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Chapter 10 

Current Advances in Internet of Underground 
Things 

Abstract The latest developments in Internet of Underground Things are covered in 
this chapter. First, the IOUT Architecture is discussed followed by the explanation of 
the challenges being faced in this paradigm. Moreover, a comprehensive coverage of 
the di erent IOUT components is presented that includes communications, sensing, 
and system integration with the cloud. An in-depth coverage of the applications of 
the IOUT in various disciplines is also surveyed. These applications includes areas 
such as decision agriculture, pipeline monitoring, border control, and oil wells. 

10.1 Introduction 

Internet of Underground Things (IOUTs) is subset of IoT which consists of sensors 
and communication devices for real-time sensing and monitoring of soil. IOUT 
di ers from IoT in that the sensors and communication devices are either partly or 
fully buried underground. IOUT extends Wireless Underground Sensor Networks 
(WUSNs) [52], [58], [61], [9], [75], [77], [81], [86], [100], [139], [141], [145], [157], 
[158], [61], [164], [104], [168], [67], [72] and include autonomous devices which 
collects the required and relevant earth information. These devices are connected via 
some communication and network systems which sends information out from the 
field to farmers and growers for decision making. IOUT, through Internet, facilitates 
seamless access to agriculture information. IOUT operation includes: in-situ soil 
sensing such as soil’s moisture, temperature and salinity etc, communication through 
soil and plants, and real-time environment information, e.g., rain, wind and solar 
etc. IOUT aims to improve and provide e"cient food production mechanism. It 
achieves complete autonomy by connecting with the various farming equipment such 
as seeders, combines and irrigation systems [45]. The operating environment of IOUT 
is very unique, i.e., access of information from soil, communication through plants 
and soil, exposure to element and unexpected environmental conditions. Existing 
over-the-air (OTA) wireless solutions were not made for such environment, therefore, 
these OTA solutions face significant performance challenges in IOUT environment. 
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Internet of Underground 
Things (IOUT) 

Architecture Components Applications Testbeds Challenges 

Fig. 10.1: Organization of the Chapter 

In attempt to deal with challenges of communicating in IOUT environment, a new 
type of wireless communication is proposed: wireless underground communications 
(UG) communications [52, 177],. Wireless UG communications is a communication 
method where radios are buried under earth and communicate through soil. IOUT 
along with the UG communication will be beneficial in conserving water and 
improving crop yields [168], [104]. Advancement in IOUT technologies can also 
improve operations of various applications (underground mining, pipeline assessment 
and landslide monitoring) which utilizes earth underground resources [54], [9], [139], 
[145], [177], [29]. 

10.2 IOUT Architecture 

As mentioned in previous section, IOUT consist on interconnected heterogeneous 
nodes customized for field operations. IOUT is expected to provide following 
functionalities: 

10.2.1 Functionalities 

• In-situ Sensing: In-situ sensing refers to a buried sensor collecting the information 
(soil moisture, salinity and temperature) from the soil. In-situ sensing plays a 
very important role in gathering precise localized information of the soil. These 
sensors can be used in two ways: 1) they can be integrated on the chip with 
components in the architecture, 2) can be used as standalone separate sensors 
connected to the main components through wires [36, 53]. 

• Wireless Communication in Challenging Environment: Communication systems 
in IOUT are either deployed in the field or within the soil. As these systems 
are exposed to natural environment, they should sustain the unexpected rough 
and challenging environment. OTA solutions should be customized to changing 
environment because of irrigation and growth of the crop. UG solutions are 
shielded from the environment and should be able to communicate through the 
soil and adapt to dynamic changes in soil parameters. 
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351 10.2 IOUT Architecture 

Fig. 10.2: IOUT Paradigm in Precision Agriculture [111] 

• Inter-Connection of Field Machinery, Sensors, Radios, and Cloud: IOUT systems 
are mainly responsible for collecting data from the field and sending it to the 
cloud for further processing and decision making. It uses a multitude of diverse 
devices for successfully completing these operations. IOUT should be able to 
seamlessly integrate and link these large number of di erent devices. In addition 
to collection of information, IOUT must also be able to automate the field 
operations based on this information. 

Fig. 10.2 illustrates the IOUT architecture which aims to achieve these required 
functionalities. The components of this architecture are described below: 

10.2.2 Elements 

• Underground Things (UTs): An UT is an embedded system with on board sensing 
and communication component. UTs can either partially or fully buried in the 
ground. UTs are protected from the environment with water proof enclosure and 
watertight containers. Buried UTs are protected from the farm’s equipment. Soil 
temperature and moisture sensors are used most commonly, however, many other 
soil- and weather- related phenomena can also be monitored. Bluetooth, satellite, 
ZigBee, underground and cellular are some of the existing communication 
schemes. Bluetooth [71, 86] and underground wireless [9, 47] provide short 
range communication of about 100 meters. Commercial products operating in 
industrial, scientific and medical (ISM) band covers three times larger distance 
of short-range communication systems. Cellular and satellite communication 
systems provide much longer range covering more distance. For large field size, 
a network can be configured to send the data to a collector sink and self-heal 
if nodes are unreachable. Nodes are powered by the combination of batteries 
and solar panels. UTs are cheaper as they are deployed in a very large number 
[51, 77]. 
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• Base Stations: Base stations are used as gateways for transferring data from the 
field to the cloud. They are permanent structures and are installed in buildings, 
e.g., weather station. Due to high power of processing and communication 
capabilities, base stations are expensive and well protected [77]. 

• Mobile Sinks: Mobile sinks are attached with the moving farming equipment 
such as tractors or irrigation systems [9, 52]. However, sometimes turning the 
farming equipment just for data retrieval can sometimes be expensive. Hence, as 
an alternative, unmanned vehicle (ground robots or quadrotors) are also being 
used for such purposes. 

• Cloud: The purpose of the cloud services in IOUT architecture is to provide 
permanent storage for information, real-time processing of information, decision 
making and integration with other databases such as soil and weather. 

Table 1.1 and Table 1.2 provides the summary of existing academic and commercial 
architecture. Most of the commercial solutions uses OTA communication systems 
where UT connects to field tower via cellular or satellite communication. This diverse 
communication architecture makes it di"cult to form a unified IOUT architecture 
fulfilling all the requirements. Lack of standard sensing and communication protocols 
makes this task more di"cult. 

10.3 IOUT Components 

10.3.1 Communications 

This section explores some communication systems which can be used in the 
implementation of IOUT systems. Here, all these systems are discussed at very basic 
level. There are di erent technologies that can be used for communication in IOUT. 
The wired IOUT solutions uses coaxial cables and fiber optics. Wired solutions provide 
high data rates and are being used in di erent applications [55, 80, 155]. Although, 
these wired solutions provides reliable and accurate communication, however, they 
increase the complexity and poses scalability issues. Given the disadvantages of 
wired systems, wireless solutions are termed as feasible solutions to provide relatively 
low complexity and scalable solutions. 

Wireless solutions are classified on the basis of technology they are using 
to transmit information. These solutions includes: Electromagnetic waves (EM), 
magnetic-induction (MI), acoustic waves and VLC. Acoustic wave are used for 
detection purposes, e.g., detecting objects in underground environment [103] and 
detecting water content in the soil. the disadvantage of using acoustic-based system 
is the low data rate and high noise and attenuation [73]. 

Some of the technologies and their feasibility for IOUT systems are given below: 
Magnetic induction (MI): Magnetic Induction-based IOUT communication 

network consist of buried sensors (UTs) and above-ground (AG) devices. 
Above-ground devices can provide extended communication by using extra large and 
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Fig. 10.3: Communication Technologies in IOUT: (a) Acoustic-based IoUT, (b) 
EM-based IoUT, (c) Schematic of MI communication link [114] 

powerful dipole antenna. Therefore, downlink communication (AG2UG) is single-hop 
and upstream (UG2AG) is multi-hop due to limited transmission power [41]. 

MI transceiver is composed of induction coils producing magnetic fields. these 
magnetic fields can be sensed by nearby coil. Each induction coil is attached to a 
capacitor in a way that it operates at resonant frequency. In an attempt to achieve 
long transmission range (10 to 100 m) in IOUT moderate size coils are preferred. A 
time-varying magnetic field is produced by the coil of transmitter node which in turn 
induces current at receiver antenna. This procedure is shown in Fig. 10.3(c) 

Decay rate of received signal strength (RSS) is the inverse cube factor in MI. 
Hence, high data rates and long-range is not an option in MI-based systems and 
both are primal requirements of IOUT. In MI, transmitter and receiver antenna 
are perpendicular to each other which prevents establishing communication in MI. 
Therefore, MI-based IOUT architecture are not scalable. Owing to these factors and 
inability to communicate with above-ground devices, MI-based systems are not a 
reliable option for IOUT systems and their performance is tried to improve by using 
relay coil [28, 92, 104, 166] 

Acoustic: Acoustic waves have been used as communication and detection 
techniques in underground measurements. Geologist have been using to explore 
natural resources (oil and gas) by measuring the reflected acoustic waves from the 
ground. It has been used in drilling for communication with underground drilling 
equipment. Some of the major applications of acoustic waves include buried pipeline 
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monitoring, earthquake monitoring, seismic exploration, smart drilling for oil and 
gas reservoirs. there exist many studies in the literature for acoustic which can also 
support other applications[40]. 

Acoustic methods can be active or passive depending on how signal is generated. 
Passive methods generates an acoustic signal, from the underground, after some 
major events like earthquake or volcanic explosion, or sudden underground changes 
such as structural transformation, pipeline leakage or rock crack formation. Sensors 
are placed in the vicinity of these events which detect infrasonic wave and helps 
in predicting such events. Active methods signal is self-generated by an artificial 
explosion/vibration which is sent underground to understand the earth’s property 
(see Fig. 10.3(a)). Reflection-based seismology is one popular application of such 
method Though IOUT UG communication and underwater communication [163] 
have some similarities. However, they are not suitable choice for communication in 
IOUT because of low propagation speed and vibration limitations. Therefore, they 
are mostly used for the detection purposes. 

Unmanned Aerial Vehicle (UAV): Unmanned Aerial Vehicle (UAV) has recently 
seen an advancement in IOUT precision agriculture for sensing the communication 
of the field conditions [96, 111], imaging surveillance [101] and decision support 
[110]. Before the popularity of UAVs, only purpose of the satellite imaging was 
used for only monitoring purposes, however, now its i being used to create soil 
moisture maps for the field in timely and cost-e"cient methods. Other applications 
includes: crop growth monitoring, seed planting and pesticide applications.When 
integrated with IOUT systems, UAVs require e"cient communication protocols to 
communicate with the sensors, radio antennas and make real-time decision. However 
there are some challenges face by the UG to UAVs communication e.g., limitation on 
payloads antennas used by UAVs, limitations on time of the flight, need of special 
skills for operating UAVs, operational license fro UAV and shorter communication 
range. Advancement in technology and regulatory restrictions can lead to improved 
integration of UAVs in IOUT Eco-system [37]. 

Electromagnetic Waves for IOUT: Electromagnetic (EM) waves have been 
extensively used for communications in various application of IOUT in agriculture 
[19, 187], seismic exploration [153], oil and gas (Fig. 10.3(b)), and drilling [51, 70, 84] 

Low Power Wide Area Network (LPWAN)): IOUTs are designed to operate 
for a longer period of time which makes energy conservation a very important issue. 
Low Power Wide Area Network (LPWAN) not only conserve energy but also give 
long-range connectivity [42, 105]. LPWANs are used in those IOUT applications 
which have primary requirement of energy conservation and range, therefore, high 
data rate operations are not required and latency is acceptable. As per one of the 
LPWAN technical workgroup, LPWAN can operate for several years and customized 
to the applications which transmits small data packets intermittently. Some of the 
famous LPWAN technologies are: Long Range Wide Area Network (LoRaWAN) 
[59], Sigfox [17], NB-IoT [182] and Extended coverage GSM IoT (EC-GSM-IoT) [5]. 

Wireless PAN/LAN): One of the shortcoming of LPWAN is its low data rate. 
This shortcoming can be over come using wireless PAN/LAN. It can facilitate 
communication between machinery and equipment, base stations and field workers. 
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Wireless PAN/LAn include technologies like Bluetooth [1] provides bandwidth upto 
25 MHz and range of 100m, ZigBee [31]] provides bandwidth up to 1 MHz and range 
of 20-30m , Thread [22] provides secure support for upto 250 devices and Wi-Fi 
provides single channel bandwidth upto 160 MHz[9, 38]. 

Cellular Technologies: With more advancement in IOUT applications, there is 
an increasing demand of cellular and broadband connectivity in IOUT solutions. 
There is a scarcity of cellular broadband in rural area is the major hurdle in accessing 
the big data being generated from the IOUT field. one of the reason of no or slower 
cellular communication speed, in rural area, is the cost of infrastructure. Currently, 
data is manually collected and transmitted to base stations. Cellular communications 
were designed for the human communications, therefore, Machine-to-Machine 
(M2M) communication faces system and cost related challenges. However, new LTE 
standards are coming with support for M2M communication but IOUT devices must 
be compatible and low-powered because of the energy constraints [39]. 

10.3.2 Sensing 

Real-time sensing is one of the major functionality of IOUT architecture. Real-time 
sensing is the cause of widespread adoption of IOUT. It also gives e"ciency in IOUT 
applications [33, 108]. Although a complete chapter in this book is dedicated to the 
sensing component of IOUT, however, for the sake of completion, some of the IOUT 
sensing technologies are discussed very briefly in this section. 

IOUT Soil Moisture: Soil is the common component for most of the IOUT 
applications. Soil Moisture (SM) has been part of sensing in IOUT applications for 
crop production and agriculture. It is being used for measuring water content for 
decades. Earlier it was done manually by using hand-held devices, however, it has 
now been replaced by automated technologies due to di"culties of getting readings in 
remote fields.There has been much evolution in wireless data harvesting technologies 
for provision of real-time soil moisture data for decision making. It has helped a lot 
in improving water-management for many farm IOUTs [34]. Some of the major SM 
measurement methods are described below: 

• Gravimetric Sampling is a method to measure the volumetric water content of 
the soil by using ration of dry and wet soil mass with pore spaces. The sampling 
is done manually and soil samples, taken from the field, are oven dried [11, 36]. 

• Resistive sensors [19] works on the electrical conductivity of water. It measures 
change in resistance due to water in soil. An accurate SM reading is highly 
dependent on calibration of sensors. 

• Capacitive sensors measures works on change in capacitance due to water in 
soil. An accurate SM reading is highly dependent on calibration of sensors. 
These sensors are more accurate then resistive sensors, however, they are every 
expensive and are being used by commercial UTs. 

• Ground Penetrating Radar (GPR) [49, 82], SalamChapter takes readings on 
the basis of absorption and reflection of electromagnetic (EM) waves. It uses 
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frequency sweep, impulse and frequency modulated technologies for SM sensing. 
GPRs are used to measure near surface (up to 10cm) SM readings. 

• Neutron scattering probes [25, 65] and gauges measure estimating change in 
neutron flux density with respect to water in the soil. it uses radiation scattering 
techniques and are most accurate probes used for taking SM readings in the field. 
However, they require specific licenses to be used. 

• Other famous SM measuring techniques are: Gamma ray attenuation [90], 
frequency-domain reflectometry (FDR) [160] and time-domain reflectometry 
(TDR) [109]. 

The burying depth of sensors ranges from 5 cm - 75 cm depending upon the root 
depth and type of the crop. It produces SM data which is used as input to create soil 
moisture maps for real-time decision making. the number of SM sensors deployed in 
the field are increasing at very fast rate. For example, Nebraska Agricultural Water 
Management Network [51, 68, 83] was initially built with only 20 grower in 2005. 
The number has increased to 1400 growers for adoption of SM sensors-based energy 
conservation and water management practices. Apart from in-situ sensing of soil 
moisture, other data sources for SM data are: NASA North American Land Data 
Assimilation System [38], NASA Soil Moisture Active Passive [18], US Climate 
Reference Network [48], TAMU North American Soil Moisture Database [47, 48], 
Soil Climate Analysis Network [45], and Soil Moisture and Ocean Salinity [44]. Web 
Soil Survey (WSS) [30] collects the US soil information and classifies them on the 
basis of region. 

10.3.3 System Integration 

IOUT generates glut of data from the field and it is not possible to locally process 
it because of limited processing power and energy resources. Therefore and the 
data data processing. The data can be store privately, publicly or can be shared 
among di erent users depending upon the user requirement [55, 186]. Many online 
applications and market places uses the big data sets to analyze region for better 
and maximized crop yield [185]. There are national databases for keeping the soil 
moisture data. In-situ SM sensors can be lined these databases to achieve accurate 
and detailed information on SM [3, 18, 33, 38, 47, 50]. Cloud services can be used to 
support real-time decision making and visualization. Therefore, cloud can be used as 
centralized data storage and processing system in IOUT. Integration of Cloud and 
IOUT adds scalability from field to big geographical area where unified network can 
be formed within various IOUT applications. 

Moreover, after overcoming the storage and processing constraints, base stations 
can pull meteorological (from weather service) or soil data (from national service), 
combine this information with local UTs data for extended control on equipment. 
IOUT and Cloud integration opens new doors for more robust stakeholders in IOUT 
applications such as users, industry, trading companies. It would result in e"cient 
and sustainable IOUT ecosystem. For example, in precision agriculture, in addition 
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to integration of field data with di erent soil and weather databases, linking of UAVs 
and robotics can also be done in precision agriculture paradigm [35]. 

Weather the processing is being done locally or in the cloud, another challenge 
is to the integrating so many heterogeneous devices in a system. Reliable delivery 
of data from field to cloud and vice versa is an important functionality IOUT cloud 
architecture. This will not only provide a unified cloud connection of fields spread over 
vast geographical area but also enables to use data for assessment and improvement. 
There is also lack of standard interfaces which can provide seamless connectivity 
between various components of an IOUT system [24]. 

IOUT sense and communicate even the minor changes in the field including 
change in medium properties. IOUT applications generates big data and it is very 
important to correctly analyze this data to extract meaningful information and make 
real-time decisions to get better rate on investment. Therefore, developing a big data 
analytic is very important. For example, big data analytic in precision agriculture 
is: factors that may a ect crop yield, dividing the field into multiple zones based on 
particular applications such as nutrient, soil moisture, harvesting and productivity. 
It is important to analyze , e.g., water and energy consumption, and e ect on labor 
cost after adopting IOUT solution. Big data analytic are very important in showing 
the productivity and e"ciency of the system. It attracts stakeholder and helps in 
widespread adoption of IOUT systems [31, 45]. 

10.4 IOUT Applications 

10.4.1 Smart Lighting 

One of the application area of IOUT is smart lighting [9, 8, 22]. In smart lighting, the 
cables are buried underground to provide intelligent lighting system. Fig. 10.4 shows 
the architecture of IOUT implementation in lighting.The IOUT-based smart lighting 
architecture consist of following basic components: 

• Sensors - Attached to areas where lightning is required such as lamp posts, garage 
walls, and roadside poles etc. 

• Above-ground (AG) Channel - Used for down-link communication from AG 
devices to buried UG devices. 

• Underground (UG) Channel - Used for up-link communication from UG devices 
to AG devices. 

• Lighting Infrastructure - IOUT lighting infrastructure includes: road lighting, 
airport runway lighting, household driveway, garage illumination, lamp posts 
and household driveway etc. 

This architecture has many advantage over traditional over-the-air (OTA) 
lighting system. It eliminates wired networks completely. Moreover, installation 
of underground buried communication devices reduces the cabling complexity 
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Fig. 10.4: IOUT-based smart lighting architecture [52] 

significantly which, otherwise, is needed to power AG nodes. Finally, it also reduces 
the interference and spectral congestion. Communication in IOUT smart lightning is 
carried out by UG2AG communication channels. 

One of the important task is in-depth analysis of UG channel while designing the 
smart lighting. A 2-wave model is presented in [70] which do not consider the lateral 
waves. [165] models the UG communication in tunnels and mines, however, it cannot 
be applied to smart lighting because of di erent propagation environment. 

[49, 52] develops a statistical impulse response model for UG channel using 
the modeling approach presented in [78, 106, 152]. It modifies the model to suit 
the unique nature of underground channel. It assumes the correlation between the 
multi-path wave components to be negligible. Further more, it also assumes the 
phases at receiver side to be uniformly random and distributed over [0, 2fi). 

It does so by performing extensive experiments on indoor (see Fig. 10.5 and 
field testbed to analyze the UG channel in smart lighting. The statistical model is 
developed by analyzing the power delay profile (PDP). It can generate wireless UG 
channel impulse response for di erent types of soil and soil moisture level, delay 
spread and coherence bandwidth statistics. The model gives the important feedback 
for designing the IOUT for smart lighting systems. 

10.4.2 Urban UG Infrastructure 

10.4.2.1 Overview 

An important application for implementation of IOUT is urban underground 
infrastructure. Storm drains and sewers can overflow due to large amount of wastewater 
entering the pipes. In urban areas, city management collects millions of gallons of 
waster water and treat them in their waste facilities. This activity need to be monitored 
very carefully because extra waste water in the pipes can cause accumulation of water 
in pipes and ultimately leads to sewer overflows. Therefore, a smart monitoring of 
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Fig. 10.5: Indoor testbed [52] 

Fig. 10.6: IOUT-based Urband underground infrastructure: Smart wastewater system 
[44] 

urban underground infrastructure is very important. IOUT can be used to develop 
smart applications for real-time monitoring of waste water or storm water over flow 
and timely warnings can be issued. 

There are very limited solutions for this problem because of connectivity issues and 
extensive cabling requirement for implementation of such solutions. Fig. 10.6 shows 
the architecture of IOUT implementation in urban underground infrastructure. The 
IOUT-based urban underground architecture consist of following basic components: 

• Sensors - Attached to underground pipes for sensing the incoming water and 
communicating the overflow, if happens. 
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Fig. 10.7: Layers of stratified underground medium [44] 

• Wireless underground communication technology [62]- Communication 
infrastructure connects the sensors and base stations to communicate data 
to the control systems. 

• Base Stations - Base stations collects data from the underground sensor nodes 
and sends it to the control center/cloud for decision making. 

• Urban Infrastructure - Urban infrastructure includes roadside tra"c poles 
which are used to implement above-ground communication technology with the 
underground sensors. 

10.4.2.2 Path Loss Model for Urban UG Infrastructure 

As discussed in previous section, underground sensors has to communicate with 
road-side pole for communicating the status of water in the pipes. The medium 
of communication in this case would be road. Road is a complex medium which 
is made up of multiple layers: asphalt, air and soil (see Fig. 10.7). Therefore, it is 
important to understand the e ect of each layer of the medium to achieve long range 
of communication. To that end, authors in [28, 44, 138], authors have done a path 
loss analysis for improving wireless UG communication in urban underground IOUT 
applications of waster water monitoring. The path loss has been empirically evaluated 
in di erent UG communication media and with thickness of layers in striated medium. 
They used Friis equation [74] to calculate the path loss in each layer. Th received 
signal power in a layered medium can be written as [44, 177]: 

Pr = ≠Lm + Gr + Pt + Gt , (10.1) 
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where Lm is the attenuation due to layered medium. Lm is calculated as: 

Lm = Lfs  + Ll, (10.2) 

where Lfs  is over-the-air path loss and Ll extra attenuation due to EM wave 
propagation in the layered medium. It is given as: 

Lfs  = 33.2 + 20log(d) + 20log(f ), (10.3) 

Nÿ≠1 

Ll = Ln, (10.4) 
n=0 

where Ln gives the attenuation in the n-th layer. Ln depends upon number of 
factors such as dielectric permittivity of the layer and the wavenumber of the medium. 
The wavenumber of the medium is given as j— + – = “ where 
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where Ê = 2fif= angular frequency, µ is magnetic permeability, ‘Õ is the real and 
‘ÕÕ is real and imaginary part of permittivity. Propagation loss, Ln for n ≠ th layer is 
given as: 

Ln[dB] = 20.“.d. log 10(e) (10.7) 

where e = 2.71828, and d represents the thickness of the n ≠ th layer. [44] also 
determined the dispersion in the medium layers, i.e., soil, asphalt and base gravel 
aggravate layer. The experiments showed that, generally, path loss increased with the 
increase in the distance, however, it was less than 100 dB till 4km. Similarly, received 
signal strength decreased rapidly till 2 km, however, after 2 km, i.e., greater than 2km, 
the smooth decrease is observed. Both results are shown in Figs. 10.8Therefore, they 
concluded that upto 4km of communication range can be achieved, if propagation 
loss of a stratified medium is properly modeled. 
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Fig. 10.8: (a) E ect of distance on path loss [44], (b) E ect of distance on RSS [44] 

10.4.3 Oil & Gas Reservoirs 

10.4.3.1 Overview 

As per international energy agency (IEA), the energy demand of the world is going 
to increase significantly by 2030 [79]. The major portion of this increase originates 
from oil and gas industries, however, the challenging environment of Oil and Gas 
sector is failing to meet such a huge energy requirements. An important aspect of oil 
and gas industry reservoir is to obtain real-time information. IOUT is an enabling 
technology for optimized operation of oil and gas industry. These operations includes 
production, flow monitoring, and reservoir monitoring [87]. 

The challenging conditions of Oil and Gas sector has limited the application of 
traditional wireless networks. Therefore, magnetic induction (MI) based technology is 
being proposed as an enabling technology to develop a sensing system [2, 56, 161]. MI 
uses magnetic fields as major source of transferring communication. It’s counterpart, 
EM waves, are highly e ected by the properties of underground environment and 
requires large antennas for the implementation [70]. On contrary, MI is not e ected 
by these properties. As large antennas are not feasible for IOUTs, MI uses tine coils 
as antennas, hence, are more practical choice for the implementation in IOUT. 

10.4.3.2 MI-BASED IOUT SETUP 

An MI-based IOUT network is shown in Fig. 10.9 which consists of randomly 
distributed N sensor nodes (underground things (UTs)) and M aboveground networking 
equipment (anchors). The UTs are injected to sub-surface area by hydraulic fracturing 
[76]. UTs are uniformly distributed with position represented as S = sii

N 
=1 where 

si = xi, yi, zi are 3D position coordinates of i-th UT. Similarly, position of the j-th 
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Fig. 10.9: Architecture of MI-based IOUT reservoirs [114] 

anchor is given as s M
j  1 where sj = xj   
j= , yj , zj . Moreover, position of the anchor is 

well known and are attached to the fracturing well. 
Large dipole antennas are used by the anchors to communicate with UTs. Downlink 

channel (anchor æ UT) is single hop because of extended transmission capabilities 
provided by the large dipole antenna. Downlink channel is represented by dotted black 
lines in Fig. 10.9. On contrary, uplink (UT æ anchor) communication is multi-hop 
because of low power and transmission of UTs [167]. Uplink channel is represented 
by solid red lines in Fig. 10.9. High communication range for anchors is assumed 
because of the possibility of attaching them to external power sources. Waveguide 
structure of the coil is used to extend the communication range of MI coils [166]. 

UTs communicate with the other UTs and anchors using magnetic induction. A 
successful communication requires a proper coupling between the coils. Therefore, 
to receiver strong signal, a tri-directional coil receiver structure is proposed in [169]. 
the advantage of this coil structure is omni-directional coverage provided by it. From 
the perspective of magnetic induction, received and transmitted power are related as 
[110]: 

3 3 2ÊµPt  Nr r  
 Nt  t

rr sin –ij

Prj = 
i j i i j 

, (10.8)
16

6R0d  
ij 

where Pti is transmitted power, Ê and µ denotes the angular frequency and soil 
permeability. Diameter of receiver and sending coil is given by rri and rti , respectively. 
Nrj denotes the total turns in receiver coil, –ij denotes the angle between both 
transmitting and receiving coil, R0 give dij =Î si ≠ sj Î represents the distance 
between the sending and receiving destination coils. Equation 10.8 is also validated 
empirically in [169]. Equation 10.8 do not consider the skin depth e� ect because 
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of low frequencies, however, high frequencies are used for the soil, therefore, it is 
necessary to consider skin depth e �ect for such cases. For skin depth e �ect, distance 
between two UTs can be modified as: 

) * 
d̂ij = f(Prj ) = arg dij |Q (10.9) 

where ◊ is given in [97] as: 

(Pt ri 
≠P ) 3

j 16R0 R0 d
Q = 10 10 ≠   1 

t 
= 

r ij  2 2 3 (10.10)3 2 .
Ê µ Nti Nri rt

rr G (‡, 
j 

Ê  i 
, dij) 

In equation 10.10, 2 G (‡, Ê, dij ) is the additional loss due to skin depth e� ect and 
‡ denotes the soil electrical conductivity. 

10.4.3.3 IOUT application in Oil and Gas Reservoir 

In [113], a MI-based localization technique for Oil and Gas reservoir is proposed and 
evaluated using Cramer Rao Lower Bound (CRLB). The distance between any two 
UTs i and j in MI-based IOUT is given by equation 10.9. As the transmission range 
of MI nodes is limited, so each node has to estimate only the distance between itself 
and nearby nodes. These distances are communicated to central control room, where 
missing distances are computed using matrix completion strategy as: 

I 
d̂ij if dij Æ dm,

ÿL≠1
d̂ih(1) + 

flij = 
d̂h(k),h(k+1) + d̂h(L)j otherwise,

k=1 

where dm is maximum transmission distance, L is total hops between node i and j, 
and h(1), . . . ,h(L). All flij values will result in diagonal squared geodesic distance 
matrix (SGDM) as given below: 

S T 
0 · · ·  fl2 

i,(N+M) 
. .. WWU 

XXV. (10.11)Y = . . ... . 
fl2 · · ·  0(N+M ),1 

where Y is square symmetric matrix where flij = flji and flii = 0. After creating 
Y, the author employs dimensionality reduction technique to convert and visualize 
high dimensional distances into low-dimensional coordinates [112]. For this case 
three dimensional architecture, Isomap technique considered more suitable [172]. 
Isomap reduces the distances from high dimension to lower 3 dimensional coordinates. 
It does so by minimizing the following functions: 
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ÿ
F(S 2 ) = (flij ≠ Î si ≠ s

2
j Î ), (10.12) 

ij 

where Î 2 si ≠ sj Î  is the euclidean distance between nodes i and j. Another 
approach 1 by Kruskal [90], applies a centering operator to SDGM, i.e., (≠  

2 = GYG,
and gives a double centered matrix (H = ≠G

 YG
T /2), where H is given as follow: 

Q R 
1 ÿT

1 ÿT 
  1 ÿT ÿT

0.5 a 2 2 2hij =≠  flij ≠ flij ≠  2fl    fl b 
2T T ij≠

T  ij ,

i=1 j=1 i=1 j=1 

In above equation T = N + M . Eigenvalue decomposition of H gives: 

S

Ô Â = V U, (10.13) 

V is the eigenvector of H and U is the eigenvalues of H. The 3D coordinates 
are relative to each other not with respect to actual coordinate system. These 
local coordinates are converted to global geographical coordinates using Helmert 
transformation [184] or Procrustes analysis [43]. The location of the nodes are 
calculated as follow: 

Ŝ = ÈÎ(SÂ) + · (10.14) 

where È, Î , and · are the di �erent factors for rotation, scaling an translation, 
respectively. These factors are dependent upon the number fo anchors being used. 
The cost function of Procrustes analysis is givens as: 

Mÿ
f (È,· ,Î) =  (Âsi ≠ ÎÈT 

si ≠ · )T ◊ (Âsi ≠ ÎÈT 
si ≠ · ) (10.15) 

i=1 

The optimal values of È, Î , and · is calculated by minimizing equation 10.4.3.3. 
To that end, it is assumed that centroid of the real and estimated anchor location isq

M q
M

ca = 1
1 si and ,ce = 1

1 ŝi respectively. Rewriting equation 10.4.3.3 
M i= M i= 

by putting values of ca and ce as: 

M 3ÿ
f (È,· ,Î) =  (Âsi ≠ ce) ≠ ÎÈT (si ≠ ca) 

i=1 
4T 

+ Âsi ≠ ÎÈT 
si ≠ · 

3 (10.16) 

◊ (Âsi ≠ ce) ≠ ÎÈT (si ≠ ca) 

4 

+ Âsi ≠ ÎÈT 
si ≠ · , 
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The optimal values of · is obtained by solving equation 10.16: 

· = ce ≠ ÎÈT 
ca. (10.17) 

Furthermore, assuming that ce = ca = 0 and putting value of · in equation 10.16 
gives: 

Mÿ
f (È,· ,Î) =  (si ≠ ÎÈT 

si)
T (si ≠ ÎÈT 

si). (13) 
i=1 

It is important to note that equation 10.4.3.3 is a convex function. Hence, this 
equation is di erentiated with respect to Î to obtain the optimal value of Î: 

1 2 
Tr SaÈSÂT 

e 
Î = 1 2 (14)

Tr SaSÂT
e 

where the function Tr(·) is the trace operator. Lastly, the eigenvalue decomposition 
of SaSÂT is done to obtain the optimal value of È.e 

A proposed method is then analyzed by calculating CRLB as follow: 

CRLB = I
≠ 
x,

1 
x + I

≠ 
y,

1 
y + I

≠1 (10.18)z,z. 

The proposed technique is evaluated for e ect of coil size, number of coil turns, 
and transmit power on localization accuracy of the technique and shown that it 
surpasses the performance of other localization technique in both aspects. 

10.5 IOUT Testbeds 

Academic IOUT Testbed: IOUT can be used to estimate the water and fertilizer 
quantity to be applied using irrigation control system. A testbed in South Central 
Agricultural Lab (SCAL) in Clay Center, Nebraska [19, 33], covers an area of 41 
acres with advanced center pivot irrigation system installed in it. The purpose of 
this testbed is to study long-term e ect of crop water and nutrient consumption, 
variable rate irrigation and fertigation, relation between the crop water stress and 
yield, development of crop production function, and other related topics under the 
settings of full and limited irrigation [19, 40, 45]. The testbed consist of a solar 
panel to provide sustainable energy, transmitting and receiving antennas, UTs with 
capabilities s of measuring temperature and soil moisture. It is a fully functional 
testbed and IOUT sensing nd communication can be investigated on it. 

Another testbed developed for dynamically controlling soil moisture for IOUT 
wireless communications experiments inside greenhouse [39, 147]. It is enclosed in 
100 in x 36 in x 48 wooden box. It has capacity of holding 90 cubic feet of packed soil 
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Table 10.1: Various IOUT systems developed by academic institutions [111] 

Architecture Sensors Comm. Tech. Node Density 

Automated Irrigation System [77] 
DS1822 (temperature) 
VH400 (soil moisture) 

OTA, ZigBee (ISM) One node per indoor bed 

Soil Scout [104] 
TMP122 (temperature) 
EC-5 (soil moisture) 

UG, Custom (ISM) Eleven scouts on field 

Remote Sensing and Irrigation Sys. [86] 
TMP107 (temperature) 
CS616 (soil moisture) 
CR10 data logger 

OTA, Bluetooth (ISM) Five field stations 

Autonomous Precision Agriculture [9] 
Watermark 200SS-15 
(soil moisture) 
Data logger 

UG, Custom (ISM) Up to 20 nodes per field 

SoilNet [58] 
ECHO TE (soil moisture) 
EC20 TE (soil conductivity) 

OTA, ZigBee (ISM) 150 nodes covering 27 ha 

MOLES [170] Magnetic Induction Communications Magnetic Induction Indoor Testbed 

Irrigation Nodes in Vineyards [29] 
Yield 
NDVI 

VRI 140 irrigation nodes 

Sensor Network for Irrigation Scheduling [16, 60] 
Capacitance 
Irromesh 

(soil moisture) 
OTA 6 nodes per acre 

Cornell’s Digital Agriculture [2] 
E-Synch, 
Vineyard 

Touch-sensitive soft robots 
mapping technology, RTK 

OTA Field Dependant 

Plant Water Status Network [107] 
Crop water stress index (CWSI) 
Modified water stress index (MCWSI) 

OTA Two management zone 

Real-Time Leaf Temperature Monitor System [39] 

Leaf temperature 
Ambient temperature 
Relative humidity and 
Incident Solar radiation 

OTA Soil and plant monitors, 

Thoreau [189] 
Temperature, Soil moisture 
Electric conductivity and 
Water potential, 

OTA Based on Sigfox, 

FarmBeats [175] 
Temperature, 
Orthomosaic 

Soil moisture 
and pH, 

OTA Field size of 100 acres 

Video-surveillance and Data-monitoring WUSN [72] 
Agriculture data monitoring 
Motion detection, 
Camera sensor 

OTA In the order of several km 

Purdue’s Digital Agriculture Initiative [15] 
Adaptive weather tower 
PhenoRover sensor vehicle 

OTA Field Dependant 

Pervasive Wireless Sensor Network [183] Soil Moisture, Camera OTA Field Dependant 
Pilot Sensor Network [93] Sensirion SHT75 OTA 100 nodes in a field 
SoilBED [67] Contamination detection UG Cross-Well Radar 

and also have a drainage system. A controlled wireless communication experiments 
are carried out bu using antennas buried at di erent depths and distances. 

Another MI-based testbed is developed in [168]. This testbed consist of coil buried 
in lab settings. It is used to study the e ect of MI wave guide e ect with di erent 
soil configurations SoilBED [29, 67] is used for the cross-well radar experiments. 
They are used for detection of contaminated materials in the soil and studying EM 
wave propagation. Thoreau [161] is another university level underground testbed 
which collects and curate the time related data on the cloud. It works on Sigfox 
design and operates in unlicensed band of 900 MHz. It measures soil moisture, water 
potential, temperature, and electrical conductivity with a very low data rate. There 
are many other IOUT testbed which are being used for the academic purpose. Table 
10.1 provides a summary of all such test beds. 

Commercial IOUT Solutions: Most of the commercial IOUT solutions uses 
OTA wireless communication and UTs with high-end sensors for measuring various 
properties of interest, hence, measurement is centralized. UTs can be connected 
to each other to form a mesh, however, mostly UTs deployed in the field connects 
with any base stations in the field.This base station have some sort of cellular or 
satellite communication capabilities. Fig. 10.10 shows the classification of various 
commercial IOUT systems. A highly desirable feature of IOUT system is modularity. 
Modularity allow for change and customization of application. Customized solutions 
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Table 10.2: Various commercially available IOUT systems developed by industry 
stakeholders [111] 

Architecture Sensors Comm. Tech. Node Density 
200TS (temperature) 

IRROmesh OTA, Custom (ISM) 
Watermark 200SS-15 Up to 20 nodes network mesh 

[36] OTA, Cellular 
(soil moisture) 
Leaf wetness 
Temperature probe OTA, Proprietary 

Field Connect 
Pyranometer OTA, Cellular Up to eight nodes per gateway 

[11] 
Rain gauge OTA, Satellite 
Weather station 
Plant water use 
Measure plant stress 

SapIP Wireless Mesh Network [4] OTA 25 SapIP nodes. 
Soil moisture profile 
Weather and ET 

Automated Irrigation Advisor [24] Tule Actual ET sensor OTA Field Dependant 
Machinery auto-steering 
and automation 
EC probe & XRF scanner 
Electrical conductivity map 

Internet of Agriculture-BioSense [33] NDVI map OTA Field Dependant 
Yield map 
Remote sensing 
Nano and micro-electronic sensors 
Big data, and Internet of things 
Water Usage 
Big data, and Internet of Things 
Terrain, Soil, Weather 

EZ-Farm [8] OTA IBM Bluemix & IoT Foundation 
Genetics 
Satellite info 
Sales 
Soil moisture 
Soil temperature 

Internet of Food and Farm (IoF2020) [35] OTA Field Dependant 
Electrical conductivity 
and Leaf wetness 
Soil moisture 

Cropx Soil Monitoring System [3] Soil temperature OTA Filed Dependant 
and EC 
Temperature and humidity sensing, 
Rainfall, Wind speed and direction, 

Plug & Sense Smart Agriculture [13] OTA Field Dependant 
Atmospheric pressure, 
Soil water content, and Leaf wetness 
Grain temperature and 

Grain Monitor-TempuTech [21] OTA Multiple Depths in Grain Elevator 
Humidity 
Mobile device visualization tool 

365FarmNet [26] OTA Field Dependant 
for IOUT data 

SeNet [42] Sensing and control architecture OTA Field Dependant 
Drones for sensing 

PrecisionHawk [28] OTA Field Dependant 
Field map generation 
Soil moisture, 

HereLab [7] OTA Field Dependant 
Drip line psi and rain 
YieldFax 

IntelliFarms [34] Biological OTA Field Dependant 
BinManager 

IoT Sensor Platform [10] IoT/M2M sensors OTA Field Dependant 
Symphony Link[20] Long Range Communications OTA Field Dependant 

can be made for some specific application which will work out-of-the-box. Table 10.1 
provides the summary of IOUT commercial solutions. These commercial solutions 
can be classified into following major classes: 

• Agricultural solutions: Field Connect, by John Deere, uses eight sensor probes 
to transmits data for measuring temperature, wind speed, wind direction Sm 
at di erent depth, and leaf wetness. These probes are located at 1 mile, and 
in case of satellite communication, it is located at three miles. Mi-mosaTEK 
gives services of irrigation and fertilization solutions from small to large scale 
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Cloud 
• LORIOT – geographical

distributed network of servers 

• MyDevices – Cayenne drag-
and-drop IoT project builder

• Senet - public cloud-based networks

• Device Lynk – dashboard for industrial IoT

• IntelliFarms – weather and crop market data

OEM 
• ST – semiconductors for IoT

• Semtech – analog and mixed signal
semiconductors

• U-blox - communication and positioning
components for IoT devices

• Telit - M2M small footprint tailored solution 

Communication 
• MultiTech – gateways, routers, and

modems for different technologies 

• Option – wireless solution
for M2M communication

Out-of-the-Box 
• Smartrek Technologies – mesh network of

end-nodes

• Libelium – Waspmote platform

 

    
   

  
  

  
 

• Zenseio – Modular platform

Fig. 10.10: Di �erent types of commercially available IOUT systems [71]
.

farms [27, 41]. FarmBeats, developed by Microsoft, incorporates AI & IoT for
agricultural solution.

• Out-of-the-box packages: Smartrek Technologies provide support for various
sensors and gateways by developing weatherproof wireless nodes for outdoor
settings and can easily be integrated into network mesh [26, 43]. Libelium
provide solution, named as Plug & Sense Smart Agriculture solution [13], for
sensing various farm parameters (SM, temperature etc.). It develops platforms
and end-user devices with support for various communication standard such
as LoRaWAN, Sigfox, ZigBee, WiFi, Bluetooth, RFID and LoRa etc. Their
Waspmote platform has ability to attach 120 di �erent sensors with connected
sensor boards. Cropx’s [3] IOUT comes with the hardware and software
components for measuring soil properties (moisture, temperature, EC) for
real-time decision making and irrigation. Precision Hawk’s IOUT platform
uses employs drones for sensing and generating field map using thermal, visual
and multi spectral imaging.

Agricultural 
Solutions 

weather and soil wireless monitor 

IRROMESH – solar-powered 
wireless soil monitoring system 

MimosaTEK – irrigation and 
fertigation systems 

Field Connect John Deere – 
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• OEM components: OEM components are mainly used for manufacturing 
nodes at large scale, however, OEM devices are also required for prototyping 
and small scale production of specific UT. IoT internal components, e.g., 
accelerometers, MEMS microphones and gyroscope are developed by ST [46]. 
Various high-performance semiconductors and advance algorithms are supplied 
by Semtech [41]. 

• Cloud-based services: Cloud services can provide worldwide access to the 
information without having an technical knowledge of web programming. 
Stakeholders are not required to hire third party for configuring servers and make 
sense of collected data for decision making. LORIoT is one such cloud service 
which connect multiple distributed low latency networks through LoRa gateway. 
Some web service includes device management, cloud data storage, safe keeping 
of keys used for the encryption and translation of LoRaWAN to IP/IPv6 [40]. 
MyDevices helps IoT developer by providing their drag-and-drop IoT project 
builder called Cayenne. User can create accounts and use Cayenne (both web 
and mobile) for their IT devices registration and visualize the sensed data in 
customized dashboard. 

10.5.1 Challenges 

The combination of soil and communication components for wireless UG 
communications is very unique. This combination requires us to study the fundamental 
concept of communications from a completely di erent perspective. The factors which 
directly a ect the soil may also influence the performance of UG communications. 
The network topology should be robust enough to support and cope with the rapidly 
changing channel conditions. One of the most important soil properties to consider 
while designing IOUT is Volumetric Water Content (VWC). Therefore, it is very 
important to study the spatial and temporal variation of VWC in the region of IOUT 
deployment. Soil composition of a field location plays an important role in tailoring 
the topology design to meet the criteria of underground channel of that location, 
hence, it should be thoroughly investigated. For example, if the IOUT is being 
deployed in a region where soil composition has significant spatial heterogeneity, it 
will be beneficial to study the di erent node densities and inter-node distances. In 
addition to the soil type, VWC variations due to seasonal changes also significantly 
a ect the communication performance [49]. Some of the environmental parameters 
were studied by performing experiments. These experiments show that VWC has an 
adverse e ect on the UG communications. Therefore, while designing protocol for 
IOUT, these environment parameters must be considered. IOUT protocols must allow 
the dynamic adjustment of operational parameters to adapt to changes in surroundings. 
Lastly, IOUT feasibility is dependent on the investigation of multiple other factors 
that were not considered for traditional WSNs, e.g., soil composition and VWC. To 
this end, detailed channel characterization of wireless UG communication is required. 
There is some positive aspect of UG environment as well, e.g., its temporal stability. 
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Fig. 10.11: (a) E ect of soil moisture on antenna return loss at varying frequencies 
and fixed depth of 40cm in sandy soil [139], (b) E ect of soil moisture on RMS 
delay spread at T-R separation distance of 50cm and two depths of 10cm and 20cm 
[139], (c) E ect of T-R separation (distance) on coherence bandwidth at fixed depth 
of 20cm in silty clay loam soil [139] 

These positive aspects need to be exploited and studied further to achieve reliable 
and energy-e"cient communication [50]. 

Characteristics of UG wireless channel is the key factor which determines the data 
rate of communication in IOUT. If it is not well modelled, communication performance 
of IOUT su ers. Therefore, experimentation is needed for its characterization. 
Moreover, soil with communication components (antenna and wireless UG channel) 
gives unique IOUT performance characteristics. Fig. 1.3 shows the empirical 
measurements [139], [145] for the soil e ect on coherence bandwidth of UG channel 
and antenna bandwidth. 

Soil characteristics such as soil type, soil moisture, soil depth and burial distance 
have an e ect on communication performance [177]. It can cause dynamic changes 
in root mean square (RMS) delay spread, antenna return loss, and impulse response 
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of the channel. Fig. 10.11(a) shows the empirical values for antenna return loss (at 
depth of 40cm in sandy soil) in response to change in soil moisture. Soil moisture is 
represented by soil matric potential (CB) and both have an inverse relation, i.e., large 
values of matric potential indicate low soil moisture. Similarly, zero matric potential 
represents a near situation condition. It can be seen that resonant antenna frequency 
jumps from 244 MHz to 289 MHz when matric potential value increases from 0 
CB to 240 CB. This significant increase requires a dynamic change in operational 
frequency to achieve maximum bandwidth otherwise operation frequency will exceed 
the range of resonant frequency and antenna bandwidth causing the degradation in 
performance [62, 72]. Similarly, decreasing the soil moisture causes the antenna 
bandwidth to increase from 14 MHz to 20 MHz. Accordingly, the soil moisture will 
also have a significant impact on system bandwidth [20, 25]. 

Soil texture is the measurement of percentage of sand, clay and silt in the soil. 
Table 1.3 lists the classification of soil on the basis of texture and corresponding 
particle size distribution. Fig. 10.11(b) plots change in RMS delay spread with soil 
moisture at a distance of 50cm and depths of 10cm and 20cm in silt loam. It can be 
seen that RMS delay spread, initially, decreases when soil moisture is decreased (0 
CB to 8 CB). Afterwards, RMS delay spread in increased consistently. The occurrence 
of these variations with short period of time due to external impact, e.g., rain, may 
cause wireless UG channel to be frequency-selective. 

Fig. 10.11(c) shows the statistics of coherence bandwidth as a function of distance. 
For distances up to 12m, coherence bandwidth lies in the range of 411 kHz and 
678 kHz. Use of traditional communication techniques with this small coherence 
bandwidth may limit the achievable data rate in IOUT communications. 

These sources provide extensive data on soil moisture and temperature for vast 
geographical areas and extend the Web Soil Survey (WSS) [30, 43]. 

IOUT Other Soil Medium Properties: Soil properties, other than the soil 
moisture, which can be measured using sensing technologies are: acidity (pH) 
[65, 154], organic matter in the soil, sand percentage, nutrients such as P, Mg, Ca, 
OM, base saturation K, base saturation Mg, base saturation Ca, K/Mg, Ca/Mg ratios, 
and CEC [85, 94, 95], and clay and silt particles [46, 156]. These properties can 
be used to develop soil map. However, due to cost, size and technology limitations, 
real-time and in-situ measurement of these properties is still a challenge. 

IOUT Yield Monitoring: Yield monitoring is the application of IOUT in 
agriculture. It is used to give spatial distribution of crop yield when the growing season 
is ending. It is used to make long-term decision in IOUT agriculture [32, 54, 91, 99]. 
The yield data is collected automatically by deploying yield monitors on the IOUT farm 
moving equipment. These equipment collect data during the harvesting season. Grain 
containers are equipped with mass flow sensors (e.g., Force Sensor by Ag Leader) 
which records grain inflow with location. Di erent geographic information systems 
(GIS), e.g., Mapinfo, ArchInfo, and Environment System Research International tools 
can be used to analyze the data. 

IOUT Electrical conductivity and topography surveys: Electrical conductivity 
(EC) of the soil can be defined as the soil ability to conduct electricity [98]. EC 
data, combined with the field topography (slope and elevation), can be used to get 
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insights on crop yield. EC measures the nitorgen usage, drainage, water holding and 
cation-exchange capacity, and rooting depth. EC classifies whole field into multiple 
zones then various precision agriculture technologies (e.g., VRT) are applied based 
on zoning. There are various methods to perform EC mapping such as visible-near 
infrared reflectance spectroscopy (VNIR) [55, 57], apparent electrical conductivity 
(ECa) [66], and electromagnetic Induction (EMI) [45, 162]. Commercial tools for 
EC mappings includes: EC400 sensors combined with GPS systems [27, 89] and 
Veris 3100 [25, 29]. 

IOUT Weather and environmental sensing: The performance of IOUT systems 
is highly dependent upon weather and environmental conditions such as wind speed, 
wind direction, temperature of soil and air, humidity, rainfall, and solar emissions. 
Weather and environmental sensors are used to measure all the mentioned e ects. 
Such information is very useful in realization of real-time, informed and timely 
decisions in IOUT systems. Some of the examples of these sensors are: Field Connect 
solution [37] and Mesoscale Network (MesoNet) [12]. MesoNet is a large-scale 
network of weather and environment sensing nodes covering large geographical areas. 
It detects major weather patterns and can be used to provide real-time information 
when combined with IOUT systems 

IOUT Macro-nutrients sensing: Underground environment provides various 
important natural resources also including macro-nutrients. Macro-Nutrients (e.g., 
potassium, phosphorous and nitrogen) are very important for some IOUT applications. 
In agricultural IOUT, for example, calculating and assessing these nutrients helps 
in determining the fertilizer application and impact in the future. In [30, 102], a 
sensing method is presented for detection of sulfate and nitrate concentration in 
natural water resources. This method uses planar electromagnetic sensors and senses 
nitrate and sulfate levels using correlation of the their concentration and sensor array 
impedance. the study concludes sensor impedance is inversely proportional to the 
concentration of the chemicals. Other macro-nutrient sensing approaches that can 
be used in IOUT system includes: ATR spectroscopy, VIS-NIRS spectroscopy, and 
Electrochemical approach. However, these approaches only sense on desired ion 
because their membrane respond to only one ion [30, 95]. Major challenge would be 
to develop a detector array of macro-nutrients sensing for accomplishing multi-ion 
sensing [26, 85]. 

IOUT Precision Agriculture technologies: As discussed earlier, precision 
agriculture is one of the major area and precision agriculture is major application 
of IOUT system. There are tons of technologies playing a very important role in 
adoption of precision agriculture practices which will be presented here as useful 
IOUT tools. These technologies include: auto-steering and VRT, precision planting, 
GIS systems, geolocation, soil sampling, field analysis map generation and drones. 
Precision planting [14] involves seeding based on fine predetermined inter-plant 
distance and laser robot with an ability of automated weed zapping. Farm devices are 
aligned using robovator technology. Multiple zones can be created on the basis fo 
field conditions using GPS [35, 44, 188]. For the improvement of crop yield, Variable 
rate fertilizer application [32, 53] is also very important. Another major component 
of IOUT system is the drone with wireless communication capabilities. Deere & 
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Co. has developed a GreenStar Lightbar [6] to measure width and location in the 
row crops. Another device, TK-GPS [23], is capable of performing real-time soil 
mapping. 

These sensing technologies can become the stepping stone for development of IOUT 
systems. Inexpensive sensors and wireless communication make their integration 
with IOUT control system possible. One of the major component, for realization 
of real-time decision making in IOUT systems, is the wireless communication 
between the heterogeneous sensor equipment. Furthermore, adoption rate of sensor 
technologies can be increased by a connected, secured and reliable IOUT systems 
which in-turn will be very helpful in development of improved sensing technologies 
in IOUT [24]. 

Some of the challenges in design and implementation of IOUT systems are given 
below: 

1. When being deployed in large areas, cost-e"cient and simple IOUT devices are 
desired which can sustain all harsh environmental e ects. 

2. Improving UTs will consequently increase the energy demand leading to less 
battery life. Therefore, energy harvesting, sustainable energy resources and 
energy e"cient operations are the major challenges in IOUT systems [53]. 

3. Due to heterogeneity in UTs, seamless integration of UTs with communication 
systems is required. 

4. For farm IOUT, multi-modal and inexpensive sensors are required which can 
sense physical parameters of soil in addition to moisture. Although, SM provides 
important information for irrigation system, however, in-situ sensing of soil 
chemicals is required for variable rate fertigation. 

5. Secure mechanisms are required to store and transfer information from the fields. 
Moreover, solutions are required to merge data from all the fields for improved 
decision making in private and secure manner. 

6. Seasonal changes can alter the working of IOUT equipment, e.g., freezing 
temperature can increase power consumption. Equipment can be set to sleep 
mode when monitoring is not needed [31]. 

7. UTs must be able to dynamically change their operational parameters such as 
frequency, modulation schemes and error encoding schemes to adapt to changes 
in communication medium. 

8. Impact of medium properties, e.g., soil in agriculture, must be modeled. A 
detailed analysis fo these properties can support in building scalabale and reliable 
IOUT architecture. 

9. There is a dire need for specialized link and network layer protocols for UG 
communications which can lead to robust data transfer in IOUT. 
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