1,433 research outputs found

    d=3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories

    Full text link
    We study three dimensional O(N)_k and U(N)_k Chern-Simons theories coupled to a scalar field in the fundamental representation, in the large N limit. For infinite k this is just the singlet sector of the O(N) (U(N)) vector model, which is conjectured to be dual to Vasiliev's higher spin gravity theory on AdS_4. For large k and N we obtain a parity-breaking deformation of this theory, controlled by the 't Hooft coupling lambda = 4 \pi N / k. For infinite N we argue (and show explicitly at two-loop order) that the theories with finite lambda are conformally invariant, and also have an exactly marginal (\phi^2)^3 deformation. For large but finite N and small 't Hooft coupling lambda, we show that there is still a line of fixed points parameterized by the 't Hooft coupling lambda. We show that, at infinite N, the interacting non-parity-invariant theory with finite lambda has the same spectrum of primary operators as the free theory, consisting of an infinite tower of conserved higher-spin currents and a scalar operator with scaling dimension \Delta=1; however, the correlation functions of these operators do depend on lambda. Our results suggest that there should exist a family of higher spin gravity theories, parameterized by lambda, and continuously connected to Vasiliev's theory. For finite N the higher spin currents are not conserved.Comment: 34 pages, 29 figures. v2: added reference

    Educational paper: Abusive Head Trauma Part I. Clinical aspects

    Get PDF
    Abusive Head Trauma (AHT) refers to the combination of findings formerly described as shaken baby syndrome. Although these findings can be caused by shaking, it has become clear that in many cases there may have been impact trauma as well. Therefore a less specific term has been adopted by the American Academy of Pediatrics. AHT is a relatively common cause of childhood neurotrauma with an estimated incidence of 14–40 cases per 100,000 children under the age of 1 year. About 15–23% of these children die within hours or days after the incident. Studies among AHT survivors demonstrate that approximately one-third of the children are severely disabled, one-third of them are moderately disabled and one-third have no or only mild symptoms. Other publications suggest that neurological problems can occur after a symptom-free interval and that half of these children have IQs below the 10th percentile. Clinical findings are depending on the definitions used, but AHT should be considered in all children with neurological signs and symptoms especially if no or only mild trauma is described. Subdural haematomas are the most reported finding. The only feature that has been identified discriminating AHT from accidental injury is apnoea. Conclusion: AHT should be approached with a structured approach, as in any other (potentially lethal) disease. The clinician can only establish this diagnosis if he/she has knowledge of the signs and symptoms of AHT, risk factors, the differential diagnosis and which additional investigations to perform, the more so since parents seldom will describe the true state of affairs spontaneously

    Zeros of the W_L Z_L -> W_L Z_L amplitude: where vector resonances stand

    Full text link
    A Higgsless electroweak theory may be populated by spin-1 resonances around E ~ 1TeV as a consequence of a new strong interacting sector, frequently proposed as a tool to smear the high-energy behaviour of scattering amplitudes, for instance, elastic gauge boson scattering. Information on those resonances, if they exist, must be contained in the low-energy couplings of the electroweak chiral effective theory. Using the facts that: i) the scattering of longitudinal gauge bosons, W_L, Z_L, can be well described in the high-energy region E >> M_W by the scattering of the corresponding Goldstone bosons (equivalence theorem) and ii) the zeros of the scattering amplitude carry the information on the heavier spectrum that has been integrated out; we employ the O(p^4) electroweak chiral Lagrangian to identify the parameter space region of the low-energy couplings where vector resonances may arise. An estimate of their masses is also provided by our method.Comment: 10 pages, 4 figure

    Musculoskeletal injuries among operating room nurses: results from a multicenter survey in Rome, Italy

    Full text link
    Aim: Chronic disorders of the musculoskeletal system, particularly low back pain (LBP), are increasing and represent a social and economic problem of growing importance, especially if correlated with working conditions. Health care workers are at higher risk of developing LBP during work shifts in the hospital. The aim of this study was to assess the prevalence of LBP among operating room nurses and to investigate the risk factors for musculoskeletal injuries in the operating room. Methods: We carried out a cross-sectional study that included operating room nurses from nine hospitals. Information on sociodemographic characteristics, lifestyle habits, working activity and psychological attitude of nurses was collected using an anonymous self-administered structured questionnaire. We evaluated the association of frequency, localization and intensity of LBP (FLI) with qualitative variables, making use of univariate analysis, chi-square test and Fisher's exact test. Multiple logistic regression analysis was performed to identify the variables that affected the FLI. The covariates included in the model were the variables that had a p 35 years vs. age <35 (OR = 2.68; 95% CI = 1.17–6.18) and diurnal work shift vs. diurnal/ nocturnal (OR = 4.00; 95% CI = 1.72–9.0) represent risk factors associated with FLI, while physical activity is a protective factor (OR = 0.47; 95% CI = 0.20–1.08). Conclusion: The data suggest that it is important to promote new programs of prevention based on professional training and physical activity among nurses and to improve the organization of work shifts in the hospital

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO

    Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy

    Get PDF
    A search for new physics is performed in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state. The analysis is based on a data sample corresponding to an integrated luminosity of 4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of 140 increase in integrated luminosity over previously published results. The observed yields agree with the standard model predictions and thus no evidence for new physics is found. The observations are used to set upper limits on possible new physics contributions and to constrain supersymmetric models. To facilitate the interpretation of the data in a broader range of new physics scenarios, information on the event selection, detector response, and efficiencies is provided.Comment: Published in Physical Review Letter

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    X-ray emission from the Sombrero galaxy: discrete sources

    Get PDF
    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30 kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray binaries (LMXBs). We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-low indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC LF at fainter luminosities down to 1E35 erg/s. The derived index rules out a faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
    corecore