142 research outputs found

    Radiation/annealing-induced structural changes in GexAs₄₀-xS₆₀ glasses as revealed from high-energy synchrotron X-ray diffraction measurements

    No full text
    Local atomic structure of GexAs₄₀-xS₆₀ glasses (x = 16, 24, 32, and 36) has been investigated in the -irradiated (2.41 MGy dose) and annealed after irradiation states by using the high-energy synchrotron X-ray diffraction technique. The accumulated dose of 2.41 MGy is chosen to be close to the known in literature focal point (~2.0 MGy) for the system tested, at which the y-irradiation-induced optical (darkening) effect does not depend on the composition. It is established that the first sharp diffraction peak (FSDP) is located at around 1.1 Е - in the structure factors S(Q) of all the alloys studied. The FSDP position is found to be constant on radiation/annealing treatment, but the intensity of the FSDP reveals changes under irradiation/annealing only for the compositions with x = 16 and 24. The radiation/annealing-induced changes are also observed on the pair distribution functions in the first and second coordination shells for these compounds. Practically invisible effects on the FSDP and pair distribution functions are found for the alloys with x = 32 and 36. The radiation/annealing-induced structural changes detected mainly in the As - S sub-system of the glasses examined are well explainable within the Tanaka approach for interpretation of the photo-induced structural changes and related phenomena in As₂S₃ chalcogenide glass and similar material

    Possibility of local pair existence in optimally doped SmFeAsO₁₋х in pseudogap regime

    No full text
    We report the analysis of pseudogap Δ* derived from resistivity experiments in FeAs-based superconductor SmFeAsO₀.₈₅, having a critical temperature Tc=55 K. Rather specific dependence Δ*(T) with two representative temperatures followed by a minimum at about 120 K was observed. Below Ts ≈ 147 K, corresponding to the structural transition in SmFeAsO, Δ*(T) decreases linearly down to the temperature TAFM ≈ 133 K. This last peculiarity can likely be attributed to the antiferromagnetic (AFM) ordering of Fe spins. It is believed that the found behavior can be explained in terms of Machida, Nokura, and Matsubara theory developed for the AFM superconductors

    Low-temperature positron annihilation study of B⁺-ion implanted PMMA

    No full text
    Temperature dependent positron annihilation lifetime spectroscopy (PALS) measurements in the range of 50–300 K are carried out to study positronium formation in 40 keV B+-ion implanted polymethylmethacrylate (B:PMMA) with two ion doses of 3.13·10¹⁵ and 3.75·10¹⁶ ions/cm². The investigated samples show the various temperature trends of ortho-positronium (o-Ps) lifetime τ3 and intensity I3 in PMMA before and after ion implantation. Two transitions in the vicinity of ∼150 and ∼250 K, ascribed to γ and β transitions, respectively, are observed in the PMMA and B:PMMA samples in consistent with reference data for pristine sample. The obtained results are compared with room temperature PALS study of PMMA with different molecular weight (Mw) which known from literature. It is found that B⁺-ion implantation leads to decreasing Mw in PMMA at lower ion dose. At higher ion dose the local destruction of polymeric structure follows to broadening of lifetime distribution (hole size distribution)

    Study of the Process e+eKL0KS0e^+e^- \to K^0_L K^0_S in the C.M.Energy Range 1.05-1.38 GeV with CMD-2

    Full text link
    The process e+eKL0KS0e^+e^- \to K^0_L K^0_S has been studied with the CMD-2 detector using about 950 events detected in the center-of-mass energy range from 1.05 to 1.38 GeV. The cross section exceeds the expectation based on the contributions of the rho(770), omega(782) and phi(1020) mesons only.Comment: 12 pages, 3 figures, uses elsart.cls, submitted to Physics Letters

    Cross section of the reaction e+eπ+ππ+πe^+ e^- \to \pi^+\pi^-\pi^+\pi^- below 1 GeV at CMD-2

    Get PDF
    Using 3.07 pb1{pb}^{-1} of data collected in the energy range 0.60-0.97 GeV by CMD-2, about 150 events of the process \epm \to \pch have been selected. The energy dependence of the cross section agrees with the assumption of the a1(1260)πa_1(1260) \pi intermediate state which is dominant above 1 GeV. For the first time \fourpi events are observed at the ρ\rho meson energy. Under the assumption that all these events come from the ρ\rho meson decay, the value of the cross section at the ρ\rho meson peak corresponds to the following decay width: \Gamma(\rho^0 \to \fourpi) = (2.8 \pm 1.4 \pm 0.5) {keV} or to the branching ratio B(\rho^0 \to \fourpi) = (1.8 \pm 0.9 \pm 0.3) \cdot 10 ^{-5}.Comment: 15 pages, 5 figure

    Study of the Process e+ e- --> omega pi0 --> pi0 pi0 gamma in c.m. Energy Range 920--1380 MeV at CMD-2

    Full text link
    The cross section of the process e+ e- --> omega pi0 --> pi0 pi0 gamma has been measured in the c.m. energy range 920-1380 MeV with the CMD-2 detector. Its energy dependence is well described by the interference of the rho(770) and rho'(1450) mesons decaying to omega pi0. Upper limits for the cross sections of the direct processes e+ e- --> pi0 pi0 gamma, eta pi0 gamma have been set.Comment: Accepted for publication in PL

    Magnetic Fields in the Milky Way

    Full text link
    This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.Comment: 22 pages, 5 figures, to appear in "Magnetic Fields in Diffuse Media", eds. E.M. de Gouveia Dal Pino and A. Lazaria

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore