262 research outputs found

    A universal Hamiltonian for the motion and the merging of Dirac cones in a two-dimensional crystal

    Full text link
    We propose a simple Hamiltonian to describe the motion and the merging of Dirac points in the electronic spectrum of two-dimensional electrons. This merging is a topological transition which separates a semi-metallic phase with two Dirac cones from an insulating phase with a gap. We calculate the density of states and the specific heat. The spectrum in a magnetic field B is related to the resolution of a Schrodinger equation in a double well potential. They obey the general scaling law e_n \propto B^{2/3} f_n(Delta /B^{2/3}. They evolve continuously from a sqrt{n B} to a linear (n+1/2)B dependence, with a [(n+1/2)B]^{2/3} dependence at the transition. The spectrum in the vicinity of the topological transition is very well described by a semiclassical quantization rule. This model describes continuously the coupling between valleys associated with the two Dirac points, when approaching the transition. It is applied to the tight-binding model of graphene and its generalization when one hopping parameter is varied. It remarkably reproduces the low field part of the Rammal-Hofstadter spectrum for the honeycomb lattice.Comment: 18 pages, 15 figure

    Detecting Physics At The Post-GUT And String Scales By Linear Colliders

    Get PDF
    The ability of linear colliders to test physics at the post-GUT scale is investigated. Using current estimates of measurements available at such accelerators, it is seen that soft breaking masses can be measured with errors of about (1-20)%. Three classes of models in the post-GUT region are examined: models with universal soft breaking masses at the string scale, models with horizontal symmetry, and string models with Calabi-Yau compactifications. In each case, linear colliders would be able to test directly theoretical assumptions made at energies beyond the GUT scale to a good accuracy, distinguish between different models, and measure parameters that are expected to be predictions of string models.Comment: Latex, 21 pages, no figure

    New Lump-like Structures in Scalar-field Models

    Full text link
    In this work we investigate lump-like solutions in models described by a single real scalar field. We start considering non-topological solutions with the usual lump-like form, and then we study other models, where the bell-shape profile may have varying amplitude and width, or develop a flat plateau at its top, or even induce a lump on top of another lump. We suggest possible applications where these exotic solutions might be used in several distinct branches of physics.Comment: REvTex4, twocolumn, 10 pages, 9 figures; new reference added, to appear in EPJ

    An improved method for measuring muon energy using the truncated mean of dE/dx

    Full text link
    The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(E_mu) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure

    Cryogenic characterization of a LiAlO 2 crystal and new results on spin-dependent dark matter interactions with ordinary matter: CRESST Collaboration

    Get PDF
    In this work, a first cryogenic characterization of a scintillating LiAlO 2 single crystal is presented. The results achieved show that this material holds great potential as a target for direct dark matter search experiments. Three different detector modules obtained from one crystal grown at the Leibniz-Institut für Kristallzüchtung (IKZ) have been tested to study different properties at cryogenic temperatures. Firstly, two 2.8 g twin crystals were used to build different detector modules which were operated in an above-ground laboratory at the Max Planck Institute for Physics (MPP) in Munich, Germany. The first detector module was used to study the scintillation properties of LiAlO 2 at cryogenic temperatures. The second achieved an energy threshold of (213.02 ± 1.48) eV which allows setting a competitive limit on the spin-dependent dark matter particle-proton scattering cross section for dark matter particle masses between 350MeV/c2 and 1.50GeV/c2. Secondly, a detector module with a 373 g LiAlO 2 crystal as the main absorber was tested in an underground facility at the Laboratori Nazionali del Gran Sasso (LNGS): from this measurement it was possible to determine the radiopurity of the crystal and study the feasibility of using this material as a neutron flux monitor for low-background experiments. © 2020, The Author(s)

    Molecular dynamics study of orientational order and rotational melting in clusters of TeF 6

    Full text link
    Molecular dynamics simulations of the behavior of molecules in crystalline clusters of TeF 6 were carried out on systems of 100, 150, 250, and 350 molecules. Several diagnostic functions were applied to investigate whether rotational melting occurred before translational melting. These functions included the coefficient of rotational diffusion D θ ( T ), the “orientational Lindemann index” δ θ ( T ), the “orientational angular distribution function” Q (θ, T ), and the “orientational pair-correlation function” g θ ( r, T ). All indicators implied that rotational melting occurred before translational melting, that it began with the outermost molecules, and that its onset for smaller clusters was at lower temperatures than for larger clusters. Results also showed that the rotational transition coincided with the transition from a lower symmetry phase (monoclinic) to cubic, a phenomenon that had been noted by others to occur with some regularity for systems of globular molecules.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43961/1/10053_2005_Article_BF01426586.pd

    Neutrino oscillation studies with IceCube-DeepCore

    Get PDF
    AbstractIceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed

    Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective length we study the transient response characteristics of three candidate antennas in the time domain. Observing the variation of the continuous galactic background intensity we rank the antennas with respect to the noise level added to the galactic signal

    Overview of the JET results in support to ITER

    Get PDF
    corecore