514 research outputs found

    XANAP: A real-world, prospective, observational study of patients treated with rivaroxaban for stroke prevention in atrial fibrillation in Asia.

    Get PDF
    Background: ROCKET AF and its East Asian subanalysis demonstrated that rivaroxaban was non-inferior to warfarin for stroke/systemic embolism (SE) prevention in patients with non-valvular atrial fibrillation (NVAF), with a favorable benefit-risk profile. XANAP investigated the safety and effectiveness of rivaroxaban in routine care in Asia-Pacific. Methods: XANAP was a prospective, real-world, observational study in patients with NVAF newly starting rivaroxaban. Patients were followed at ~3-month intervals for 1 year, or for ≥30 days after permanent discontinuation. Primary outcomes were major bleeding events, adverse events (AEs), serious AEs and all-cause mortality; secondary outcomes included stroke/SE. Major outcomes were adjudicated centrally. Results: XANAP enrolled 2273 patients from 10 countries: mean age was 70.5 years and 58.1% were male. 49.8% of patients received rivaroxaban 20 mg once daily (od), 43.8% 15 mg od and 5.9% 10 mg od. Mean treatment duration was 296 days, and 72.8% of patients had received prior anticoagulation therapy. Co-morbidities included heart failure (20.1%), hypertension (73.6%), diabetes mellitus (26.6%), prior stroke/non-central nervous system SE/transient ischemic attack (32.8%) and myocardial infarction (3.8%). Mean CHADS2, CHA2DS2-VASc and HAS-BLED scores were 2.3, 3.7 and 2.1, respectively. The rates (events/100 patient-years [95% confidence interval]) of treatment-emergent major bleeding, stroke and all-cause mortality were 1.5 (1.0-2.1), 1.7 (1.2-2.5) and 2.0 (1.4-2.7), respectively. Persistence was 66.2% at the study end. Conclusions: The real-world XANAP study demonstrated low rates of stroke and bleeding in rivaroxaban-treated patients with NVAF from Asia-Pacific. The results were consistent with the real-world XANTUS study and ROCKET AF

    LOVTRAP: an optogenetic system for photoinduced protein dissociation

    Get PDF
    Here we introduce LOVTRAP, an optogenetic approach for reversible, light-induced protein dissociation. LOVTRAP is based on protein A fragments that bind to the LOV domain only in the dark, with tunable kinetics and a >150-fold change in Kd. By reversibly sequestering proteins at mitochondria, we precisely modulated the proteins’ access to the cell edge, demonstrating a naturally occurring 3 mHz cell edge oscillation driven by interactions of Vav2, Rac1 and PI3K

    Automated smoother for the numerical decoupling of dynamics models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Structure identification of dynamic models for complex biological systems is the cornerstone of their reverse engineering. Biochemical Systems Theory (BST) offers a particularly convenient solution because its parameters are kinetic-order coefficients which directly identify the topology of the underlying network of processes. We have previously proposed a numerical decoupling procedure that allows the identification of multivariate dynamic models of complex biological processes. While described here within the context of BST, this procedure has a general applicability to signal extraction. Our original implementation relied on artificial neural networks (ANN), which caused slight, undesirable bias during the smoothing of the time courses. As an alternative, we propose here an adaptation of the Whittaker's smoother and demonstrate its role within a robust, fully automated structure identification procedure.</p> <p>Results</p> <p>In this report we propose a robust, fully automated solution for signal extraction from time series, which is the prerequisite for the efficient reverse engineering of biological systems models. The Whittaker's smoother is reformulated within the context of information theory and extended by the development of adaptive signal segmentation to account for heterogeneous noise structures. The resulting procedure can be used on arbitrary time series with a nonstationary noise process; it is illustrated here with metabolic profiles obtained from <it>in-vivo </it>NMR experiments. The smoothed solution that is free of parametric bias permits differentiation, which is crucial for the numerical decoupling of systems of differential equations.</p> <p>Conclusion</p> <p>The method is applicable in signal extraction from time series with nonstationary noise structure and can be applied in the numerical decoupling of system of differential equations into algebraic equations, and thus constitutes a rather general tool for the reverse engineering of mechanistic model descriptions from multivariate experimental time series.</p

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Measurement of the Z/gamma* + b-jet cross section in pp collisions at 7 TeV

    Get PDF
    The production of b jets in association with a Z/gamma* boson is studied using proton-proton collisions delivered by the LHC at a centre-of-mass energy of 7 TeV and recorded by the CMS detector. The inclusive cross section for Z/gamma* + b-jet production is measured in a sample corresponding to an integrated luminosity of 2.2 inverse femtobarns. The Z/gamma* + b-jet cross section with Z/gamma* to ll (where ll = ee or mu mu) for events with the invariant mass 60 < M(ll) < 120 GeV, at least one b jet at the hadron level with pT > 25 GeV and abs(eta) < 2.1, and a separation between the leptons and the jets of Delta R > 0.5 is found to be 5.84 +/- 0.08 (stat.) +/- 0.72 (syst.) +(0.25)/-(0.55) (theory) pb. The kinematic properties of the events are also studied and found to be in agreement with the predictions made by the MadGraph event generator with the parton shower and the hadronisation performed by PYTHIA.Comment: Submitted to the Journal of High Energy Physic

    Illness cognitions in head and neck squamous cell carcinoma: predicting quality of life outcome

    Get PDF
    Goals of work: This paper presents an observational study of the longitudinal effects of cancer treatment on quality of life (QoL) in patients treated for head and neck squamous cell carcinoma (HNSCC), and evaluated the contribution of patients' baseline illness cognitions to the prediction of QoL 2 years after diagnosis. Patients and methods: One hundred seventy-seven patients eligible for primary treatment for HNSCC completed the Illness Perception Questionnaire-Revised at baseline and the European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire-30 at baseline, at 1-year and 2-year follow-ups. Main results Compared to baseline, patients reported better emotional functioning at both follow-ups (p<0.001), worse social functioning at 12 months (p<0.05), and better global health

    Noise Suppression and Surplus Synchrony by Coincidence Detection

    Get PDF
    The functional significance of correlations between action potentials of neurons is still a matter of vivid debates. In particular it is presently unclear how much synchrony is caused by afferent synchronized events and how much is intrinsic due to the connectivity structure of cortex. The available analytical approaches based on the diffusion approximation do not allow to model spike synchrony, preventing a thorough analysis. Here we theoretically investigate to what extent common synaptic afferents and synchronized inputs each contribute to closely time-locked spiking activity of pairs of neurons. We employ direct simulation and extend earlier analytical methods based on the diffusion approximation to pulse-coupling, allowing us to introduce precisely timed correlations in the spiking activity of the synaptic afferents. We investigate the transmission of correlated synaptic input currents by pairs of integrate-and-fire model neurons, so that the same input covariance can be realized by common inputs or by spiking synchrony. We identify two distinct regimes: In the limit of low correlation linear perturbation theory accurately determines the correlation transmission coefficient, which is typically smaller than unity, but increases sensitively even for weakly synchronous inputs. In the limit of high afferent correlation, in the presence of synchrony a qualitatively new picture arises. As the non-linear neuronal response becomes dominant, the output correlation becomes higher than the total correlation in the input. This transmission coefficient larger unity is a direct consequence of non-linear neural processing in the presence of noise, elucidating how synchrony-coded signals benefit from these generic properties present in cortical networks
    corecore