50 research outputs found
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory
The Pierre Auger Observatory in MalargĂŒe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data
The rapid atmospheric monitoring system of the Pierre Auger Observatory
The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or 'rapid') monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction
The Rapid Atmospheric Monitoring System of the Pierre Auger Observatory
The Pierre Auger Observatory is a facility built to detect air showers
produced by cosmic rays above 10^17 eV. During clear nights with a low
illuminated moon fraction, the UV fluorescence light produced by air showers is
recorded by optical telescopes at the Observatory. To correct the observations
for variations in atmospheric conditions, atmospheric monitoring is performed
at regular intervals ranging from several minutes (for cloud identification) to
several hours (for aerosol conditions) to several days (for vertical profiles
of temperature, pressure, and humidity). In 2009, the monitoring program was
upgraded to allow for additional targeted measurements of atmospheric
conditions shortly after the detection of air showers of special interest,
e.g., showers produced by very high-energy cosmic rays or showers with atypical
longitudinal profiles. The former events are of particular importance for the
determination of the energy scale of the Observatory, and the latter are
characteristic of unusual air shower physics or exotic primary particle types.
The purpose of targeted (or "rapid") monitoring is to improve the resolution of
the atmospheric measurements for such events. In this paper, we report on the
implementation of the rapid monitoring program and its current status. The
rapid monitoring data have been analyzed and applied to the reconstruction of
air showers of high interest, and indicate that the air fluorescence
measurements affected by clouds and aerosols are effectively corrected using
measurements from the regular atmospheric monitoring program. We find that the
rapid monitoring program has potential for supporting dedicated physics
analyses beyond the standard event reconstruction
Ultrahigh energy neutrinos at the pierre auger observatory
The observation of ultrahigh energy neutrinos (UHEs) has become a priority in experimental astroparticle physics. UHEs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ) or in the Earth crust (Earth-skimming ), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHEs in the data collected with the ground array of the Pierre Auger Observatory.This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHEs in the EeV range and above
Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)
Atmospheric conditions at the site of a cosmic ray observatory must be known
for reconstructing observed extensive air showers. The Global Data Assimilation
System (GDAS) is a global atmospheric model predicated on meteorological
measurements and numerical weather predictions. GDAS provides
altitude-dependent profiles of the main state variables of the atmosphere like
temperature, pressure, and humidity. The original data and their application to
the air shower reconstruction of the Pierre Auger Observatory are described. By
comparisons with radiosonde and weather station measurements obtained on-site
in Malarg\"ue and averaged monthly models, the utility of the GDAS data is
shown
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm
We present the first results of the Fermilab Muon g-2 Experiment for the
positive muon magnetic anomaly . The anomaly is
determined from the precision measurements of two angular frequencies.
Intensity variation of high-energy positrons from muon decays directly encodes
the difference frequency between the spin-precession and cyclotron
frequencies for polarized muons in a magnetic storage ring. The storage ring
magnetic field is measured using nuclear magnetic resonance probes calibrated
in terms of the equivalent proton spin precession frequency
in a spherical water sample at 34.7C. The
ratio , together with known fundamental
constants, determines
(0.46\,ppm). The result is 3.3 standard deviations greater than the standard
model prediction and is in excellent agreement with the previous Brookhaven
National Laboratory (BNL) E821 measurement. After combination with previous
measurements of both and , the new experimental average of
(0.35\,ppm) increases the
tension between experiment and theory to 4.2 standard deviationsComment: 10 pages; 4 figure
Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory
Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E > = 6Ă1019 eV by analyzing cosmic rays with energies above E > = 5Ă1018 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources