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Lattice vibration modes are collective excitations in periodic arrays of atoms or molecules. These modes
determine novel transport properties in solid crystals. Analogously, in periodical arrangements of magnetic
vortex-state disks, collective vortex motions have been predicted. Here, we experimentally observe wave
modes of collective vortex gyration in one-dimensional (1D) periodic arrays of magnetic disks using
time-resolved scanning transmission x-ray microscopy. The observed modes are interpreted based on
micromagnetic simulation and numerical calculation of coupled Thiele equations. Dispersion of the modes
is found to be strongly affected by both vortex polarization and chirality ordering, as revealed by the explicit
analytical form of 1D infinite arrays. A thorough understanding thereof is fundamental both for lattice
vibrations and vortex dynamics, which we demonstrate for 1D magnonic crystals. Such magnetic disk arrays
with vortex-state ordering, referred to as magnetic metastructure, offer potential implementation into
information processing devices.

R
ecently, collective spin excitations in nano-scale magnetic elements, particularly spin waves, have become a
focus of attention in nanomagnetism and related spintronics, owing to their potential implementation in
information processing devices1–12, in addition to the advances made in the understanding of fundamental

modes in such geometrically confined spin systems13. For example, some earlier works14,15 propose magnetic
quantum dot cellular automata that consist of single domain magnets for alternative information-signal pro-
pagation. New advances in both nanofabrication technology16 and time- and space-resolved measurement
techniques1,2,17 have enabled intensive studies of a wide variety of magnonic crystals (MCs) such as one-dimen-
sional (1D) strips18–22, two-dimensional (2D) arrays of magnetic nanoelements23–26, and antidot lattices of peri-
odic holes having a circular or rectangular shape in 2D continuous films27–29. Furthermore, technological interest
in the practical applicability of MCs to future information storage and processing devices30–31 is rapidly growing.
In patterned MCs, band structures including band widths and gaps can, in principle, be tailored through their
constituent materials and the isolated elements’ dimension and separation distances1–3,18–27. However, despite
recent insight into the allowed magnonic modes in a rich variety of MCs, collective vortex-gyration modes in
vortex-state arrays remain elusive, notwithstanding Shibata et al.32–339s theoretical prediction of dipolar-coupled
vortices in 2D magnetic disk arrays and the experimental demonstrations of vortex-gyration transfer between two
(or more) coupled disks34–45.

Here, we report on the first direct experimental demonstration, by means of state-of-the-art time-resolved
scanning transmission x-ray microscopy (STXM), of quantized (or discrete) wave modes of collective vortex
gyrations excited in five physically separated but dipolar-coupled disks in a permalloy (Py: Ni80Fe20) disk array.
With the help of numerical calculations of coupled linearized Thiele equation, micromagnetic numerical simula-
tions, and analytical derivations, we investigate the experimentally observed discrete modes and their dispersion
relations. The results reveal that characteristic dispersions are expressed in terms of the intrinsic angular eigen-
frequency v0 of isolated disks and the specific polarization p and chirality C ordering. The underlying physics can
be well understood in terms of the dynamic dipolar interaction associated with the specific p and C orderings.
Accordingly, and promisingly, the propagation property of collective vortex gyration and its dispersion can be
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manipulated by vortex-state ordering, the dimensions of each disk,
and the nearest-neighbouring (NN) disks’s interdistance. This work
constitutes a milestone towards the practical achievement of this new
class of MCs harnessing their advantages.

Results
Sample structure and STXM measurements. Figure 1 shows a
scanning electron microscopy (SEM) image of the sample (Fig. 1a)
as well as STXM images of out-of-plane core magnetizations (Fig. 1b)
and in-plane curling magnetizations (Fig. 1c) in each of the five Py
disks (see Methods for the sample dimensions). Here, the
polarization and chirality configurations of the array are p 5
[11,21, 11, 21, 11] and C 5 [21, 21, 21, 21, 11],
respectively (see Fig. 1d), as obtained from the STXM images,
where p 5 11(21) corresponds to upward (downward) core
magnetization, and C 5 11 to counter-clockwise (CCW) and C 5
21 to clockwise (CW) in-plane curling magnetization. Note that the
sample has the opposite core orientations between the NN disks.

In order to trigger an excitation of vortex gyration in the first disk,
we launch a current pulse of 1.8 ns duration into the electrode stri-
pline, resulting in a field pulse of about 2.4 mT strength [see the
corresponding inset of Fig. 1(a)]. The propagation of vortex gyration
excited at the first disk is driven by dipolar interaction between the
NN disks where individual cores are shifted from their static center

positions, thereby yielding a non-zero effective in-plane magnetiza-
tion. Oscillatory motions of the individual cores are measured by
STXM operated in the pump-and-probe sampling mode, which
allows for imaging of the cores’ out-of-plane magnetizations utilizing
element-specific X-ray magnetic circular dichroism (XMCD) as
magnetic contrast at a lateral resolution of about 25 nm and a tem-
poral resolution as low as 35 ps (for further details, see Methods).

Vortex-core gyration propagation along dipolar-coupled disks.
Figure 2 shows the x (red color) and y (blue) components (Fig. 2a)
of the displacements of the individual cores and their trajectories
(Fig. 2b) in the disk plane, as measured by time-resolved STXM
(see also Supplementary Movie 1). The experimental results (top of
2a and 2b) are compared with the corresponding micromagnetic
simulations (bottom of 2a and 2b) performed using the OOMMF
code (version 1.2a4)46. The characteristic beating patterns along with
their modulation envelopes are observed in each of the five disks
(Fig. 2a). Owing to the direct excitation of the first disk, a large-
amplitude gyration in that disk is observed, and is then allowed to
propagate towards the NN disk and beyond through the array. The
vortex-gyration transfer to the next disk and its further propagation
are evidenced by the increase of the gyration amplitude in the second
and remaining disks along with the concomitant and remarkable
decrease of the first disk’s gyration amplitude. The ratio between
the maximum displacements in disk 5 and disk 1 is about 0.24.
Since our pump-and-probe measurements are carried out within a
time period of 60.8 ns, and the intrinsic damping of Py is not
negligible but rather significant (as strong as a , 0.01), we cannot
clearly observe backward propagation bounced at the last (5th) disk.
However, the signature of weak reflection is evident by the increase of
the gyration amplitude in the 4th disk at around 55 ns, as compared
with the simulation result.

It has been reported that coupled gyrations in two-dipolar-
coupled disks can be described by the superposition of the two nor-
mal modes32,35,36,38,39. Dipolar interaction between NN disks breaks
the radial symmetry of the potential energy of each core, which
depends on the disk pair’s relative vortex-state configuration (both
the polarization and chirality ordering). Analogously, for the case of

Figure 1 | SEM image and magnetization contrast for five-disk array.
(a) SEM image of sample with a array of five Py disks of identical

dimensions and center-to-center distance and with a stripline for

application of local magnetic field pulses to the left-end disk. The sample is

deposited onto a silicon nitride membrane. The inset shows a schematic

drawing of the field pulse used in the experiment. (b) and (c) represent

initial vortex states in the five individual disks, out-of-plane

magnetizations (the bright and dark spots correspond to the down and

upward core orientations, respectively) and in-plane curling

magnetizations (the curling orientations are indicated by the dashed

arrows), as obtained from STXM measurements, respectively. (d) is a

schematic illustration of the initial states of the sample.

Figure 2 | Experimentally measured and simulated time-resolved
trajectories of gyrating vortices. (a) Oscillatory x (red) and y (blue)

components of vortex-core positions in individual disks as measured by

STXM (upper row) and corresponding micromagnetic simulation data

(bottom row). (b) The trajectories of the vortex-core motion under a

pulsed magnetic field during the time period t 5 0-60.8 ns. Dotted arrows

indicate the sense of gyration of the individual cores.
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the five-disk system used in this study, the beating patterns is the
result of linear combinations of the five normal modes of coupled
vortex gyration in the entire array [for more information, see
Supplementary Information B].

Discrete wave modes of collective vortex gyration. To illustrate the
collective vortex-gyration modes excited in the real sample, in
Fig. 3(a) we plot the frequency spectra (red circles) of core motions
in the individual disks as obtained from fast Fourier transformation
(FFT) of the core position vector Xn multiplied by Cn in the nth disk.
We also compare the experimental results with micromagnetic
simulation (green circles) for the five-disk model system and
numerical calculation (blue circles) based on five coupled
linearized Thiele equations47 (see Supplementary Information A).
Because of the intrinsic damping of core gyration in isolated disks,
the peaks are broadened and overlapped with neighboring peaks to
an extent, that they cannot be separated. Further deviations between
the experimental data and micromagnetic simulations as well as
numerical calculations can be attributed to sample imperfections
and the chosen time steps (400 ps) between the snapshot images
taken by STXM. Specifically, with regard to disks 2 and 4, only one
peak of wide width appears in the experimental data whereas two
peaks appear in the simulations and numerical data. In contrast, two
clear peaks and a very weak third peak appear in disks 1 and 3, which
is in quantitative agreement with the micromagnetic simulation and
numerical calculation.

In order to clarify the presence of fundamental discrete modes, we
conduct further numerical calculation of coupled Thiele equation on

a five-disk model of the same dimensions and material parameters as
those in the real sample, but with zero damping. The right panel of
Fig. 3a shows the characteristic frequency spectrum of each disk.
From disk 1 through disk 5, different peaks of contrasting FFT
powers are observed. All of the five distinct peaks marked by vi

(where i 5 1, 2, 3, 4, 5) are shown in disks 1 and 5. By contrast,
the v3 peak disappears in disks 2 and 4, while the v2 and v5 peaks
disappear in disk 3. Each of the peaks of all of the modes is located at
the same position in all of the disks.

From the inverse FFT of all of the peaks of each mode, we can
extract the spatial correlations of core motions in the individual disks
for each mode vi. Figure 3(b) shows the trajectories of the orbiting
cores in motion in the individual disks along with the profiles of the
CnYn component of the core positions in the five-disk array. For all of
the modes vi, the individual core’ gyration amplitudes are markedly
distinct among the disks and modes. More interestingly, the collect-
ive motions of the individual cores in the whole array represent
certain wave forms of different wavelengths. The gyration ampli-
tudes for all of the modes are symmetric with respect to the center
of the array, and are also completely pinned at imaginary disks at
both ends, denoted disk 0 and disk 6 for the case of N 5 5. These
features represent a standing-wave form of a certain wavelength in
terms of collective vortex-gyration motions, being quite analogous to
a string, the ends of which are attached to the left and right walls
respectively, thus having no displacement. Accordingly, we can
interpret the collective and discrete wave modes as in the no-damp-
ing case, based on the fixed boundary condition in such a 1D array of
finite disk number N. In this case, the boundary condition is given as

Figure 3 | Discrete vortex-gyration modes in a five-disk array. (a) Frequency spectra obtained from the experimental data, the micromagnetic

simulation and the numerical calculation (FFTs of the numerically calculated oscillatory CnXn of the individual disks). The right column shows the

numerically calculated frequency spectra for zero damping (a 5 0). (b) Spatial distributions of the individual disks’ core positions for the five discrete

modes. The core trajectories are noted by the dashed lines inside the individual disks. Each dot on each trajectory represents the core position in the given

disk. Just below each mode, the corresponding profile of the CnYn components is indicated by the solid line (for t 5 0) or dotted line ( t 5 T/2 ), where T 5

2p=v is a time period for one cycle of gyration. In all of the FFTs, we applied the zero-padding technique to obtain 5 MHz resolution, except for the

numerical calculation for a 5 0.
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y x~0j ~y x~ Nz1ð Þdint

�� ~0, where y denotes the displacement of
beads, N is the number of elements, and dint is the inter-distance
between the elements. From this boundary condition, the wave vec-
tors of the allowed modes can be expressed simply as
k~m:p= Nz1ð Þdint½ �, where m 5 1, 2, … N-1, and N (For more
information, see Supplementary Information B). Thus, the discrete
(quantized) five modes’ wave numbers of the collective vortex gyra-
tions in the five-disk array are coincident with the values of
km~mp=6dint, where m 5 1, 2, 3, 4, 5.

Dispersion relation in coupled five-disk array. As described above,
collective vortex-gyration modes represent standing waves of
discrete wavelengths (i.e., quantized k values). Here, to extract the
dispersion (v - k relation) of all of the modes, we perform FFTs of the
collective core profiles for the individual modes according to
km~mp=6dint(where m 5 1, 2, 3, 4, 5) with a fixed value of dint 5
2250 nm for the real sample. Figure 4 shows the FFT powers in the
v-k spectra obtained from the experimental data, micromagnetic
simulation (for a 5 0.01) and numerical calculation of coupled
Thiele equation (for both cases of a 5 0.01 and a 5 0). FFTs of
each of the Xn and Yn, multiplied by Cn (i.e., CnXn and CnYn), are
performed. Using such reduced parameters of CnXn and CnYn, we
can consider only the polarity ordering for comparison between
experimental and numerical calculation data (see Supplementary
Information A).

The overall shape of the dispersion from the experimental data
qualitatively agrees well with those from the micromagnetic simula-
tions and numerical calculation, though they show quantitative dis-
crepancy in the frequency and FFT power between each mode. As
already mentioned above, discrepancies might be associated with the
chosen measurement parameters, sample imperfections as well as a
difference in the saturation magnetization between the experiment
and micromagnetic simulations. The white solid lines indicate the
result of an analytically derived explicit form for a 1D infinite array
(for the calculation, see Supplementary Information C). As noted

earlier, the intrinsic damping of vortex-core gyration in isolated disks
causes the broadening of the v values (see Fig. 4). For the case of no-
damping, five discrete quantized modes without the v–value broad-
ening are distinctly shown in the spectra (right panel).

Next, note that the overall shape of dispersion is concave down,
that is, a higher frequency at k 5 0 and a lower frequency at k 5 p/dint

for the case of CnXn, and concave up (vice versa) for CnYn. This
reversal between CnXn and CnYn can be understood in terms of the
lattice-number-dependent phase difference between the x and y
components of the vortex-core positions. Since the gyration’s rota-
tional sense is determined by the polarization p of a given disk, the
phase difference between the x and y components of the core position
vector in the nth disk is given as the product of p=2 and pn.
Accordingly, for the case of the antiparallel polarization between
the NN disks as in the sample, the phase difference between the x

and y components can be expressed as R:
p

dint
k̂

� �
{

p

2
, where

R~ndintx̂. This results in the shift of the k-vector in reciprocal space,
as k’~k{p=dint. Considering the real value of p=dint 5 1.3963 mm21

for dint 5 2250 nm), the experimental data are fully consistent for the
k shift by p=dintbetween CnXn and CnYn, as shown in Fig. 4.

Extension to semi-infinite or infinite 1D magnonic crystals. Based
on the above approach, we can extend to a array system comprised
of a semi-infinite or infinite 1D array composed of periodically
arranged disks (referred to as 1D MCs). Specifically, we accomp-
lish this by numerical calculation of a large number of disks (here,
N 5 201) and an analytically derived dispersion equation for infinite
arrays. Here we also consider specific parallel and antiparallel
ordering of both the p and C configurations between the NN disks:
Type I: [pn, Cn] 5 [(21)n11,1] for the antiparallel p and parallel C
ordering; Type II: [(21)n11, (21)n11] for the antiparallel p and C
ordering; Type III: [1,1] for the parallel p and C ordering, and
Type IV: [1, (21)n11] for the parallel p and antiparallel C ordering.
Considering those additional degrees of freedom for both the p and C
ordering, we analytically derive an explicit dispersion relation based
on linearized Thiele equations of coupled vortex-core motions,
taking into account the potential energy modified by dipolar
interaction between only NN disks32,33. Here, for simplicity, we
assume 1D arrays of an infinite number of equal-dimension disks.
For zero damping (a 5 0), the dispersion relation can be written as

v2~v2
0f2
jj
f2
\ with f2

jj
~1z2CnCnz1 g

jj

.
k

� �
cos kdintð Þ and f2

\
~1{

2CnCnz1pnpnz1 g\=kð Þ cos kdintð Þ, where k is the stiffness coefficient
of the potential energy for isolated disks. gjj and g\ represent the
interaction strength along the x (here x is the bonding axis) and y
axes, respectively (for the detailed derivation procedure, see
Supplementary Information C). pnpn11 5 11(21) and CnCn11 5

1(21) indicate parallel (antiparallel) p and C ordering, respectively,
between the NN disks. In this case, the wave vector k has a
continuous value due to the infinite number of existing modes in
such an infinite 1D array. This explicit analytical form indicates that
the dispersion relation is a function of an isolated disk’s
eigenfrequency v0 and the coupling strength between the NN
disks, that is, gjj and g\, as well as those special p and C ordering.

The numerical calculation of the analytical form of
v2(k)~v2

0f2
jj
(k)f2

\(k) for four different types of vortex-state ordering
noted above are displayed by the white lines in Fig. 5a, which are in
excellent agreement with the dispersion spectrum from the FFTs of
the Xn components of the individual disks, which are obtained from
the numerical calculation of N coupled Thiele equations for the N 5

201 system with damping (a 5 0.01). While performing the FFTs, we
imposed a periodic boundary condition to describe such a semi-
infinite system in terms of traveling waves. Accordingly, the resultant
k-values are given as k~m 2p=Ndintð Þ, where m is any integer value

under the constraint of {
p

dint
vkƒ

p

dint
. All of the dispersion curves

Figure 4 | Dispersion relations of collective vortex-gyration modes in a
array of five Py disks. Dispersion relations for all excited collective modes,

as extracted from FFTs of coupled oscillations of the vortex-core position

vector Xn multiplied by Cn, i.e. (a) CnXn and (b) CnYn, obtained from

experimental data, micromagnetic simulations, and numerical

calculations with damping (a 5 0.01) and without damping (a 5 0). The

white line indicates the analytically obtained dispersion curve for a 1D

infinite array of the same dimensions and interdistance as in the

simulations.
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are symmetric with respect to k 5 0, because the gyration is supposed
to propagate from the center towards both ends.

We stress here that the overall shape of dispersion is determined by
the sign of pnpn11CnCn11; such that concave up for pnpn11CnCn11

5 1, and concave down for pnpn11CnCn11 5 21. Also, the band
width is wider for the case of the antiparallel p ordering than for
the parallel p ordering. The band-width variation in the p ordering
reflects the fact that the opposite polarization between NN disks has a
stronger dipolar interaction (resulting in large frequency splitting)
than does the same polarization, as noted in earlier reports35–38. This
is caused by the rotational sense of stray fields around a given disk that
is opposite to that of the core gyration. A rotating field efficiently
couples into the circular eigenmode of gyration when the sense of
rotation of the stray field coincides with the sense of gyration46.
Consequently, the dipolar interaction between NN disks having the
opposite polarization is stronger than that between those having the
same polarization.

For a comprehensive understanding of dispersion variation
according to the sign of pnpn11CnCn11, we extract the spatial dis-
tributions of collective vortex-core motions from the analytical

derivation at specific values of k 5 0 (red lines) and k 5 kBZ 5 p/
dint (blue lines), as shown in Fig. 5(b). We calculate the dynamic
dipolar interaction energy densities as a function of time for four
different types of vortex-state ordering. The insets show the effective
in-plane magnetizations of a given disk and both NN disks around it
in a unit time period of 2p/v. The rotating effective magnetizations
,Mn. (gray-coloured wide arrows in each disk) in the NN disks and
their relative orientations determine the characteristic dispersion
that varies with both p and C orderings. The governing rule is deter-
mined by the dynamic dipolar interaction energy term: for the case
where the NN disks’ ,Mn. is in parallel (antiparallel) orientation
along the x axis, their dipolar interaction energy is at the lowest
(highest) energy level, whereas for the case where their relative
,Mn. is in parallel (antiparallel) orientation along the y axis, the
energy is at the second highest (second lowest) energy level, as repre-
sented by the gray arrows in the three disks in Fig. 5b. Thus, the phase
relation of NN disk’s ,Mn. is crucial to dynamic dipolar inter-
action, the overall value of which during a unit period is determined
by CnCn11 as well as pnpn11 (For more quantitative interpretation,
see Supplementary Information D).

Discussion
We experimentally observed the wave modes of collective vortex-
core gyration excitation along with their quantization and their dis-
persions in a array of five coupled disks. With the help of the ana-
lytical derivation, numerical calculation of coupled Thiele equation
and micromagnetic simulation, those discrete modes can be well
understood in terms of the relative orientations of rotating effective
in-plane magnetizations and the dynamic dipolar interaction
between the individual disks. Additional degrees of freedom of vor-
tex-state ordering, including polarization and chirality, dramatically
affect the phase relation of the dynamic dipolar interaction, thereby
leading to changes in dispersion. Analogous to quantized lattice-
vibration modes in solid crystals, the wave modes of vortex gyrations
in periodically patterned magnetic dots are fundamental. This work
enables the extension of coupled vortex disks to new types of MCs
composed of ordered vortex-state disks, thus opening the way to
control vortex-gyration propagations, band gaps, and widths of dis-
persions in 1D or 2D MCs.

Such new-type MCs might offer the advantages of limitless switch-
able-vortex-state and vortex-gyration-propagation endurance, low-
power signal input through resonant excitation of vortex gyrations,
and extremely low energy dissipation in information-processing
devices when using negligible damping materials.

Methods
Sample preparation. The five Py disk array is fabricated onto a 100-nm-thick silicon-
nitride membrane using electron-beam lithography and lift-off techniques. Each disk
has a thickness of 60 nm and a diameter of 2 mm. The center-to-center distance
between neighboring disks is 2.25 mm. An 800-nm-wide Cu stripline of 120 nm
thickness (with a gold cap of 5 nm thickness) is deposited onto the first disk43.

STXM measurement. Trajectories of the core motions of all five disks are directly
observed using STXM by monitoring the out-of-plane core magnetizations at the
MAXYMUS beamline (BESSY II; Helmholtz-Zentrum Berlin, Germany). The
magnetic contrast is provided via XMCD at the Ni L3 absorption edge (around 852.7
eV). The measurements showing the core polatization48,49 are performed using
negative circular-polarized x-rays (where an upward/downward core appears as a
dark/white spot), whereas the measurements showing the chirality configuration are
performed with the sample tilted 60u with respect to the beam axis, using positive
circular-polarized x-rays (where a CW/CCW curling magnetization leads to a dark/
bright contrast in the lower part of the disk). In the dynamic measurements, snapshot
images of the individual core motions scanned in lateral steps of 8 nm are taken in
time increments of 400 ps over a period of 60.8 ns after application of the field pulse at
zero time.

Micromagnetic simulation. The Landau-Lifshitz-Gilbert (LLG) equation50,51 of
motion of local magnetizations is numerically solved for the model geometry identical
to that of the sample applied in the experimental measurement, using the OOMMF
code46. The material parameters corresponding to Py are as follows: saturation

Figure 5 | Dispersion curves for parallel and antiparallel ordering of
polarization p and chirality C as well as characteristic dynamic dipolar
interaction energy density for k 5 0 and k 5 kBZ cases. The four specific

vortex-state orderings are: Type I for [pn,Cn] 5 [(21)n11,1], Type II for

[(21)n11, (21)n11], Type III for [1, 1], and Type IV for [1, (21)n11]. (a)

Dispersion relations of numerical calculation (blue-color spectra) for N 5

201 for which core gyration in the middle (101th disk) of the whole array is

displaced to , 200 nm, and of the numerical calculation (white thick lines)

of the analytically derived equation for a 1D infinite array. (b) Dynamic

dipolar interaction energy densities as a function of time for both k 5 0 and

k 5 kBZ, which are obtained from the analytical form of an infinite 1D

array. The gray-colored wide arrows in each disk indicate the effective net

magnetizations ,Mn. induced by core shifts at the given core positions.

The size does not indicate the magnitude of the dynamic effective

magnetizations. Specific ,Mn. configurations are indicated by three

disks and corresponding gray arrows.
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magnetization Ms 5 780 3 103 A/m and exchange stiffness constant Aex 5 1.3 3

10211 J/m. For all the simulations, we used Gilbert damping constant a 5 0.01.

Numerical calculation. Linearized coupled Thiele equations for vortex gyrations in N
coupled disks are numerically solved by taking into account the potential energy as
modified by the dipolar coupling between the NN disks. In the numerical calculation,
we use the numerical values of v0~2p|235 MHz, G 5 1.77 3 10212 Js/m2, D 5

24.66 3 10214 Js/m2, and k 5 2.62 3 1023 J/m2, as obtained from the micromagnetic
simulations performed on an isolated disk. The interaction strengths are determiend
to be gjj 5 9.36 3 1025 J/m2 and g\ 5 2.5 3 1024 J/m2 according to the relation
between Dv and the interaction strength coefficients36, Dvp1p2 ~v0(g\{p1p2gjj)=k,
where we obtained Dv 5 2p 3 30 MHz and 2p 3 15 MHz for p1p2 5 21 and p1p2 5

1, respectively, from further micromagnetic simulations on a coupled two-disk
system of the same dimensions as those of the real sample.

Analytical derivation of dispersion for 1D infinite disk array. We obtained
dispersion relations of 1D infinite disk arrays for different p and C orderings noted in
the text, based on the Thiele equation of motion of a single vortex core in isolated
disks, but by taking into account the potential energy modified by dipolar
interaction between only the NN disks (see Supplementary Information C for
further details.)
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