1,385 research outputs found

    Early research on the biological effects of microwave radiation: 1940?1960

    Get PDF
    Two overriding considerations shaped the development of early research on the biological effects of microwave radiation?possible medical application (diathermy) and uncertainty about the hazards of exposure to radar. Reports in the late 1940s and early 1950s of hazards resulting from microwave exposure led to the near abandonment of medical research related to microwave diathermy at the same time that military and industrial concern over hazards grew, culminating in the massive research effort known as ?the Tri-Service program? (1957?1960). Both the early focus on medical application and the later search for hazards played important roles in dictating how this field of research developed as a science

    Effect of different protein sources on satiation and short-term satiety when consumed as a starter

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because the source of protein may play a role in its satiating effect, we investigated the effect of different proteins on satiation and short-term satiety.</p> <p>Methods</p> <p>Two randomized single-blind cross-over studies were completed. In the first study, we investigated the effect of a preload containing 20 g of casein, whey, pea protein, egg albumin or maltodextrin vs. water control on food intake 30 min later in 32 male volunteers (25 ± 4 yrs, BMI 24 ± 0.4 kg/m<sup>2</sup>). Subjective appetite was assessed using visual analogue scales at 10 min intervals after the preload. Capillary blood glucose was measured every 30 min during 2 hrs before and after the ad libitum meal. In the second study, we compared the effect of 20 g of casein, pea protein or whey vs. water control on satiation in 32 male volunteers (25 ± 0.6 yrs, BMI 24 ± 0.5 kg/m<sup>2</sup>). The preload was consumed as a starter during an ad libitum meal and food intake was measured. The preloads in both studies were in the form of a beverage.</p> <p>Results</p> <p>In the first study, food intake was significantly lower only after casein and pea protein compared to water control (P = 0.02; 0.04 respectively). Caloric compensation was 110, 103, 62, 56 and 51% after casein, pea protein, whey, albumin and maltodextrin, respectively. Feelings of satiety were significantly higher after casein and pea protein compared to other preloads (P < 0.05). Blood glucose response to the meal was significantly lower when whey protein was consumed as a preload compared to other groups (P < 0.001). In the second study, results showed no difference between preloads on ad libitum intake. Total intake was significantly higher after caloric preloads compared to water control (P < 0.05).</p> <p>Conclusion</p> <p>Casein and pea protein showed a stronger effect on food intake compared to whey when consumed as a preload. However, consuming the protein preload as a starter of a meal decreased its impact on food intake as opposed to consuming it 30 min before the meal.</p

    Calculating the potential for within-flight transmission of influenza A (H1N1)

    Get PDF
    Abstract Background Clearly air travel, by transporting infectious individuals from one geographic location to another, significantly affects the rate of spread of influenza A (H1N1). However, the possibility of within-flight transmission of H1N1 has not been evaluated; although it is known that smallpox, measles, tuberculosis, SARS and seasonal influenza can be transmitted during commercial flights. Here we present the first quantitative risk assessment to assess the potential for within-flight transmission of H1N1. Methods We model airborne transmission of infectious viral particles of H1N1 within a Boeing 747 using methodology from the field of quantitative microbial risk assessment. Results The risk of catching H1N1 will essentially be confined to passengers travelling in the same cabin as the source case. Not surprisingly, we find that the longer the flight the greater the number of infections that can be expected. We calculate that H1N1, even during long flights, poses a low to moderate within-flight transmission risk if the source case travels First Class. Specifically, 0-1 infections could occur during a 5 hour flight, 1-3 during an 11 hour flight and 2-5 during a 17 hour flight. However, within-flight transmission could be significant, particularly during long flights, if the source case travels in Economy Class. Specifically, two to five infections could occur during a 5 hour flight, 5-10 during an 11 hour flight and 7-17 during a 17 hour flight. If the aircraft is only partially loaded, under certain conditions more infections could occur in First Class than in Economy Class. During a 17 hour flight, a greater number of infections would occur in First Class than in Economy if the First Class Cabin is fully occupied, but Economy class is less than 30% full. Conclusions Our results provide insights into the potential utility of air travel restrictions on controlling influenza pandemics in the winter of 2009/2010. They show travel by one infectious individual, rather than causing a single outbreak of H1N1, could cause several simultaneous outbreaks. These results imply that, during a pandemic, quarantining passengers who travel in Economy on long-haul flights could potentially be an important control strategy. Notably, our results show that quarantining passengers who travel First Class would be unlikely to be an effective control strategy

    Event-related alpha suppression in response to facial motion

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.While biological motion refers to both face and body movements, little is known about the visual perception of facial motion. We therefore examined alpha wave suppression as a reduction in power is thought to reflect visual activity, in addition to attentional reorienting and memory processes. Nineteen neurologically healthy adults were tested on their ability to discriminate between successive facial motion captures. These animations exhibited both rigid and non-rigid facial motion, as well as speech expressions. The structural and surface appearance of these facial animations did not differ, thus participants decisions were based solely on differences in facial movements. Upright, orientation-inverted and luminance-inverted facial stimuli were compared. At occipital and parieto-occipital regions, upright facial motion evoked a transient increase in alpha which was then followed by a significant reduction. This finding is discussed in terms of neural efficiency, gating mechanisms and neural synchronization. Moreover, there was no difference in the amount of alpha suppression evoked by each facial stimulus at occipital regions, suggesting early visual processing remains unaffected by manipulation paradigms. However, upright facial motion evoked greater suppression at parieto-occipital sites, and did so in the shortest latency. Increased activity within this region may reflect higher attentional reorienting to natural facial motion but also involvement of areas associated with the visual control of body effectors. © 2014 Girges et al

    Direct observations of the effect of fine sediment deposition on the vertical movement of Gammarus pulex (Amphipoda: Gammaridae) during substratum drying

    Get PDF
    Benthic macroinvertebrates inhabit the streambed sediments of temporary streams during drying events. Fine sediment (< 2 mm in diameter) deposition and clogging of interstitial pathways reduces the connectivity between benthic and subsurface habitats, potentially inhibiting macroinvertebrate vertical movements. Direct observations within subsurface sediments are, however, inherently difficult. As a result, confirmation of macroinvertebrate vertical movement, and the effect of fine sediment, is limited. We used laboratory mesocosms containing transparent gravel sized particles (10–15 mm) to facilitate the direct observation and tracking of vertical movements by Gammarus pulex in response to water level reduction and sedimentation. Seven sediment treatments comprised two fine sediment fractions (small: 0.125–0.5 mm, coarse sand: 0.5–1 mm) deposited onto the surface of the substrate, and a control treatment where no fine sediment was applied. We found that G. pulex moved into the subsurface gravel sediments in response to drying, but their ability to remain submerged during water level reduction was impeded by fine sediment deposition. In particular deposition of the coarser sand fraction clogged the sediment surface, limiting vertical movements. Our results highlight the potential effect of sedimentation on G. pulex resistance to drying events in streams

    Standardized ADOS Scores: Measuring Severity of Autism Spectrum Disorders in a Dutch Sample

    Get PDF
    The validity of the calibrated severity scores on the ADOS as reported by Gotham et al. (J Autism Dev Disord 39: 693–705, 2009), was investigated in an independent sample of 1248 Dutch children with 1455 ADOS administrations (modules 1, 2 and 3). The greater comparability between ADOS administrations at different times, ages and in different modules, as reached by Gotham et al. with the calibrated severity measures, seems to be corroborated by the current study for module 1 and to a lesser extent for module 3. For module 2, the calibrated severity scores need to be further investigated within a sample that resembles Gotham’s sample in age and level of verbal functioning

    Current measures of metabolic heterogeneity within cervical cancer do not predict disease outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A previous study evaluated the intra-tumoral heterogeneity observed in the uptake of F-18 fluorodeoxyglucose (FDG) in pre-treatment positron emission tomography (PET) scans of cancers of the uterine cervix as an indicator of disease outcome. This was done via a novel statistic which ostensibly measured the spatial variations in intra-tumoral metabolic activity. In this work, we argue that statistic is intrinsically <it>non</it>-spatial, and that the apparent delineation between unsuccessfully- and successfully-treated patient groups via that statistic is spurious.</p> <p>Methods</p> <p>We first offer a straightforward mathematical demonstration of our argument. Next, we recapitulate an assiduous re-analysis of the originally published data which was derived from FDG-PET imagery. Finally, we present the results of a principal component analysis of FDG-PET images similar to those previously analyzed.</p> <p>Results</p> <p>We find that the previously published measure of intra-tumoral heterogeneity is intrinsically non-spatial, and actually is only a surrogate for tumor volume. We also find that an optimized linear combination of more canonical heterogeneity quantifiers does not predict disease outcome.</p> <p>Conclusions</p> <p>Current measures of intra-tumoral metabolic activity are not predictive of disease outcome as has been claimed previously. The implications of this finding are: clinical categorization of patients based upon these statistics is invalid; more sophisticated, and perhaps innately-geometric, quantifications of metabolic activity are required for predicting disease outcome.</p

    Robust Metabolic Responses to Varied Carbon Sources in Natural and Laboratory Strains of Saccharomyces cerevisiae

    Get PDF
    Understanding factors that regulate the metabolism and growth of an organism is of fundamental biologic interest. This study compared the influence of two different carbon substrates, dextrose and galactose, on the metabolic and growth rates of the yeast Saccharomyces cerevisiae. Yeast metabolic and growth rates varied widely depending on the metabolic substrate supplied. The metabolic and growth rates of a yeast strain maintained under long-term laboratory conditions was compared to strain isolated from natural condition when grown on different substrates. Previous studies had determined that there are numerous genetic differences between these two strains. However, the overall metabolic and growth rates of a wild isolate of yeast was very similar to that of a strain that had been maintained under laboratory conditions for many decades. This indicates that, at in least this case, metabolism and growth appear to be well buffered against genetic differences. Metabolic rate and cell number did not co-vary in a simple linear manner. When grown in either dextrose or galactose, both strains showed a growth pattern in which the number of cells continued to increase well after the metabolic rate began a sharp decline. Previous studied have reported that O2 consumption in S. cerevisiae grown in reduced dextrose levels were elevated compared to higher levels. Low dextrose levels have been proposed to induce caloric restriction and increase life span in yeast. However, there was no evidence that reduced levels of dextrose increased metabolic rates, measured by either O2 consumption or CO2 production, in the strains used in this study
    corecore