34 research outputs found

    Wave modes of collective vortex gyration in dipolar-coupled-dot-array magnonic crystals

    Get PDF
    Lattice vibration modes are collective excitations in periodic arrays of atoms or molecules. These modes determine novel transport properties in solid crystals. Analogously, in periodical arrangements of magnetic vortex-state disks, collective vortex motions have been predicted. Here, we experimentally observe wave modes of collective vortex gyration in one-dimensional (1D) periodic arrays of magnetic disks using time-resolved scanning transmission x-ray microscopy. The observed modes are interpreted based on micromagnetic simulation and numerical calculation of coupled Thiele equations. Dispersion of the modes is found to be strongly affected by both vortex polarization and chirality ordering, as revealed by the explicit analytical form of 1D infinite arrays. A thorough understanding thereof is fundamental both for lattice vibrations and vortex dynamics, which we demonstrate for 1D magnonic crystals. Such magnetic disk arrays with vortex-state ordering, referred to as magnetic metastructure, offer potential implementation into information processing devices.open8

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Amplitude analysis of the B0 (s)! K0K0 decays and measurement of the branching fraction of the B0! K0K0 decay

    Get PDF
    The B0K0K0B^0 \to K^{*0} \overline{K}^{*0} and Bs0K0K0B^0_s \to K^{*0} \overline{K}^{*0} decays are studied using proton-proton collision data corresponding to an integrated luminosity of 3fb1^{-1}. An untagged and time-integrated amplitude analysis of B(s)0(K+π)(Kπ+)B^0_{(s)} \to (K^+\pi^-)(K^-\pi^+) decays in two-body invariant mass regions of 150 MeV/c2/c^2 around the K0K^{*0} mass is performed. A stronger longitudinal polarisation fraction in the B0K0K0{B^0 \to K^{*0} \overline{K}^{*0}} decay, fL=0.724±0.051(stat)±0.016(syst){f_L = 0.724 \pm 0.051 \,({\rm stat}) \pm 0.016 \,({\rm syst})}, is observed as compared to fL=0.240±0.031(stat)±0.025(syst){f_L = 0.240 \pm 0.031 \,({\rm stat}) \pm 0.025 \,({\rm syst})} in the Bs0K0K0{B^0_s\to K^{*0} \overline{K}^{*0}} decay. The ratio of branching fractions of the two decays is measured and used to determine B(B0K0K0)=(8.0±0.9(stat)±0.4(syst))×107\mathcal{B}(B^0 \to K^{*0} \overline{K}^{*0}) = (8.0 \pm 0.9 \,({\rm stat}) \pm 0.4 \,({\rm syst})) \times 10^{-7}.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2019-004.html (LHCb public pages

    The Vinca Alkaloids

    No full text
    corecore