the three months of storage, the yam flour showed greater deterioration with regards to nutritive value and microbial load because the yam chips were less accessible to spoilage microorganisms as a result of lower surface area. It is recommended that storage of yam products as chips should be encouraged

    Open-comminuted mid humeral fracture in a long-tailed macaque (Macaca fascicularis) – case report

    Get PDF
    A 2-year-old long-tailed macaque (Macaca fascicularis) was presented to the University Veterinary Hospital, Universiti Putra Malaysia for a traumatic injury to the left arm. Physical examination findings revealed a lacerated wound of 2 cm x 1 cm with distal humeral bone segment was protruding out from the muscles and skin. There were delayed pain sensation and withdrawal reflex of the left upper arm. Radiographic findings revealed discontinuity of the left humerus at the mid-shaft with a single fragment from the distal segment at the fracture site. The fracture was repaired with an open reduction and fixation technique with a combination of intramedullary pinning and cerclage wire. The patient regained motor function of the arm after six weeks of intramedullary pin implantation. Here we describe the severity of each grading system and the principles of open fracture management in macaques

    ALMA Lensing Cluster Survey: Full Spectral Energy Distribution Analysis of z ∼ 0.5–6 Lensed Galaxies Detected with millimeter Observations

    Get PDF
    Sub/millimeter galaxies are a key population for the study of galaxy evolution because the majority of star formation at high redshifts occurred in galaxies deeply embedded in dust. To search for this population, we have performed an extensive survey with Atacama Large Millimeter/submillimeter Array (ALMA), called the ALMA Lensing Cluster Survey (ALCS). This survey covers 133 arcmin2 area and securely detects 180 sources at z ∼ 0.5–6 with a flux limit of ∼0.2 mJy at 1.2 mm. Here, we report the results of multiwavelength spectral energy distribution analysis of the whole ALCS sample, utilizing the observed-frame UV to millimeter photometry. We find that the majority of the ALCS sources lie on the star-forming main sequence, with a smaller fraction showing intense starburst activities. The ALCS sample contains high infrared-excess sources ( IRX=log(Ldust/LUV)>1 ), including two extremely dust-obscured galaxies (IRX > 5). We also confirm that the ALCS sample probes a broader range in lower dust mass than conventional submillimeter galaxy samples in the same redshift range. We identify six heavily obscured active galactic nucleus (AGN) candidates that are not detected in the archival Chandra data in addition to the three X-ray AGNs reported by Uematsu et al. (2023). The inferred AGN luminosity density shows a possible excess at z = 2–3 compared with that determined from X-ray surveys below 10 keV

    Chromogenic detection of yam mosaic virus by closed-tube reverse transcription loop-mediated isothermal amplification (CT-RT-LAMP)

    Get PDF
    A closed-tube reverse transcription loop-mediated isothermal amplification (CT-RT-LAMP) assay was developed for the detection of yam mosaic virus (YMV, genus Potyvirus) infecting yam (Dioscorea spp.). The assay uses a set of six oligonucleotide primers targeting the YMV coat protein region, and the amplification products in YMV-positive samples are visualized by chromogenic detection with SYBR Green I dye. The CT-RT-LAMP assay detected YMV in leaf and tuber tissues of infected plants. The assay is 100 times more sensitive in detecting YMV than standard RT-PCR, while maintaining the same specificity

    Diversification of importin-α isoforms in cellular trafficking and disease states.

    Get PDF
    The human genome encodes seven isoforms of importin α which are grouped into three subfamilies known as α1, α2 and α3. All isoforms share a fundamentally conserved architecture that consists of an N-terminal, autoinhibitory, importin-β-binding (IBB) domain and a C-terminal Arm (Armadillo)-core that associates with nuclear localization signal (NLS) cargoes. Despite striking similarity in amino acid sequence and 3D structure, importin-α isoforms display remarkable substrate specificity in vivo. In the present review, we look at key differences among importin-α isoforms and provide a comprehensive inventory of known viral and cellular cargoes that have been shown to associate preferentially with specific isoforms. We illustrate how the diversification of the adaptor importin α into seven isoforms expands the dynamic range and regulatory control of nucleocytoplasmic transport, offering unexpected opportunities for pharmacological intervention. The emerging view of importin α is that of a key signalling molecule, with isoforms that confer preferential nuclear entry and spatiotemporal specificity on viral and cellular cargoes directly linked to human diseases

    The collapse of the wave function in the joint metric-matter quantization for inflation

    Full text link
    It has been argued that the standard inflationary scenario suffers from a serious deficiency as a model for the origin of the seeds of cosmic structure: it can not truly account for the transition from an early homogeneous and isotropic stage to another one lacking such symmetries. The issue has often been thought as a standard instance of the "quantum measurement problem", but as has been recently argued by some of us the situation reaches a critical level in the cosmological context of interest here. This has lead to a proposal in which the standard paradigm is supplemented by a hypothesis concerning the self-induced dynamical collapse of the wave function, as representing the physical mechanism through which such change of symmetry is brought forth. This proposal was formulated within the context of semiclassical gravity. Here we investigate an alternative realization of such idea implemented directly within the standard analysis in terms of a quantum field jointly describing the inflaton and metric perturbations, the so called Mukhanov-Sasaki variable. We show that even though the prescription is quite different, the theoretical predictions include some deviations from the standard ones, which are indeed very similar to those found in the early studies. We briefly discuss the differences between the two at both, the conceptual and practical levels.Comment: 31 pages, 6 figures. Replaced to match the published versio

    Inferring Epidemic Contact Structure from Phylogenetic Trees

    Get PDF
    Contact structure is believed to have a large impact on epidemic spreading and consequently using networks to model such contact structure continues to gain interest in epidemiology. However, detailed knowledge of the exact contact structure underlying real epidemics is limited. Here we address the question whether the structure of the contact network leaves a detectable genetic fingerprint in the pathogen population. To this end we compare phylogenies generated by disease outbreaks in simulated populations with different types of contact networks. We find that the shape of these phylogenies strongly depends on contact structure. In particular, measures of tree imbalance allow us to quantify to what extent the contact structure underlying an epidemic deviates from a null model contact network and illustrate this in the case of random mixing. Using a phylogeny from the Swiss HIV epidemic, we show that this epidemic has a significantly more unbalanced tree than would be expected from random mixing

    Virtual Reality as a Tool for Evaluation of Repetitive Rhythmic Movements in the Elderly and Parkinson's Disease Patients

    Get PDF
    This work presents an immersive Virtual Reality (VR) system to evaluate, and potentially treat, the alterations in rhythmic hand movements seen in Parkinson's disease (PD) and the elderly (EC), by comparison with healthy young controls (YC). The system integrates the subjects into a VR environment by means of a Head Mounted Display, such that subjects perceive themselves in a virtual world consisting of a table within a room. In this experiment, subjects are presented in 1st person perspective, so that the avatar reproduces finger tapping movements performed by the subjects. The task, known as the finger tapping test (FT), was performed by all three subject groups, PD, EC and YC. FT was carried out by each subject on two different days (sessions), one week apart. In each FT session all subjects performed FT in the real world (FTREAL) and in the VR (FTVR); each mode was repeated three times in randomized order. During FT both the tapping frequency and the coefficient of variation of inter-tap interval were registered. FTVR was a valid test to detect differences in rhythm formation between the three groups. Intra-class correlation coefficients (ICC) and mean difference between days for FTVR (for each group) showed reliable results. Finally, the analysis of ICC and mean difference between FTVR vs FTREAL, for each variable and group, also showed high reliability. This shows that FT evaluation in VR environments is valid as real world alternative, as VR evaluation did not distort movement execution and detects alteration in rhythm formation. These results support the use of VR as a promising tool to study alterations and the control of movement in different subject groups in unusual environments, such as during fMRI or other imaging studies
    corecore