181 research outputs found
TbGT8 is a bifunctional glycosyltransferase that elaborates<em> N</em>-linked glycans on a protein phosphatase AcP115 and a GPI-anchor modifying glycan in <em>Trypanosoma brucei</em>
AbstractThe procyclic form of Trypanosoma brucei expresses procyclin surface glycoproteins with unusual glycosylphosphatidylinositol-anchor side chain structures that contain branched N-acetyllactosamine and lacto-N-biose units. The glycosyltransferase TbGT8 is involved in the synthesis of the branched side chain through its UDP-GlcNAc: ÎČGal ÎČ1-3N-acetylglucosaminyltransferase activity. Here, we explored the role of TbGT8 in the mammalian bloodstream form of the parasite with a tetracycline-inducible conditional null T. brucei mutant for TbGT8. Under non-permissive conditions, the mutant showed significantly reduced binding to tomato lectin, which recognizes poly-N-acetyllactosamine-containing glycans. Lectin pull-down assays revealed differences between the wild type and TbGT8 null-mutant T. brucei, notably the absence of a broad protein band with an approximate molecular weight of 110kDa in the mutant lysate. Proteomic analysis revealed that the band contained several glycoproteins, including the acidic ecto-protein phosphatase AcP115, a stage-specific glycoprotein in the bloodstream form of T. brucei. Western blotting with an anti-AcP115 antibody revealed that AcP115 was approximately 10kDa smaller in the mutant. Enzymatic de-N-glycosylation demonstrated that the underlying protein cores were the same, suggesting that the 10-kDa difference was due to differences in N-linked glycans. Immunofluorescence microscopy revealed the colocalization of hemagglutinin epitope-tagged TbGT8 and the Golgi-associated protein GRASP. These data suggest that TbGT8 is involved in the construction of complex poly-N-acetyllactosamine-containing type N-linked and GPI-linked glycans in the Golgi of the bloodstream and procyclic parasite forms, respectively
Parasite Glycobiology:A Bittersweet Symphony
Human infections caused by parasitic protozoans and helminths are among the world's leading causes of death. More than a million people die each year from diseases like malaria and neglected tropical diseases like leishmaniasis, trypanosomiasis, and schistosomiasis. Patients also endure disabilities that cause lifelong suffering and that affect productivity and development [1]. More insidiously, parasites generate important economic losses, since they often also infect commercially valuable animals. Worldwide, exposure to parasites is increasing due to growing international travel and migrations, as well as climate changes, which affect the geographic distribution of the parasite vectors. The parasitic threat is also aggravated by the rise of the immunocompromised population, which is particularly sensitive to parasite infections (e.g., individuals with AIDS and other immunodeficiencies).
A common feature of protozoan parasites and helminths is the synthesis of glycoconjugates and glycan-binding proteins for protection and to interact and respond to changes in their environment. To address the many challenges associated with the study of the structure, the biosynthesis, and the biology of parasitic glycans, the authors of this article have established GlycoPar, a European Marie Curie training program steered by some of the world's academic leaders in the field of parasite glycobiology, in close association with European industrial enterprises. The main scientific goal of this network is the description of novel paradigms and models by which parasite glycoconjugates play a role in the successful colonization of the different hosts. By means of a training-through-research program, the aim of the network is to contribute to the training of a generation of young scientists capable of tackling the challenges posed by parasite glycobiology
Density Matrix Renormalisation Group Approach to the Massive Schwinger Model
The massive Schwinger model is studied, using a density matrix
renormalisation group approach to the staggered lattice Hamiltonian version of
the model. Lattice sizes up to 256 sites are calculated, and the estimates in
the continuum limit are almost two orders of magnitude more accurate than
previous calculations. Coleman's picture of `half-asymptotic' particles at
background field theta = pi is confirmed. The predicted phase transition at
finite fermion mass (m/g) is accurately located, and demonstrated to belong in
the 2D Ising universality class.Comment: 38 pages, 18 figures, submitted to PR
Perspectives in visual imaging for marine biology and ecology: from acquisition to understanding
Durden J, Schoening T, Althaus F, et al. Perspectives in Visual Imaging for Marine Biology and Ecology: From Acquisition to Understanding. In: Hughes RN, Hughes DJ, Smith IP, Dale AC, eds. Oceanography and Marine Biology: An Annual Review. 54. Boca Raton: CRC Press; 2016: 1-72
Caracterização histolĂłgica e imuno-histoquĂmica das lesĂ”es de tuberculose em bovinos e de linfadenite granulomatosa em suĂnos
Mycobacterium sp. induz inflamação granuloma-tosa em diferentes espĂ©cies animais. Mycobacterium bovis e o complexo Mycobacterium avium sĂŁo importantes patĂłgenos de bovinos e suĂnos e podem causar infecção em humanos, principalmente imunossuprimidos. Perdas na produção, barreiras comerciais e prejuĂzos por condenação de carcaças em abatedouro/frigorĂfico estĂŁo atrelados Ă ocorrĂȘncia dessas infecçÔes, com prejuĂzos econĂŽmicos significativos. Foi realizado um estudo de casos diagnosticados como tuberculose em bovinos e linfadenite granulomatosa em suĂnos no Setor de Patologia VeterinĂĄria da Universidade Federal do Rio Grande do Sul (SPV-UFRGS) no perĂodo de janeiro de 2007 a dezembro de 2011. Dados referentes Ă raça, ao sexo, Ă idade e ao histĂłrico clĂnico foram compilados dos livros de registro e analisados. As caracterĂsticas histolĂłgicas das lesĂ”es em linfonodos e pulmĂ”es foram avaliadas em Hematoxilina-Eosina, com predomĂnio de cĂ©lulas gigantes nas lesĂ”es de tuberculose bovina e de macrĂłfagos epitelioides em suĂnos. As tĂ©cnicas histoquĂmicas de Ziehl-Neelsen e TricrĂŽmico de Masson foram utilizadas para evidenciar, respectivamente, bacilos ĂĄlcool-ĂĄcido resistentes e tecido conjuntivo fibroso nas lesĂ”es. A tĂ©cnica de imuno-histoquĂmica foi utilizada em aproximadamente 30% dos casos estudados de cada espĂ©cie, selecionados aleatoriamente, para a caracterização do infiltrado linfocĂtico. Foram utilizados os anticorpos anti-CD3 para a marcação de linfĂłcitos T e anti-CD79αcy para a marcação de linfĂłcitos B. LinfĂłcitos T predominaram nas lesĂ”es em ambas as espĂ©cies, com diferença estatisticamente significativa entre as mĂ©dias dos linfĂłcitos T e linfĂłcitos B. Foi usado o teste t pareado, com t=5,501 (p<0,001) nas lesĂ”es dos bovinos e t=5,826 (p<0,001) para as lesĂ”es de linfadenite dos suĂnos. Adicionalmente foram marcados macrĂłfagos com o uso do anticorpo anti-CD68 para bovinos e anti-Lisozima para suĂnos. AlĂ©m desses, o anticorpo policlonal anti-Mycobacterium tuberculosis foi utilizado para a detecção de bactĂ©rias do gĂȘnero Mycobacterium, com imunomarcação positiva em todos os casos e, nos casos dos suĂnos, houve marcação anti-Mycobacterium avium
Study of the lineshape of the chi(c1) (3872) state
A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations
Measurement of the CKM angle in and decays with
A measurement of -violating observables is performed using the decays
and , where the meson is
reconstructed in one of the self-conjugate three-body final states and (commonly denoted ). The decays are analysed in bins of the -decay phase space, leading
to a measurement that is independent of the modelling of the -decay
amplitude. The observables are interpreted in terms of the CKM angle .
Using a data sample corresponding to an integrated luminosity of
collected in proton-proton collisions at centre-of-mass
energies of , , and with the LHCb experiment,
is measured to be . The hadronic
parameters , , , and ,
which are the ratios and strong-phase differences of the suppressed and
favoured decays, are also reported
Helium identification with LHCb
The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at â(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei
Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at âsNN = 5.02 TeV with the LHCb detector
Flow harmonic coefficients,
v
n
, which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02
TeV
. The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features
Curvature-bias corrections using a pseudomass method
Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy â(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using ZâÎŒ + ÎŒ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the ZâÎŒ + ÎŒ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass
- âŠ