238 research outputs found

    Invasive Lionfish Drive Atlantic Coral Reef Fish Declines

    Get PDF
    Indo-Pacific lionfish (Pterois volitans and P. miles) have spread swiftly across the Western Atlantic, producing a marine predator invasion of unparalleled speed and magnitude. There is growing concern that lionfish will affect the structure and function of invaded marine ecosystems, however detrimental impacts on natural communities have yet to be measured. Here we document the response of native fish communities to predation by lionfish populations on nine coral reefs off New Providence Island, Bahamas. We assessed lionfish diet through stomach contents analysis, and quantified changes in fish biomass through visual surveys of lionfish and native fishes at the sites over time. Lionfish abundance increased rapidly between 2004 and 2010, by which time lionfish comprised nearly 40% of the total predator biomass in the system. The increase in lionfish abundance coincided with a 65% decline in the biomass of the lionfish's 42 Atlantic prey fishes in just two years. Without prompt action to control increasing lionfish populations, similar effects across the region may have long-term negative implications for the structure of Atlantic marine communities, as well as the societies and economies that depend on them

    A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: A multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking

    Get PDF
    AbstractPurposeA study of real-time adaptive radiotherapy systems was performed to test the hypothesis that, across delivery systems and institutions, the dosimetric accuracy is improved with adaptive treatments over non-adaptive radiotherapy in the presence of patient-measured tumor motion.Methods and materialsTen institutions with robotic(2), gimbaled(2), MLC(4) or couch tracking(2) used common materials including CT and structure sets, motion traces and planning protocols to create a lung and a prostate plan. For each motion trace, the plan was delivered twice to a moving dosimeter; with and without real-time adaptation. Each measurement was compared to a static measurement and the percentage of failed points for γ-tests recorded.ResultsFor all lung traces all measurement sets show improved dose accuracy with a mean 2%/2mm γ-fail rate of 1.6% with adaptation and 15.2% without adaptation (p<0.001). For all prostate the mean 2%/2mm γ-fail rate was 1.4% with adaptation and 17.3% without adaptation (p<0.001). The difference between the four systems was small with an average 2%/2mm γ-fail rate of <3% for all systems with adaptation for lung and prostate.ConclusionsThe investigated systems all accounted for realistic tumor motion accurately and performed to a similar high standard, with real-time adaptation significantly outperforming non-adaptive delivery methods

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Spatio-Temporal Dynamics of Human Intention Understanding in Temporo-Parietal Cortex: A Combined EEG/fMRI Repetition Suppression Paradigm

    Get PDF
    Inferring the intentions of other people from their actions recruits an inferior fronto-parietal action observation network as well as a putative social network that includes the posterior superior temporal sulcus (STS). However, the functional dynamics within and among these networks remains unclear. Here we used functional magnetic resonance imaging (fMRI) and high-density electroencephalogram (EEG), with a repetition suppression design, to assess the spatio-temporal dynamics of decoding intentions. Suppression of fMRI activity to the repetition of the same intention was observed in inferior frontal lobe, anterior intraparietal sulcus (aIPS), and right STS. EEG global field power was reduced with repeated intentions at an early (starting at 60 ms) and a later (∼330 ms) period after the onset of a hand-on-object encounter. Source localization during these two intervals involved right STS and aIPS regions highly consistent with RS effects observed with fMRI. These results reveal the dynamic involvement of temporal and parietal networks at multiple stages during the intention decoding and without a strict segregation of intention decoding between these networks

    Interventions in sexual and reproductive health services addressing violence against women in low-income and middle-income countries: a mixed-methods systematic review.

    Get PDF
    OBJECTIVES: To synthesise evidence on the effectiveness, cost-effectiveness and barriers to responding to violence against women (VAW) in sexual and reproductive health (SRH) services in low/middle-income countries (LMICs). DESIGN: Mixed-methods systematic review. DATA SOURCES: Medline, Embase, Psycinfo, Cochrane, Cinahl, IMEMR, Web of Science, Popline, Lilacs, WHO RHL, ClinicalTrials.gov, Google, Google Scholar, websites of key organisations through December 2019. ELIGIBILITY CRITERIA: Studies of any design that evaluated VAW interventions in SRH services in LMICs. DATA EXTRACTION AND SYNTHESIS: Concurrent narrative quantitative and thematic qualitative syntheses, integration through line of argument and mapping onto a logic model. Two reviewers extracted data and appraised quality. RESULTS: 26 studies of varied interventions using heterogeneous outcomes. Of ten interventions that strengthened health systems capacity to respond to VAW during routine SRH consultation, three reported no harm and reduction in some types of violence. Of nine interventions that strengthened health systems and communities' capacity to respond to VAW, three reported conflicting effects on re-exposure to some types of VAW and mixed effect on SRH. The interventions increased identification of VAW but had no effect on the provision (75%-100%) and uptake (0.6%-53%) of referrals to VAW services. Of seven psychosocial interventions in addition to SRH consultation that strengthened women's readiness to address VAW, four reduced re-exposure to some types of VAW and improved health. Factors that disrupted the pathway to better outcomes included accepting attitudes towards VAW, fear of consequences and limited readiness of the society, health systems and individuals. No study evaluated cost-effectiveness. CONCLUSIONS: Some VAW interventions in SRH services reduced re-exposure to some types of VAW and improved some health outcomes in single studies. Future interventions should strengthen capacity to address VAW across health systems, communities and individual women. First-line support should be better tailored to women's needs and expectations. PROSPERO REGISTRATION NUMBER: CRD42019137167

    Experimental manipulation of radiographic density in mouse mammary gland

    Get PDF
    INTRODUCTION: Extensive mammographic density in women is associated with increased risk for breast cancer. Mouse models provide a powerful approach to the study of human diseases, but there is currently no model that is suited to the study of mammographic density. METHODS: We performed individual manipulations of the stromal, epithelial and matrix components of the mouse mammary gland and examined the alterations using in vivo and ex vivo radiology, whole mount staining and histology. RESULTS: Areas of density were generated that resembled densities in mammographic images of the human breast, and the nature of the imposed changes was confirmed at the cellular level. Furthermore, two genetic models, one deficient in epithelial structure (Pten conditional tissue specific knockout) and one with hyperplastic epithelium and mammary tumors (MMTV-PyMT), were used to examine radiographic density. CONCLUSION: Our data show the feasibility of altering and imaging mouse mammary gland radiographic density by experimental and genetic means, providing the first step toward modelling the biological processes that are responsible for mammographic density in the mouse
    corecore