171 research outputs found

    Imidazol-1-ylethylindazole voltage gated sodium (Nav) channel ligands are neuroprotective during optic neuritis in a mouse model of multiple sclerosis.

    Get PDF
    A series of imidazol-1-ylethyl)indazole sodium channel ligands were developed and optimized for sodium channel inhibition and in vitro neuroprotective activity. The molecules exhibited displacement of the radiolabelled sodium channel ligand and selectivity for blockade of the inactivated state of cloned neuronal Nav channels. A metabolically stable analogue 6 (CFM6104) was able to protect retinal ganglion cells during optic neuritis in a mouse model of multiple sclerosis

    Lesional-targeting of neuroprotection to the inflammatory penumbra in experimental multiple sclerosis

    Get PDF
    The authors would like to thank the support of the National Multiple Sclerosis Society (USA) and the Multiple Sclerosis Society of Great Britain and Northern Ireland

    Intersection of inflammation and herbal medicine in the treatment of osteoarthritis

    Get PDF
    Herbal remedies and dietary supplements have become an important area of research and clinical practice in orthopaedics and rheumatology. Understanding the risks and benefits of using herbal medicines in the treatment of arthritis, rheumatic diseases, and musculoskeletal complaints is a key priority of physicians and their patients. This review discusses the latest advances in the use of herbal medicines for treating osteoarthritis (OA) by focusing on the most significant trends and developments. This paper sets the scene by providing a brief introduction to ethnopharmacology, Ayurvedic medicine, and nutrigenomics before discussing the scientific and mechanistic rationale for targeting inflammatory signalling pathways in OA by use of herbal medicines. Special attention is drawn to the conceptual and practical difficulties associated with translating data from in-vitro experiments to in-vivo studies. Issues relating to the low bioavailability of active ingredients in herbal medicines are discussed, as also is the need for large-scale, randomized clinical trial

    Effects of nano particles on antigen-related airway inflammation in mice

    Get PDF
    BACKGROUND: Particulate matter (PM) can exacerbate allergic airway diseases. Although health effects of PM with a diameter of less than 100 nm have been focused, few studies have elucidated the correlation between the sizes of particles and aggravation of allergic diseases. We investigated the effects of nano particles with a diameter of 14 nm or 56 nm on antigen-related airway inflammation. METHODS: ICR mice were divided into six experimental groups. Vehicle, two sizes of carbon nano particles, ovalbumin (OVA), and OVA + nano particles were administered intratracheally. Cellular profile of bronchoalveolar lavage (BAL) fluid, lung histology, expression of cytokines, chemokines, and 8-hydroxy-2'-deoxyguanosine (8-OHdG), and immunoglobulin production were studied. RESULTS: Nano particles with a diameter of 14 nm or 56 nm aggravated antigen-related airway inflammation characterized by infiltration of eosinophils, neutrophils, and mononuclear cells, and by an increase in the number of goblet cells in the bronchial epithelium. Nano particles with antigen increased protein levels of interleukin (IL)-5, IL-6, and IL-13, eotaxin, macrophage chemoattractant protein (MCP)-1, and regulated on activation and normal T cells expressed and secreted (RANTES) in the lung as compared with antigen alone. The formation of 8-OHdG, a proper marker of oxidative stress, was moderately induced by nano particles or antigen alone, and was markedly enhanced by antigen plus nano particles as compared with nano particles or antigen alone. The aggravation was more prominent with 14 nm of nano particles than with 56 nm of particles in overall trend. Particles with a diameter of 14 nm exhibited adjuvant activity for total IgE and antigen-specific IgG(1 )and IgE. CONCLUSION: Nano particles can aggravate antigen-related airway inflammation and immunoglobulin production, which is more prominent with smaller particles. The enhancement may be mediated, at least partly, by the increased local expression of IL-5 and eotaxin, and also by the modulated expression of IL-13, RANTES, MCP-1, and IL-6

    Analysis of mass spectrometry data from the secretome of an explant model of articular cartilage exposed to pro-inflammatory and anti-inflammatory stimuli using machine learning

    Get PDF
    Background: Osteoarthritis (OA) is an inflammatory disease of synovial joints involving the loss and degeneration of articular cartilage. The gold standard for evaluating cartilage loss in OA is the measurement of joint space width on standard radiographs. However, in most cases the diagnosis is made well after the onset of the disease, when the symptoms are well established. Identification of early biomarkers of OA can facilitate earlier diagnosis, improve disease monitoring and predict responses to therapeutic interventions. Methods: This study describes the bioinformatic analysis of data generated from high throughput proteomics for identification of potential biomarkers of OA. The mass spectrometry data was generated using a canine explant model of articular cartilage treated with the pro-inflammatory cytokine interleukin 1 β (IL-1β). The bioinformatics analysis involved the application of machine learning and network analysis to the proteomic mass spectrometry data. A rule based machine learning technique, BioHEL, was used to create a model that classified the samples into their relevant treatment groups by identifying those proteins that separated samples into their respective groups. The proteins identified were considered to be potential biomarkers. Protein networks were also generated; from these networks, proteins pivotal to the classification were identified. Results: BioHEL correctly classified eighteen out of twenty-three samples, giving a classification accuracy of 78.3% for the dataset. The dataset included the four classes of control, IL-1β, carprofen, and IL-1β and carprofen together. This exceeded the other machine learners that were used for a comparison, on the same dataset, with the exception of another rule-based method, JRip, which performed equally well. The proteins that were most frequently used in rules generated by BioHEL were found to include a number of relevant proteins including matrix metalloproteinase 3, interleukin 8 and matrix gla protein. Conclusions: Using this protocol, combining an in vitro model of OA with bioinformatics analysis, a number of relevant extracellular matrix proteins were identified, thereby supporting the application of these bioinformatics tools for analysis of proteomic data from in vitro models of cartilage degradation

    Imidazol-1-ylethylindazole Voltage-Gated Sodium Channel Ligands Are Neuroprotective during Optic Neuritis in a Mouse Model of Multiple Sclerosis

    Get PDF
    [Image: see text] A series of imidazol-1-ylethylindazole sodium channel ligands were developed and optimized for sodium channel inhibition and in vitro neuroprotective activity. The molecules exhibited displacement of a radiolabeled sodium channel ligand and selectivity for blockade of the inactivated state of cloned neuronal Na(v) channels. Metabolically stable analogue 6 was able to protect retinal ganglion cells during optic neuritis in a mouse model of multiple sclerosis

    RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic sequences

    Get PDF
    Background Repeat-induced point mutation (RIP) is a fungal-specific genome defence mechanism that alters the sequences of repetitive DNA, thereby inactivating coding genes. Repeated DNA sequences align between mating and meiosis and both sequences undergo C:G to T:A transitions. In most fungi these transitions preferentially affect CpA di-nucleotides thus altering the frequency of certain di-nucleotides in the affected sequences. The majority of previously published in silico analyses were limited to the comparison of ratios of pre- and post-RIP di-nucleotides in putatively RIP-affected sequences – so-called RIP indices. The analysis of RIP is significantly more informative when comparing sequence alignments of repeated sequences. There is, however, a dearth of bioinformatics tools available to the fungal research community for alignment-based RIP analysis of repeat families. Results We present RIPCAL http://www.sourceforge.net/projects/ripcal, a software tool for the automated analysis of RIP in fungal genomic DNA repeats, which performs both RIP index and alignment-based analyses. We demonstrate the ability of RIPCAL to detect RIP within known RIP-affected sequences of Neurospora crassa and other fungi. We also predict and delineate the presence of RIP in the genome of Stagonospora nodorum – a Dothideomycete pathogen of wheat. We show that RIP has affected different members of the S. nodorum rDNA tandem repeat to different extents depending on their genomic contexts. Conclusion The RIPCAL alignment-based method has considerable advantages over RIP indices for the analysis of whole genomes. We demonstrate its application to the recently published genome assembly of S. nodorum

    Glucocorticoids—All-Rounders Tackling the Versatile Players of the Immune System

    Get PDF
    Glucocorticoids regulate fundamental processes of the human body and control cellular functions such as cell metabolism, growth, differentiation, and apoptosis. Moreover, endogenous glucocorticoids link the endocrine and immune system and ensure the correct function of inflammatory events during tissue repair, regeneration, and pathogen elimination via genomic and rapid non-genomic pathways. Due to their strong immunosuppressive, anti-inflammatory and anti-allergic effects on immune cells, tissues and organs, glucocorticoids significantly improve the quality of life of many patients suffering from diseases caused by a dysregulated immune system. Despite the multitude and seriousness of glucocorticoid-related adverse events including diabetes mellitus, osteoporosis and infections, these agents remain indispensable, representing the most powerful, and cost-effective drugs in the treatment of a wide range of rheumatic diseases. These include rheumatoid arthritis, vasculitis, and connective tissue diseases, as well as many other pathological conditions of the immune system. Depending on the therapeutically affected cell type, glucocorticoid actions strongly vary among different diseases. While immune responses always represent complex reactions involving different cells and cellular processes, specific immune cell populations with key responsibilities driving the pathological mechanisms can be identified for certain autoimmune diseases. In this review, we will focus on the mechanisms of action of glucocorticoids on various leukocyte populations, exemplarily portraying different autoimmune diseases as heterogeneous targets of glucocorticoid actions: (i) Abnormalities in the innate immune response play a crucial role in the initiation and perpetuation of giant cell arteritis (GCA). (ii) Specific types of CD4+ T helper (Th) lymphocytes, namely Th1 and Th17 cells, represent important players in the establishment and course of rheumatoid arthritis (RA), whereas (iii) B cells have emerged as central players in systemic lupus erythematosus (SLE). (iv) Allergic reactions are mainly triggered by several different cytokines released by activated Th2 lymphocytes. Using these examples, we aim to illustrate the versatile modulating effects of glucocorticoids on the immune system. In contrast, in the treatment of lymphoproliferative disorders the pro-apoptotic action of glucocorticoids prevails, but their mechanisms differ depending on the type of cancer. Therefore, we will also give a brief insight into the current knowledge of the mode of glucocorticoid action in oncological treatment focusing on leukemia

    One year outcomes of a mentoring scheme for female academics: a pilot study at the Institute of Psychiatry, King's College London

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The professional development of under-represented faculty may be enhanced by mentorship, but we understand very little about the mechanisms by which mentoring brings about change. Our study posed the research question, what are the mechanisms by which mentoring may support professional development in under-represented groups?</p> <p>The study aims to: (i) to pilot a mentoring scheme for female academics; (ii) to compare various health-related and attitudinal measures in mentees at baseline, 6 months, and 1 year into the mentoring relationship and, (iii) to compare pre-mentoring expectations to outcomes at 6 months and 1 year follow-up for mentees and mentors.</p> <p>Methods</p> <p>Female academic mentees were matched 1:1 or 2:1 with more senior academic mentors. Online surveys were conducted to compare health-related and attitudinal measures and expectations of mentoring at baseline with outcomes at 6 months and 1 year using paired t-tests and McNemar's test for matched cohort data.</p> <p>Results</p> <p>N = 46 mentoring pairs, 44 (96%) mentees completed the pre-mentoring survey, 37 (80%) at 6 months and 30 (65%) at 1 year. Job-related well-being (anxiety-contentment), self-esteem and self-efficacy all improved significantly and work-family conflict diminished at 1 year. Highest expectations were career progression (39; 89%), increased confidence (38; 87%), development of networking skills (33; 75%), better time-management (29; 66%) and better work-life balance (28; 64%). For mentees, expectations at baseline were higher than perceived achievements at 6 months or 1 year follow-up.</p> <p>For mentors (N = 39), 36 (92%) completed the pre-mentoring survey, 32 (82%) at 6 months and 28 (72%) at 1 year. Mentors' highest expectations were of satisfaction in seeing people progress (26; 69%), seeing junior staff develop and grow (19; 53%), helping solve problems (18; 50%), helping women advance their careers (18; 50%) and helping remove career obstacles (13; 36%). Overall, gains at 6 months and 1 year exceeded pre-mentoring expectations.</p> <p>Conclusions</p> <p>This uncontrolled pilot study suggests that mentoring can improve aspects of job-related well-being, self-esteem and self-efficacy over 6 months, with further improvements seen after 1 year for female academics. Work-family conflict can also diminish. Despite these gains, mentees' prior expectations were shown to be unrealistically high, but mentors' expectations were exceeded.</p
    • …
    corecore