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Direct observations of the effect of fine sediment deposition
on the vertical movement of Gammarus pulex (Amphipoda:
Gammaridae) during substratum drying
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Abstract Benthic macroinvertebrates inhabit the

streambed sediments of temporary streams during

drying events. Fine sediment (\ 2 mm in diameter)

deposition and clogging of interstitial pathways

reduces the connectivity between benthic and subsur-

face habitats, potentially inhibiting macroinvertebrate

vertical movements. Direct observations within sub-

surface sediments are, however, inherently difficult.

As a result, confirmation of macroinvertebrate vertical

movement, and the effect of fine sediment, is limited.

We used laboratory mesocosms containing transparent

gravel sized particles (10–15 mm) to facilitate the

direct observation and tracking of vertical movements

by Gammarus pulex in response to water level

reduction and sedimentation. Seven sediment treat-

ments comprised two fine sediment fractions (small:

0.125–0.5 mm, coarse sand: 0.5–1 mm) deposited

onto the surface of the substrate, and a control

treatment where no fine sediment was applied. We

found that G. pulex moved into the subsurface gravel

sediments in response to drying, but their ability to

remain submerged during water level reduction was

impeded by fine sediment deposition. In particular

deposition of the coarser sand fraction clogged the

sediment surface, limiting vertical movements. Our

results highlight the potential effect of sedimentation

on G. pulex resistance to drying events in streams.

Keywords Sedimentation � Hyporheic zone �
Intermittent rivers � Mesocosm � Burrowing �
Invertebrate

Introduction

Streambed drying as a result of climate variability and

anthropogenic pressures on water resources is an

increasing global phenomenon (Acuña et al., 2014;

Leigh et al., 2016), even in historically perennial

systems (Datry et al., 2014; Pyne & Poff, 2017). As

streams dry, flow becomes restricted within the

channel, often forming a series of disconnected pools

prior to complete drying and desiccation of the

channel bed (Boulton, 2003). Habitat conditions

typically become increasingly unfavourable for most

aquatic organisms during drying events, often result-

ing in the complete elimination of lotic taxa, causing

major changes to macroinvertebrate community struc-

ture and composition (Bunn & Arthington, 2002;
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Bogan et al., 2015; Verdonschot et al., 2015; Leigh

et al., 2016).

Many macroinvertebrate populations persist during

dry events by employing a range of survival strategies

including behavioural adaptations, such as vertical

movement into the saturated riverbed sediments

(Stubbington, 2012; Vander Vorste et al., 2016a;

Vadher et al., 2017), or physiological adaptations to

desiccation (Strachan et al., 2015; Stubbington et al.,

2016) and declining water quality (van Vliet &

Zwolsman, 2008). Lotic macroinvertebrate taxa have

been recorded and observed in the saturated subsur-

face sediments of drying streams, indicating that they

may serve as a habitat where fauna may persist (Hose

et al., 2005; Fenoglio et al., 2006), and from which

populations may recolonize waterbodies following the

resumption of flow (Vander Vorste et al., 2016a).

However, confirmation of the vertical movement and

the tracking of individuals have been hampered by the

inherent difficulties associated with making direct

observations within subsurface sediments (Vadher

et al., 2017).

Sedimentation and the resulting loss of vertical

connectivity between surface and subsurface sedi-

ments is considered a major cause of instream

degradation globally, and may impede subsurface

ecological functioning (Navel et al., 2010; Descloux

et al., 2013). Fine sediments (typically referred to as

particles\ 2 mm in size; Wood & Armitage, 1997;

Jones et al., 2012) can infiltrate into subsurface

sediments limiting the vertical movement of instream

fauna (Weigelhofer & Waringer, 2003; Mathers &

Wood, 2016) through the reduction of porosity and

surface–groundwater hydrological exchange (Hartwig

& Borchardt, 2014). There is a widely recognised

increase in the volume of fine sediment entering and

being deposited in rivers as a result of agricultural

practices (Lamba et al., 2015), channel management

(Dunbar et al., 2010) and urbanisation (Taylor &

Owens, 2009; Naden et al., 2016). Given the predicted

increased frequency of stream drying events (Pyne &

Poff, 2017) there is a need to examine the combined

effects of sedimentation and drying on faunal popu-

lations. Consequently, a growing number of field

experiments have demonstrated the deleterious effects

of increased fine sediment content within the subsur-

face on faunal community structure and function

within lotic systems (Richards & Bacon, 1994; Bo

et al., 2007; Larsen et al., 2011; Buendia et al., 2013;

Jones et al., 2015). The direct effects of surface (Navel

et al., 2010; Vadher et al., 2015) and subsurface

(Mathers et al., 2014) clogging/colmation on the

vertical movement of macroinvertebrates has, how-

ever, only been characterised and quantified more

recently, using ex situ experiments. These have

demonstrated that sedimentation has a limiting and

deleterious effect on macroinvertebrate vertical move-

ments within subsurface sediments (Navel et al., 2010;

Mathers et al., 2014; Vadher et al., 2015).

Previous field (e.g., Descloux et al., 2013) and

laboratory investigations (e.g., Mathers et al., 2014)

have largely inferred faunal responses to sedimenta-

tion by measuring the effect on their final position.

This reflects the inherent difficulty of making direct,

real-time, observations within subsurface sediments

(but see Stumpp & Hose, 2017). Recent studies using

individual organisms in mesocosms filled with trans-

parent sediments have facilitated direct observations

of invertebrate movements and stranding within

subsurface sediments in response to a reduction in

water level and drying (e.g., Stumpp & Hose, 2013;

Vadher et al., 2017). This greatly improves the ability

to quantify and qualify movement behaviours in a

more precise way.

Gammarus pulex (Linnaeus, 1758) (Amphipoda:

Gammaridae) is a benthic amphipod common

throughout north-western Europe (Crane, 1994; Mac-

Neil et al., 1997). Where abundant, G. pulex is an

ecologically important detritivore-shredder (Navel

et al., 2010). Gammarus pulex is also important due

to its role as both a predator and prey for fish and other

invertebrate species (MacNeil et al., 1997; Kelly et al.,

2002, 2006). Gammarus pulex have been reported to

migrate into subsurface sediments in response to biotic

competition (McGrath et al., 2007), elevated temper-

atures (Wood et al., 2010) and water level reduction

(Vander Vorste et al., 2016b; Vadher et al., 2017).

Migration has been observed to depths of up to 2 m

during adverse environmental conditions (Dole-Oli-

vier et al., 1997). These characteristics, alongside the

ease of care in the laboratory make G. pulex a useful

model organism for studying behavioural response to

environmental stress. In this study, we examined

experimentally the effect of fine sediment deposition

on the vertical movement of G. pulex within trans-

parent subsurface sediments during water level reduc-

tion. The aim was to determine the extent to which

coarse and fine sand deposition affects the vertical
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movement of G. pulex through subsurface sediments

in response to water level reduction. We hypothesised

that: (i) declining water levels and substrate drying

would result in the stranding of G. pulex individuals

which were unable to remain submerged; and (ii) the

addition of fine sediment (sedimentation) would

reduce the number of G. pulex remaining submerged

as a result of impairment in the ability of individuals to

enter the subsurface.

Materials and methods

Sediment tank mesocosms

Experiments were conducted using two transparent

sediment tanks constructed using 1 cm thick clear

acrylic panels (50 cm length 9 35 cm height 9 5 cm

width) to create an internal volume of 5250 cm3

(Fig. 1). To allow drainage, a 7 mm hole was made

centrally into the base of the tank and a 5 mm silicone

tube inserted. Drainage of water was controlled using a

Hoffman clip, providing control of water depth to

1 mm precision (Fig. 1). To aid observation and water

drawdown, five horizontal lines were marked onto the

tank every 5 cm from the base (highest horizontal line

at 25 cm from the base). The tanks were filled with a

transparent gravel sediment substrate to a depth of

25 cm (Fig. 1) and were held vertically using wooden

mounts within an environmental cabinet

(108 cm 9 27 cm 9 68 cm). The front wall of the

cabinet was covered with a black cloth to maintain

darkness and provide lighting conditions analogous to

the subsurface streambed whilst allowing an observer

to inspect the columns inside.

Sediment treatments

Angular transparent acrylic gravel particles

(10–15 mm diameter) were used as the substrate onto

which fine sediment treatments were applied. Two

sand size fractions (slate based black fluvial sand

particles) were used in the experiments, small

(0.125–0.5 mm) and coarse (0.5–1 mm), to create

fine sediment treatments. These size fractions were

chosen based on preliminary experiments which

indicated that the smaller size fraction infiltrated into

the substrate, under gravity, to the bottom of the tanks

whilst the coarser sand particles bridged the spaces

between the transparent gravel substrate particles,

resulting in clogging of the substrate surface (Fig. 2).

The interstitial volume within the top 5 cm of the

substrate in each tank was determined by recording the

volume of water drained from between the transparent

particles (mean ± SE: tank 1 = 337 ± 1 ml; tank

2 = 339 ± 0.5 ml) in the top 5 cm. These interstitial

volumes determined the amount of fine sediment

required to fill all interstitial spaces within the top

5 cm of the substrate. In addition to a control sediment

treatment which did not contain fine sediment, the two

fine sediment sizes were thoroughly mixed in varying

proportions of the total interstitial volume (100, 87.5,

75, 50, 25 and 12.5%) to create seven sediment

treatments (Table 1).

Water

Tap water was pre-treated with AquaSafe� (Tetra�,

Virginia) to neutralise any residual chemicals and

cooled to 11�C over a 24-h period prior to the

commencement of the experiments. Complete oxygen

saturation was maintained throughout each experi-

ment using oxygenating tablets (potassium chloride;

Supa�), widely used in domestic aquaria. Immediately

prior to the start of each experimental run, water was

Fig. 1 Sediment tank mesocosm. a acrylic tank

(50 cm 9 35 cm 9 5 cm); b water level at experiment start

(5 cm above the sediment surface); c 25 cm of transparent

gravel particles (10 – 15 mm); d line marked onto the tank at

5 cm intervals; e 5 mm silicone tube; f Hoffman clip
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added to the tanks to 5 cm above the substrate surface

(Fig. 1).

Test organism

Gammarus pulex were collected using a standard kick

net (900 lm mesh, 230 mm 9 255 mm frame,

275 mm bag depth) from a riffle on Black Brook

(52�45046.700N 1�19019.100W) west of the town of

Loughborough (Leicestershire, UK). Individuals were

tipped from the net onto a 1 mm aperture sieve and

were carefully removed from the sieve surface using

tweezers. Individuals with a width[ 1 mm were

transported to the laboratory in 5–l containers of

stream water for immediate use in experiments.

Fig. 2 Fine sediment infiltration through tank mesocosms

using mixtures containing small (0.125 mm – 0.5 mm) and

coarse (0.5 mm – 1 mm) fine sediment particles. a 100% small

fine sediment deposition; b 50% small and 50% coarse sediment

mixture deposition; c 100% coarse fine sediment deposition

76 Hydrobiologia (2018) 815:73–82

123



Experimental procedure

Sand treatments were poured slowly onto the surface

of the transparent gravel substrate through the 5 cm of

surface water and left for 30 min to allow any natural

settlement to occur. Ten G. pulex individuals were

then introduced into each tank and left to acclimatise

for 20 min prior to the start of the experiments. During

preliminary experiments, a 20 min period was suffi-

cient for exploratory and burrowing activity to

subside. To minimise disturbance to organisms during

the experiment, observation of the vertical position of

G. pulex were made within the dark environmental

cabinet using a low level LED light prior to each water

level reduction. Water level was reduced in 12.5 mm

increments every 15 min until a depth of 20 cm below

the substrate surface was reached (a total duration of

300 min until drawdownwas complete). A 5 cm depth

of water was retained in each mesocosm at the end of

each experiment as a refuge for organisms. Observa-

tions began at ‘time = 00 (5 cm of surface water) and

were made by counting the number of individuals in

each 5 cm horizontal section. When water had been

drawn down to 20 cm below the substrate surface, the

number of G. pulex below the waterline (within the

5 cm refuge) was recorded and experiments termi-

nated. Following the termination of experiments, the

contents of each tank was carefully excavated and

thoroughly washed to separate the transparent sedi-

ment, G. pulex individuals, coarse and small fine

sediment particles. Each experimental trial was repli-

cated seven times for each of the seven sediment

treatments (including the control treatment; Table 1),

providing 49 individual trials. Each trial was observed

21 times following water level reduction (total

observations = 1029).

Data analysis

We tested our first hypothesis, that declining water

levels and substrate drying would result in some G.

pulex individuals being unable to remain submerged,

and our second hypothesis, that the addition of fine

sediment (sedimentation) would result in reduced

numbers of G. pulex remaining submerged, using a

full-factorial two-way Repeated Measures ANOVA

(RMANOVA) analyses. The percentage of G. pulex

that remained submerged throughout the experiments

were defined as the dependent variable, water depth

was defined as the repeated measure (within-subject

factor) and sediment treatment was defined as the

between subject factor. Mauchly’s tests were used to

verify the RMANOVA assumption of sphericity and

the results of Greenhouse–Geisser tests used when this

assumption was violated. We also tested the second

hypothesis using a General Linear Model (GLM) to

determine differences in the percentage of G. pulex

that remained submerged at the end of experiments as

the dependent factor with the sediment treatment

defined as a fixed factor. Post hoc Fisher’s Least

Significant Difference (LSD) tests were used for both

the RMANOVA and GLM models to examine the

effect of sediment treatment on the percentage of G.

pulex that were submerged. The assumptions of

homoscedasticity and normality were tested using

diagnostic plots. All data conformed to these assump-

tions so no data transformation was applied. All

Table 1 The proportion and volume of fine sediments used in each sediment treatment

Treatment Fine sediment proportions Volume of small fines (0.5–1 mm) (ml) Volume of coarse fines (0.125–0.5 mm) (ml)

Tank 1 Tank 2 Tank 1 Tank 2

1 Control – – – –

2 100% small 337 339 – –

3 75% small, 25% coarse 253 254 84 85

4 50% small, 50% coarse 169 169 169 169

5 25% small, 75% coarse 84 85 253 254

6 12.5% small, 87.5% coarse 42 42 295 297

7 100% coarse – – 337 339
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analyses were conducted in IBM SPSS Statistics

(version 23, IBM Corporation, New York).

Results

Effect of water drawdown and fine sediment

on vertical movement and stranding of G. pulex

The proportion of submerged G. pulex declined as

water depth reduced in all sediment treatments, but

decreased to a greater extent in treatments comprising

higher proportions of coarse sand; there was a

significant interaction between water depth and sed-

iment treatment (RMANOVA, Greenhouse–Geisser,

F20.992, 146.943 = 10.431, P\ 0.001; Fig. 3). The

effect of water level reduction on the ability of G.

pulex to move vertically and remain submerged was

similar for treatments 1–3, for which between 50–65%

of G. pulex were able to remain submerged during the

drawdown of water. For treatments 5–6 the percentage

of individuals submerged declined quickly for the first

5 cm of drawdown before a more gradual decrease of

individuals remaining submerged was observed.

Treatment 4 was intermediate between these two

other groups. For treatment 7 (100% coarse sand

addition) nearly all G. pulex became stranded follow-

ing a relatively minor reduction (10 cm) in water level

(Fisher’s LSD, P\ 0.001; Fig. 3).

Effect of sediment treatment on the percentage

of submerged G. pulex at experiment end

Differences in the percentage of individuals remaining

submerged at the end of the experiment were statis-

tically significant for all treatments compared to the

control (treatment 1), with the exception of treatment 3

(Table 2). Sediment treatments comprising greater

proportions of coarser sand particles reduced the

percentage of G. pulex submerged at the end of

experiments (GLM, F6, 42 = 17.061, P\ 0.001;

Fig. 4), although fewer G. pulex remained submerged

at the end of experiments in treatment 2 compared to

treatment 3 (Fig. 4). A markedly reduced proportion

ofG. pulex (2.9% ± 4.4% SE) remained submerged at

the end of experiments for sediment treatment 7

(100% coarse sand addition) compared to all other

treatments 1–6 (Table 2; Fig. 4).

Discussion

Some G. pulex individuals were unable to remain

submerged during dewatering, supporting our first

hypothesis. These results also support the observations

of Stumpp&Hose (2013) and Vadher et al. (2017) that

reducing water level in artificial mesocosm experi-

ments resulted in the stranding of individual inverte-

brates within subsurface sediments. Therefore, water

level reduction as an environmental stressor may

negatively affect faunal populations within the sub-

surface sediments. In this laboratory study, water

quality parameters were kept relatively stable com-

pared to the changes in water quality that occurs

during the natural drying of streams (Boulton & Lake,

2008). When combined with deteriorating water

quality in natural streams, the effects of water level

reduction on mortality may be significantly greater in

temporary streams (Lake, 2003; Chadd et al., 2017)

than those recorded in this study.

A number of studies have inferred that subsurface

clogging by fine sediment reduces the potential for

vertical movement by invertebrates within subsurface

Fig. 3 Sediment treatment and water depth effect on the

percentage of submerged Gammarus pulex during experiments.

Sediment treatments 1–7 are defined in Table 1. Gammarus

pulex burrowing during water depth reduction was similar in

treatments 1–3 and in 5–6 (Fisher’s LSD, P[ 0.05)
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riverbed sediments (e.g., Descloux et al., 2013;

Weigelhofer & Waringer, 2003), but none have

previously directly observed these effects in situ.

The use of transparent sediments within mesocosms

has the potential to enhance understanding of faunal

responses to drying in temporary streams, for example,

Vadher et al. (2017) demonstrated a gradient of

vertical movements through sediments due to different

sediment characteristics. Without the use of transpar-

ent sediments only binary, presence/absence confir-

mation would have been possible. As a result, we were

able to directly observe how decreased porosity, as a

result of sedimentation, reduced the ability ofG. pulex

to migrate vertically and remain submerged. Gam-

marus pulex individuals actively moved through

subsurface sediments to depths of up to 25 cm below

the sediment surface in response to drying (Vadher

et al., 2017). Therefore, this study shows how the

extent of vertical movements made by G. pulex in

response to surface water loss and drawdown into the

subsurface was impeded by sedimentation. In other

research, G.pulex has been reported to migrate up to

2 m vertically in gravel substrates in response to

spates (Dole-Olivier et al., 1997) and its ability to

maintain populations in hypogean habitats (e.g., Wood

et al., 2008) suggests it is able to migrate vertically

relatively easily where appropriate habitat and path-

ways exist.

We found support for our second hypothesis, that

the addition of fine sediment (sedimentation) would

result in reduced numbers of G. pulex remaining

submerged because the ability of individuals to enter

the subsurface was impaired. This reflects the high

clogging potential of 0.5–1 mm compared to

0.125–0.5 mm particles and the ability of larger

particles to bridge the interstitial spaces between

grains, blocking pathways within the subsurface and

reducing sediment porosity/permeability (Boulton

et al., 1998; Bo et al., 2007; Vadher et al., 2015). The

high clogging potential of the 0.5–1 mm particles was

clearly exhibited in this study as this size fraction

completely clogged the surface of mesocosms (bridg-

ing the majority of surface interstitial pathways)

forming a physical barrier (Gibson et al., 2009) through

which G. pulex could not penetrate. The deposition of

fine sediment particles (\ 2 mm) within riverbeds has

Table 2 Fisher’s least significant difference (LSD) post hoc pairwise comparison of Gammarus pulex burrowing at the end of

experiments in treatments 1–7 (see Table 1)

Treatment Post hoc Fisher’s (LSD) tests

1 2 3 4 5 6 7

1 0.026 0.254 0.043 0.001 \ 0.001 \ 0.001

2 0.254 0.818 0.172 0.113 \ 0.001

3 0.360 0.015 0.008 \ 0.001

4 0.113 0.071 \ 0.001

5 0.818 \ 0.001

6 \ 0.001

7

Significant differences in G. pulex survivorship (P B 0.05) between treatments are emboldened

Fig. 4 Mean percentage of Gammarus pulex submerged (± 1

SE) in sediment treatments at the end of experiments.

Treatments 1–7 are defined in Table 1. Treatments with the

same letter (a–d) indicate no statistically significant difference

(Table 2)
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been previously reported to reduce the vertical move-

ment of macroinvertebrates into subsurface sediments

(Richards&Bacon, 1994;Mathers et al., 2017) and our

data demonstrate that these responses are due to the

impairment and limitation of the ability of the

individuals to move through the substrate. Our results

showed a marked stepped/threshold effect of fine

sediment on the vertical movement of G. pulex

between treatment 6 (12.5% small and 87.5% coarse

fine sediment) and treatment 7 (100% coarse fine

sediment) which indicates that particle size and the

heterogeneity of deposited sediments strongly influ-

enced the ability of individual invertebrate to access

the subsurface interstitial habitat.

The extent to which fine sediment and sediment

composition affect individual species has been

reported to be species-specific (Descloux et al., 2013;

Vadher et al., 2017). For example, Descloux et al.

(2013) reported a linear decline in macroinvertebrate

abundance of species with increasing fine sediment

within streambeds with the exception of the

ephemeropterans Caenis spp. and Heptageniidae;

which displayed an exponential reduction and were

completely absent when fine sediment content

exceeded 30 and 50%, respectively. However, while

the physical effects of fine sediment on benthic habitat

and organisms have been widely recognised (Richards

& Bacon, 1994; Descloux et al., 2013), it is also

important to acknowledge the effects that fine sediment

deposition has on interstitial flow and the transport of

nutrients and dissolved oxygen through subsurface

habitats (Olsen & Townsend, 2003). However, some

taxa actively utilise fine sediments as a habitat (e.g.,

tubificid worms and Chironomidae) and in some

instances construct galleries creating hyporheic flow

paths and increasing connectivity (Nogaro et al.,

2006, 2008). Therefore, further species-specific exper-

iments are needed to quantify the effect of sedimen-

tation on macroinvertebrate fauna.

This study has demonstrated that sedimentation

affects G. pulex movement and stranding within

subsurface habitats. Therefore, the vertical movement

responses to sedimentation reported here will likely

impact community resistance and resilience to drying

as sedimentation reduces the subsurface refuge poten-

tial. We therefore highlight the need for effective

refuge management through the enhancement of

streambed porosity. Such management strategies

should include measures to reduce fine sediment

inputs into streams using sediment detention ponds/

wetlands and planting riparian vegetation to stabilise

river banks (Verstraeten & Poesen, 2000; Hughes,

2016). Where high river flows are insufficient in

flushing fine sediment from streambeds, management

techniques such as gravel jetting (Bašić et al., 2017),

replenishing depleted coarser grained sediments

(Merz & Ochikubo Chan, 2005; McManamay et al.,

2010) and the use of instream structures to enhance

hydraulic efficiency to transport fine sediments (Palm

et al., 2007; Michel et al., 2014) should be considered.

In conclusion, our study highlights the importance

of streambed permeability and fine sediment to allow

for the vertical movements of macroinvertebrates

during drying events. We particularly highlight the

need to quantify the effect of deposited fine sediment

composition on faunal community structure within

temporary streams. With the frequency of drying

events in streams increasing as a result of climate

change (Ledger & Milner, 2015; Pyne & Poff, 2017)

and anthropogenic pressure on water resources (Datry

et al., 2014) alongside fine sediment increasing in

streams (Lamba et al., 2015; Naden et al., 2016),

mesocosm experiments may prove particularly useful

in quantify the effects of multiple stressors on ecosys-

tem structure and functioning. Future research should

therefore consider approacheswhich combine field and

laboratory/mesocosm-based observations to facilitate

greater understanding of streambed drying processes.
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