320 research outputs found
Using a whole-body 31P birdcage transmit coil and 16-element receive array for human cardiac metabolic imaging at 7T.
PURPOSE: Cardiac phosphorus magnetic resonance spectroscopy (31P-MRS) provides unique insight into the mechanisms of heart failure. Yet, clinical applications have been hindered by the restricted sensitivity of the surface radiofrequency-coils normally used. These permit the analysis of spectra only from the interventricular septum, or large volumes of myocardium, which may not be meaningful in focal disease. Löring et al. recently presented a prototype whole-body (52 cm diameter) transmit/receive birdcage coil for 31P at 7T. We now present a new, easily-removable, whole-body 31P transmit radiofrequency-coil built into a patient-bed extension combined with a 16-element receive array for cardiac 31P-MRS. MATERIALS AND METHODS: A fully-removable (55 cm diameter) birdcage transmit coil was combined with a 16-element receive array on a Magnetom 7T scanner (Siemens, Germany). Electro-magnetic field simulations and phantom tests of the setup were performed. In vivo maps of B1+, metabolite signals, and saturation-band efficiency were acquired across the torsos of eight volunteers. RESULTS: The combined (volume-transmit, local receive array) setup increased signal-to-noise ratio 2.6-fold 10 cm below the array (depth of the interventricular septum) compared to using the birdcage coil in transceiver mode. The simulated coefficient of variation for B1+ of the whole-body coil across the heart was 46.7% (surface coil 129.0%); and the in vivo measured value was 38.4%. Metabolite images of 2,3-diphosphoglycerate clearly resolved the ventricular blood pools, and muscle tissue was visible in phosphocreatine (PCr) maps. Amplitude-modulated saturation bands achieved 71±4% suppression of phosphocreatine PCr in chest-wall muscles. Subjects reported they were comfortable. CONCLUSION: This easy-to-assemble, volume-transmit, local receive array coil combination significantly improves the homogeneity and field-of-view for metabolic imaging of the human heart at 7T
Current Advances in Internet of Underground Things
The latest developments in Internet of Underground Things are covered in this chapter. First, the IOUT Architecture is discussed followed by the explanation of the challenges being faced in this paradigm. Moreover, a comprehensive coverage of the different IOUT components is presented that includes communications, sensing, and system integration with the cloud. An in-depth coverage of the applications of the IOUT in various disciplines is also surveyed. These applications include areas such as decision agriculture, pipeline monitoring, border control, and oil wells
Bulk Axions, Brane Back-reaction and Fluxes
Extra-dimensional models can involve bulk pseudo-Goldstone bosons (pGBs)
whose shift symmetry is explicitly broken only by physics localized on branes.
Reliable calculation of their low-energy potential is often difficult because
it requires details of the stabilization of the extra dimensions. In rugby ball
solutions, for which two compact extra dimensions are stabilized in the
presence of only positive-tension brane sources, the effects of brane
back-reaction can be computed explicitly. This allows the calculation of the
shape of the low-energy pGB potential and response of the extra dimensional
geometry as a function of the perturbing brane properties. If the
pGB-dependence is a small part of the total brane tension a very general
analysis is possible, permitting an exploration of how the system responds to
frustration when the two branes disagree on what the proper scalar vacuum
should be. We show how the low-energy potential is given by the sum of brane
tensions (in agreement with common lore) when only the brane tensions couple to
the pGB. We also show how a direct brane coupling to the flux stabilizing the
extra dimensions corrects this result in a way that does not simply amount to
the contribution of the flux to the brane tensions. We calculate the mass of
the would-be zero mode, and briefly describe several potential applications,
including a brane realization of `natural inflation,' and a dynamical mechanism
for suppressing the couplings of the pGB to matter localized on the branes.
Since the scalar can be light enough to be relevant to precision tests of
gravity (in a technically natural way) this mechanism can be relevant to
evading phenomenological bounds.Comment: 36 pages, JHEP styl
Increasing the reference populations for the 55 AISNP panel: the need and benefits
Ancestry inference for an individual can only be as good as the reference populations with allele frequency data on the SNPs being used. If the most relevant ancestral population(s) does not have data available for the SNPs studied, then analyses based on DNA evidence may indicate a quite distantly related population, albeit one among the more closely related of the existing reference populations. We have added reference population allele frequencies for 14 additional population samples (with >1100 individuals studied) to the 125 population samples previously published for the Kidd Lab 55 AISNP panel. Allele frequencies are now publicly available for all 55 SNPs in ALFRED and FROG-kb for a total of 139 population samples. This Kidd Lab panel of 55 ancestry informative SNPs has been incorporated in commercial kits by both ThermoFisher Scientific and Illumina for massively parallel sequencing. Researchers employing those kits will find the enhanced set of reference populations useful
Random-phase approximation and its applications in computational chemistry and materials science
The random-phase approximation (RPA) as an approach for computing the
electronic correlation energy is reviewed. After a brief account of its basic
concept and historical development, the paper is devoted to the theoretical
formulations of RPA, and its applications to realistic systems. With several
illustrating applications, we discuss the implications of RPA for computational
chemistry and materials science. The computational cost of RPA is also
addressed which is critical for its widespread use in future applications. In
addition, current correction schemes going beyond RPA and directions of further
development will be discussed.Comment: 25 pages, 11 figures, published online in J. Mater. Sci. (2012
Strong interface-induced spin-orbit coupling in graphene on WS2
Interfacial interactions allow the electronic properties of graphene to be
modified, as recently demonstrated by the appearance of satellite Dirac cones
in the band structure of graphene on hexagonal boron nitride (hBN) substrates.
Ongoing research strives to explore interfacial interactions in a broader class
of materials in order to engineer targeted electronic properties. Here we show
that at an interface with a tungsten disulfide (WS2) substrate, the strength of
the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The
induced SOI leads to a pronounced low-temperature weak anti-localization (WAL)
effect, from which we determine the spin-relaxation time. We find that
spin-relaxation time in graphene is two-to-three orders of magnitude smaller on
WS2 than on SiO2 or hBN, and that it is comparable to the intervalley
scattering time. To interpret our findings we have performed first-principle
electronic structure calculations, which both confirm that carriers in
graphene-on-WS2 experience a strong SOI and allow us to extract a
spin-dependent low-energy effective Hamiltonian. Our analysis further shows
that the use of WS2 substrates opens a possible new route to access topological
states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines.
Final version with expanded discussion of the relation between theory and
experiments to be published in Nature Communication
Glutathione S-transferase mu 1 (GSTM1) and theta 1 (GSTT1) genetic polymorphisms and atopic asthma in children from Southeastern Brazil
Xenobiotics can trigger degranulation of eosinophils and mast cells. In this process, the cells release several substances leading to bronchial hyperactivity, the main feature of atopic asthma (AA). GSTM1 and GSTT1 genes encode enzymes involved in the inactivation of these compounds. Both genes are polymorphic in humans and have a null variant genotype in which both the gene and corresponding enzyme are absent. An increased risk for disease in individuals with the null GST genotypes is therefore, but this issue is controversial. The aim of this study was to investigate the influence of the GSTM1 and GSTT1 genotypes on the occurrence of AA, as well as on its clinical manifestations. Genomic DNA from 86 patients and 258 controls was analyzed by polymerase chain reaction. The frequency of the GSTM1 null genotype in patients was higher than that found in controls (60.5% versus 40.3%, p = 0.002). In individuals with the GSTM1 null genotype the risk of manifested AA was 2.3-fold higher (95%CI: 1.4-3.7) than for others. In contrast, similar frequencies of GSTT1 null and combined GSTM1 plus GSTT1 null genotypes were seen in both groups. No differences in genotype frequencies were perceived in patients stratified by age, gender, ethnic origin, and severity of the disease. These results suggest that the inherited absence of the GSTM1 metabolic pathway may alter the risk of AA in southeastern Brazilian children, although this must be confirmed by further studies with a larger cohort of patients and age-matched controls from the distinct regions of the country
- …