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Human infections caused by parasitic protozoans and helminths are among the world's leading
causes of death. More than a million people die each year from diseases like malaria and
neglected tropical diseases like leishmaniasis, trypanosomiasis, and schistosomiasis. Patients
also endure disabilities that cause lifelong suffering and that affect productivity and develop-
ment [1]. More insidiously, parasites generate important economic losses, since they often also
infect commercially valuable animals. Worldwide, exposure to parasites is increasing due to
growing international travel and migrations, as well as climate changes, which affect the geo-
graphic distribution of the parasite vectors. The parasitic threat is also aggravated by the rise of
the immunocompromised population, which is particularly sensitive to parasite infections
(e.g., individuals with AIDS and other immunodeficiencies).

A common feature of protozoan parasites and helminths is the synthesis of glycoconjugates
and glycan-binding proteins for protection and to interact and respond to changes in their
environment. To address the many challenges associated with the study of the structure, the
biosynthesis, and the biology of parasitic glycans, the authors of this article have established
GlycoPar, a European Marie Curie training program steered by some of the world's academic
leaders in the field of parasite glycobiology, in close association with European industrial enter-
prises. The main scientific goal of this network is the description of novel paradigms and mod-
els by which parasite glycoconjugates play a role in the successful colonization of the different
hosts. By means of a training-through-research program, the aim of the network is to contrib-
ute to the training of a generation of young scientists capable of tackling the challenges posed
by parasite glycobiology.

Parasites Are Covered by a Protective Glycocalyx
Due to the complexity of their life cycles, parasites need to sequentially exploit various host
species to complete the different stages involved in their survival and development. The inter-
actions with their different hosts are critical for the completion of each life stage and are often
based on carbohydrate recognition. In particular, parasites have developed different strategies
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to escape the immune and defense systems of the different infected organisms. Their surfaces
are covered by glycoconjugates of varied natures, often of types absent from mammals. This
so-called glycocalyx is protective against the host defense systems but may also be implicated
in "hijacking" proteins involved in host innate immunity (Fig 1) [2,3]. Thus, through a "glycan
gimmickry" designated process, helminths express host-like glycans that interact with host lec-
tins to modulate the immune response [4]. Furthermore, the walls that protect different para-
sitic cysts from harsh environments are also rich in polysaccharides and polysaccharide-
binding lectins [5]. Thereby, glycans are crucial for parasite virulence and survival.

Since glycans are central to host–parasite interactions, their study constitutes a fertile, but
currently largely unexploited, area for therapeutic applications. Research in parasite glycosyla-
tion provides new opportunities for the discovery of vaccine candidates and for the

Fig 1. The surfaces of parasites, such as Trypanosoma brucei brucei, are covered by
glycoconjugates forming a protective glycocalyx against the host defense systems. False-color
scanning electron microscopy (EM) of a T. b. brucei procyclic interacting with cell microvilli in the tsetse fly
proventriculus (bottom panel). Transmission EM of ruthenium-red stained ultrathin sections showing the
surface glycocalyx of T. b. brucei procyclic cells (middle panel). Scheme summarizing the main surface
glycosylphosphatidylinositol (GPI)-anchored (EP- and GPEET-procyclins and trans-sialidases) and
transmembrane (including polytopic) glycoproteins and glycolipids expressed by T. b. brucei procyclics (top
panel) [2,24]. Open rectangles linked to GPI molecules represent side chains characteristic of surface
glycoconjugates from procyclic T. b. brucei. GIPLs: glycoinositolphospholipids, or free GPIs. EM images
obtained by C. Rose, A. Beckett, L. Tetley, I. Prior, and A. Acosta-Serrano.

doi:10.1371/journal.ppat.1005169.g001
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development of novel chemotherapy approaches and diagnostic tools. Thus, for instance,
besides its effect modulating the host immune response against the infection, glycans from
Schistosoma mansoni are currently being explored as targets for vaccination and/or serodiag-
nosis of human schistosomiasis [6]. Nevertheless, there are many challenges associated with
working with parasites, including problems in obtaining sufficient amounts of biological mate-
rial for analytical purposes, difficulties of culturing the different life stages, and, on occasion,
the lack of tools for functional genomics and molecular biology approaches. Glycans add
another level of difficulty to these studies, due to their extensive diversity and exquisite com-
plexity. In contrast to nucleic acid and proteins, their biosynthesis is only indirectly template-
driven and generates an important amount of structural variability in biological systems. This
complexity is critical in molecular recognition events including cell–cell, cell–matrix, and cell–
molecule interactions during essential steps of pathogenesis. Thus, the thorough characteriza-
tion of parasite glycobiology requires systematic approaches that focus on the description of
the glycosylation precursors, the glycan-processing enzymes, and the structure and functional
significance of parasitic glycans. In addition, most of the medically and veterinarially important
parasites are phylogenetically ancient organisms and represent good models for studying evo-
lutionary aspects of eukaryotic glycosylation. Thus, the study of parasite glycans may unravel
novel mechanisms also present in higher eukaryotes. Excellent examples are the description of
the structure of glycosylphosphatidylinositol (GPI) membrane anchors in African trypano-
somes [7] or the discovery of the glycoprotein quality control cycle, thanks to seminal studies
on the N-glycosylation pathway of trypanosomatid parasites [8]. Interestingly enough, differ-
ent parasitic protists present variable lengths in their N-glycan precursors that directly affect
this N-glycan-dependent quality control system [9].

The Metabolic Precursors of Parasite Glycosylation
Glycan synthesis requires activated monosaccharides, mainly in the form of nucleotide sug-
ars that will be used by glycosyltransferase enzymes as glycosyl donor substrates in glycosyl-
ation reactions. Therefore, the presence of activated sugars is a prerequisite for glycan
biosynthesis, and their availability influences the glycan structures that may be synthesized
by a parasite (the glycome). Thus, valuable information about the glycome can be gained
from the identification and quantification of the sugar nucleotide pools maintained during
the life stages of different parasites. For example, the capping of Leishmania major surface
lipophosphoglycan with arabinose side chains, which is required for detachment of the
infectious parasites from the sand fly midgut, correlates with a strong increase of the GDP-
α-D-arabinopyranose pool [10].

Sugar nucleotides are formed by de novo pathways requiring the bioconversion of an exist-
ing sugar or sugar nucleotide or by salvage pathways involving the activation of the sugar using
a kinase and a pyrophosphorylase. The conservation of specific biosynthetic pathways in the
parasite genomes are strong hints of the presence of nucleotide sugar pools [11,12]. Monosac-
charide activation usually takes place in the cytoplasm, although in Trypanosoma brucei brucei
and possibly other kinetoplastid parasites, these biosynthetic reactions occur in a specific
organelle called glycosome [13]. Since sugar nucleotides are mostly used by glycosyltransferases
in the endoplasmic reticulum and/or the Golgi apparatus, they must be translocated to these
cellular compartments by specific transporters (Fig 2). This metabolic compartmentalization
and the study of the transporters involved also offer new opportunities for the selective inhibi-
tion of crucial glycosylation reactions in parasites.

PLOS Pathogens | DOI:10.1371/journal.ppat.1005169 November 12, 2015 3 / 7



Parasitic Glycan-Processing Enzymes and Glycan-Binding
Proteins
Glycosyltransferases transfer sugar moieties from activated donors to specific acceptor mole-
cules, generating glycosidic linkages between carbohydrates or between a carbohydrate and a
noncarbohydrate moiety. Therefore, they define the assembly and final structure of glycan
chains, which can be linear or branched and of various lengths. Glycoside hydrolases, the
enzymes that hydrolyze glycosidic bonds, form another main group of carbohydrate-active
enzymes that also play important roles in determining the final structure of mature glycans.
The combined action of several of these enzymes in the secretory pathway leads to a vast and
diverse array of glycan structures. Additionally, parasitic glycan-binding proteins interact with
specific parasite and host glycan structures present in the surface of cells.

Sequence-based families of glycosyltransferases, glycoside hydrolases, and carbohydrate-
binding proteins group together according to their function, indicating that the acquisition of

Fig 2. Glycosylation processes involve different cellular compartments.Glycan biosynthesis and cellular compartments involved in the glycosylation
process. Sugars are carried across the plasmamembrane into cells or are salvaged from degraded glycoconjugates at lysosomes. Through biosynthetic and
interconversion reactions, monosaccharides are activated into different nucleotide sugars. Sugar activation generally takes place in the cytoplasm, although
several enzymes involved in sugar nucleotide biosynthesis in T. b. brucei are localized in the glycosome. After being activated, sugar nucleotides are
transported into the endoplasmic reticulum/Golgi apparatus and used by different glycosyltransferases (GT). Glycosyltransferases and other glycan-
processing enzymes define the assembly and final structure of glycans that are secreted or located in the cell surface, forming a protective glycocalyx. Sugar
nucleotide transporters are marked with an asterisk (*).

doi:10.1371/journal.ppat.1005169.g002
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the specificities of these enzymes evolved from common progenitors. Therefore, despite the
huge diversity of glycans, the activities and molecular mechanism of the enzymes involved in
their biosynthesis can often be inferred from their sequences [14]. Nevertheless, because of the
substantial evolutionary distance between protozoan parasites and higher eukaryotes, it can be
challenging to define the precise function of specific parasitic glycosyltransferases from
sequence similarity [15,16] or by inference from the final structures determined by a particular
glycosylation pathway [17,18]. Glycosyltransferases and other glycan-processing enzymes
involved in the biosynthesis of glycans essential for the survival and infectivity of parasites
might be exploited as drug targets. Therefore, increasing our knowledge of the different para-
sitic glycosylation pathways and their biological relevance will contribute to uncovering the
therapeutic potential therein.

Parasite Glycomics and the Biological Function of
Glycoconjugates
The characterization and quantification of the complete set of glycans and glycoconjugates
made by a cell or organism at a given time is defined as glycomics. Since glycosylation is the
most structurally diverse, and one of the most abundant, protein and lipid modifications, the
description of the spectrum of all glycan structures—the glycome—of even just a single cell
type is a huge challenge. Nevertheless, to shed light on the structure–function relationship of
parasite glycans at the molecular level, a detailed knowledge of their structures is an important
prerequisite that can only be achieved through the use of different analytical methodologies
and glycoproteomics and glycolipidomics strategies. Currently, mass spectrometry is a key tool
in glycomics and has revealed highly unusual glycans from a number of unicellular and meta-
zoan parasites [19].

The assessment of the functional significance of the different glycosylation states will only
be achieved by employing adequate screening and/or genetic tools that, in the case of particular
parasites, are still in the development stage [20]. Host receptor molecules can specifically recog-
nize glycans, and these glycan–receptor interactions are related to migration, invasion, adhe-
sion, toxin production, and other essential processes during the course of parasitic infections.
By a thorough exploration of the glycomic capacity of parasites and its influence on the interac-
tions with their hosts, the code defined by the different glycan structures can be gradually char-
acterized. In addition, glycomic approaches can be illuminating in the discovery of novel
antigenic glycans for the development of diagnostic tools or glycovaccines. An important step
in this respect would be the development of glycan microarrays reflecting parasite glycomes in
order to identify binding partners in the human proteome, such as components of the innate
immune system. Similarly, identifying host glycan structures recognized by parasite proteins
with lectin-like properties will be fundamental for describing host–parasite interactions in par-
asitic diseases.

Future Perspectives: The Translation of Parasitic Glycobiology
Glycobiology has become a well-established area of study in recent decades and is currently
providing drug targets against several pathogens and diseases. Ethambutol, Caspofungin, Zana-
mivir, and Oseltamivir are well-known examples of commercial drugs in use—as therapies
against tuberculosis, candidiasis, aspergillosis, and influenza—that target glycosylation and car-
bohydrate processing. In this regard, echinocandins, antifungal drugs that target β-1,3-glucan
synthesis, also inhibit oocyst wall biosynthesis in Eimeria [21]. Similarly, bacterial
polysaccharide–protein conjugate vaccines have recently revolutionized vaccination strategies.
This approach may be applied to prevent or treat parasitic diseases, using parasite-derived
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xeno-glycans absent in the human glycome [6,22]. Furthermore, the identification of parasitic
glycan antigen structures and monoclonal antibodies to these epitopes holds unprecedented
promise for the development of novel diagnostic procedures for various parasitic infections
[23]. Thus, through profound and systematic approaches to this important but frequently
neglected area of pathogenic parasite research, knowledge about the biology of these organisms
will be extended, and novel methods to tackle them will likely be uncovered.
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