137 research outputs found

    Correction: Selenium effects on the metabolism of a Se-metabolizing Lactobacillus reuteri: analysis of envelope-enriched and extracellular proteomes

    Get PDF
    Correction for 'Selenium effects on the metabolism of a Se-metabolizing Lactobacillus reuteri: analysis of envelope-enriched and extracellular proteomes' by E. Mangiapane et al., Mol. BioSyst., 2014, 10, 1272–1280

    Clostridium cellulovorans metabolism of cellulose as studied by comparative proteomic approach

    Get PDF
    Clostridium cellulovorans is among the most promising candidates for consolidated bioprocessing (CBP) of cellulosic biomass to liquid biofuels (ethanol, butanol). C. cellulovorans metabolizes all the main plant polysaccharides and mainly produces butyrate. Since most butyrate and butanol biosynthetic reactions from acetyl-CoA are common, introduction of single heterologous alcohol/aldehyde dehydrogenase can divert the branching-point intermediate (butyryl-CoA) towards butanol production in this strain. However, engineering C. cellulovorans metabolic pathways towards industrial utilization requires better understanding of its metabolism. The present study aimed at improving comprehension of cellulose metabolism in C. cellulovorans by comparing growth kinetics, substrate consumption/product accumulation and whole-cell soluble proteome (data available via ProteomeXchange, identifier PXD015487) with those of the same strain grown on a soluble carbohydrate, glucose, as the main carbon source. Growth substrate-dependent modulations of the central metabolism were detected, including regulation of several glycolytic enzymes, fermentation pathways (e.g. hydrogenase, pyruvate formate lyase, phosphate transacetylase) and nitrogen assimilation (e.g. glutamate dehydrogenase). Overexpression of hydrogenase and increased ethanol production by glucose-grown bacteria suggest a more reduced redox state. Higher energy expenditure seems to occur in cellulose-grown C. cellulovorans (likely related to overexpression and secretion of (hemi-)cellulases), which induces up-regulation of ATP synthetic pathways, e.g. acetate production and ATP synthase. Significance: C. cellulovorans can metabolize all the main plant polysaccharides (cellulose, hemicelluloses and pectins) and, unlike other well established cellulolytic microorganisms, can produce butyrate. C. cellulovorans is therefore among the most attractive candidates for direct fermentation of lignocellulose to high-value chemicals and, especially, n-butanol, i.e. one of the most promising liquid biofuels for the future. Recent studies aimed at engineering n-butanol production in C. cellulovorans represent milestones towards production of biofuels through one-step fermentation of lignocellulose but also indicated that more detailed understanding of the C. cellulovorans central carbon metabolism is essential to refine metabolic engineering strategies towards improved n-butanol production in this strain. The present study helped identifying key genes associated with specific catabolic reactions and indicated modulations of central carbon metabolism (including redox and energy balance) associated with cellulose consumption. This information will be useful to determine key enzymes and possible metabolic bottlenecks to be addressed towards improved metabolic engineering of this strain

    Donkey milk fermentation by lactococcus lactis subsp. Cremoris and lactobacillus rhamnosus affects the antiviral and antibacterial milk properties

    Get PDF
    Background: Milk is considered an important source of bioactive peptides, which can be produced by endogenous or starter bacteria, such as lactic acid bacteria, that are considered effective and safe producers of food-grade bioactive peptides. Among the various types of milk, donkey milk has been gaining more and more attention for its nutraceutical properties. Methods: Lactobacillus rhamnosus 17D10 and Lactococcus lactis subsp. cremoris 40FEL3 were selected for their ability to produce peptides from donkey milk. The endogenous peptides and those obtained after bacterial fermentation were assayed for their antioxidant, antibacterial, and antiviral activities. The peptide mixtures were characterized by means of LC-MS/MS and then analyzed in silico using the Milk Bioactive Peptide DataBase. Results: The peptides produced by the two selected bacteria enhanced the antioxidant activity and reduced E. coli growth. Only the peptides produced by L. rhamnosus 17D10 were able to reduce S. aureus growth. All the peptide mixtures were able to inhibit the replication of HSV-1 by more than 50%. Seventeen peptides were found to have 60% sequence similarity with already known bioactive peptides. Conclusions: A lactic acid bacterium fermentation process is able to enhance the value of donkey milk through bioactivities that are important for human health

    Composition dependence of lithium diffusion in lithium silicide: a density functional theory study

    Get PDF
    The lithiation process of silicon was investigated by using ab initio molecular dynamics. Diffusion coefficients of Li in Li–Si alloys were calculated to be in the range between 2.08×10−9 and 3.53×10−7 cm2 s−1 at room temperature. The results showed that the Li mobility is strongly dependent on the composition of the LixSi alloys. The Li diffusivity in a LixSi alloy can be enhanced by two orders of magnitude when x is increased from 1.0 to 3.75, which can be explained by the instability of the Si network, owing to charge transfer from Li to Si

    Towards lactic acid bacteria-based biorefineries

    Full text link

    A Temporal -omic Study of Propionibacterium freudenreichii CIRM-BIA1T Adaptation Strategies in Conditions Mimicking Cheese Ripening in the Cold

    Get PDF
    Propionibacterium freudenreichii is used as a ripening culture in Swiss cheese manufacture. It grows when cheeses are ripened in a warm room (about 24°C). Cheeses with an acceptable eye formation level are transferred to a cold room (about 4°C), inducing a marked slowdown of propionic fermentation, but P. freudenreichii remains active in the cold. To investigate the P. freudenreichii strategies of adaptation and survival in the cold, we performed the first global gene expression profile for this species. The time-course transcriptomic response of P. freudenreichii CIRM-BIA1T strain was analyzed at five times of incubation, during growth at 30°C then for 9 days at 4°C, under conditions preventing nutrient starvation. Gene expression was also confirmed by RT-qPCR for 28 genes. In addition, proteomic experiments were carried out and the main metabolites were quantified. Microarray analysis revealed that 565 genes (25% of the protein-coding sequences of P. freudenreichii genome) were differentially expressed during transition from 30°C to 4°C (P<0.05 and |fold change|>1). At 4°C, a general slowing down was observed for genes implicated in the cell machinery. On the contrary, P. freudenreichii CIRM-BIA1T strain over-expressed genes involved in lactate, alanine and serine conversion to pyruvate, in gluconeogenesis, and in glycogen synthesis. Interestingly, the expression of different genes involved in the formation of important cheese flavor compounds, remained unchanged at 4°C. This could explain the contribution of P. freudenreichii to cheese ripening even in the cold. In conclusion, P. freudenreichii remains metabolically active at 4°C and induces pathways to maintain its long-term survival

    The effects of second-hand smoke on biological processes important in atherogenesis

    Get PDF
    BACKGROUND: Atherosclerosis is the leading cause of death in western societies and cigarette smoke is among the factors that strongly contribute to the development of this disease. The early events in atherogenesis are stimulated on the one hand by cytokines that chemoattract leukocytes and on the other hand by decrease in circulating molecules that protect endothelial cells (ECs) from injury. Here we focus our studies on the effects of "second-hand" smoke on atherogenesis. METHODS: To perform these studies, a smoking system that closely simulates exposure of humans to second-hand smoke was developed and a mouse model system transgenic for human apoB(100 )was used. These mice have moderate lipid levels that closely mimic human conditions that lead to atherosclerotic plaque formation. RESULTS: "Second-hand" cigarette smoke decreases plasma high density lipoprotein levels in the blood and also decreases the ratios between high density lipoprotein and low density lipoprotein, high density lipoprotein and triglyceride, and high density lipoprotein and total cholesterol. This change in lipid profiles causes not only more lipid accumulation in the aorta but also lipid deposition in many of the smaller vessels of the heart and in hepatocytes. In addition, mice exposed to smoke have increased levels of Monocyte Chemoattractant Protein–1 in circulation and in the heart/aorta tissue, have increased macrophages in the arterial walls, and have decreased levels of adiponectin, an EC-protective protein. Also, cytokine arrays revealed that mice exposed to smoke do not undergo the switch from the pro-inflammatory cytokine profile (that develops when the mice are initially exposed to second-hand smoke) to the adaptive response. Furthermore, triglyceride levels increase significantly in the liver of smoke-exposed mice. CONCLUSION: Long-term exposure to "second-hand" smoke creates a state of permanent inflammation and an imbalance in the lipid profile that leads to lipid accumulation in the liver and in the blood vessels of the heart and aorta. The former potentially can lead to non-alcoholic fatty liver disease and the latter to heart attacks

    Identification of a General O-linked Protein Glycosylation System in Acinetobacter baumannii and Its Role in Virulence and Biofilm Formation

    Get PDF
    Acinetobacter baumannii is an emerging cause of nosocomial infections. The isolation of strains resistant to multiple antibiotics is increasing at alarming rates. Although A. baumannii is considered as one of the more threatening “superbugs” for our healthcare system, little is known about the factors contributing to its pathogenesis. In this work we show that A. baumannii ATCC 17978 possesses an O-glycosylation system responsible for the glycosylation of multiple proteins. 2D-DIGE and mass spectrometry methods identified seven A. baumannii glycoproteins, of yet unknown function. The glycan structure was determined using a combination of MS and NMR techniques and consists of a branched pentasaccharide containing N-acetylgalactosamine, glucose, galactose, N-acetylglucosamine, and a derivative of glucuronic acid. A glycosylation deficient strain was generated by homologous recombination. This strain did not show any growth defects, but exhibited a severely diminished capacity to generate biofilms. Disruption of the glycosylation machinery also resulted in reduced virulence in two infection models, the amoebae Dictyostelium discoideum and the larvae of the insect Galleria mellonella, and reduced in vivo fitness in a mouse model of peritoneal sepsis. Despite A. baumannii genome plasticity, the O-glycosylation machinery appears to be present in all clinical isolates tested as well as in all of the genomes sequenced. This suggests the existence of a strong evolutionary pressure to retain this system. These results together indicate that O-glycosylation in A. baumannii is required for full virulence and therefore represents a novel target for the development of new antibiotics
    corecore