184 research outputs found

    Characterization of flow rate and Heat Loss in Heating, Ventilation and Air Conditioning (HVAC) Duct System for Office Building

    Get PDF
    A building is an assemblage that is firmly attached to the ground and provides the performance of human activities and need to be considered in the daily operation in that building. The improvements in building performance are focused on improving the energy efficiency of buildings. This is approach by designing heating, ventilation and air conditioning (HVAC) duct system due to one of the most utilized energy in maintaining building performance and environment. The objectives of this research is to calculate the air (CFM) supply in office building, to characterize the velocity and head loss in a round and rectangular HVAC ducting system at various duct thickness and to optimize the thickness of the duct in HVAC system according to ASHRAE Standard. The increasing of velocity in duct system shows the increasing of head loss. The round duct design gives the lowest velocity and head loss in HVAC system approximately around 9.35% as compared to rectangular duct at 0.06 inches thickness. Hence, the trends of the head loss and duct thickness has influenced in reducing noise in HVAC duct system in order to select the best design concepts which is round shape design

    Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A "central hub" in schizophrenia pathophysiology?

    Get PDF
    Accumulating evidence points to altered GABAergic parvalbumin-expressing interneurons and impaired myelin/axonal integrity in schizophrenia. Both findings could be due to abnormal neurodevelopmental trajectories, affecting local neuronal networks and long-range synchrony and leading to cognitive deficits. In this review, we present data from animal models demonstrating that redox dysregulation, neuroinflammation and/or NMDAR hypofunction (as observed in patients) impairs the normal development of both parvalbumin interneurons and oligodendrocytes. These observations suggest that a dysregulation of the redox, neuroimmune, and glutamatergic systems due to genetic and early-life environmental risk factors could contribute to the anomalies of parvalbumin interneurons and white matter in schizophrenia, ultimately impacting cognition, social competence, and affective behavior via abnormal function of micro- and macrocircuits. Moreover, we propose that the redox, neuroimmune, and glutamatergic systems form a "central hub" where an imbalance within any of these "hub" systems leads to similar anomalies of parvalbumin interneurons and oligodendrocytes due to the tight and reciprocal interactions that exist among these systems. A combination of vulnerabilities for a dysregulation within more than one of these systems may be particularly deleterious. For these reasons, molecules, such as N-acetylcysteine, that possess antioxidant and anti-inflammatory properties and can also regulate glutamatergic transmission are promising tools for prevention in ultra-high risk patients or for early intervention therapy during the first stages of the disease

    Partnership and Capacity Building of Local Governance

    Get PDF
    Partnership is about sharing of power, responsibility and achievements. According to the World Bank Public Private Partnership (PPP) promoting group, ―partnership refer to informal and shortterm engagements of non-governmental organizations, the private sector and/or government agencies that join forces for a shared objective; to more formal, but still short-term private sector engagements for the provision of specific services, for example, annual outsourcing arrangements for janitorial services for a school or operations of the school cafeteria; to more complex contractual arrangements, such as build, operate, transfer regimes, where the private sector takes on considerable risk and remains engaged long term; or to full privatizations‖ (World Bank Group 2014, 29).© Springer Nature Switzerland AG 2020. This is a post-peer-review, pre-copyedit version of an article published in Partnerships for the Goals. Encyclopedia of the UN Sustainable Development Goals. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-319-71067-9_21-1.fi=vertaisarvioitu|en=peerReviewed

    Negative effect of treatment with mGluR5 negative allosteric modulator AFQ056 on blood biomarkers in young individuals with Fragile X syndrome

    Get PDF
    BackgroundFragile X syndrome, with an approximate incidence rate of 1 in 4000 males to 1 in 8000 females, is the most prevalent genetic cause of heritable intellectual disability and the most common monogenic cause of autism spectrum disorder. The full mutation of the Fragile X Messenger Ribonucleoprotein-1 gene, characterized by an expansion of CGG trinucleotide repeats (>200 CGG repeats), leads to fragile X syndrome. Currently, there are no targeted treatments available for fragile X syndrome. In a recent large multi-site trial, FXLEARN, the effects of the mGluR5 negative allosteric modulator, AFQ056 (mavoglurant), were investigated, but did not show a significant impact of AFQ056 on language development in children with fragile X syndrome aged 3-6 years.ObjectivesThe current analyses from biospecimens collected in the FXLEARN study aimed to determine whether AFQ056 affects the level of potential biomarkers associated with Akt/mTOR and matrix metalloproteinase 9 signaling in young individuals with fragile X syndrome. Previous research has indicated that these biomarkers play crucial roles in the pathophysiology of fragile X syndrome.DesignA double-blind placebo-controlled parallel-group flexible-dose forced titration design.MethodsBlood samples for biomarkers were collected during the FXLEARN at baseline and subsequent visits (1- and 8-month visits). Biomarker analyses included fragile X messenger ribonucleoprotein-1 genotyping by Southern blot and PCR approaches, fragile X messenger ribonucleoprotein-1 mRNA levels determined by PCR, matrix metalloproteinase 9 levels' detection using a magnetic bead panel, and targets of the Akt/mTOR signaling pathway with their phosphorylation levels detected.ResultsThis research revealed that administering AFQ056 does not affect the expression levels of the investigated blood biomarkers in young children with fragile X syndrome.ConclusionOur findings of the lack of association between clinical improvement and biomarkers' levels in the treatment group are in line with the lack of benefit observed in the FXLEARN study. These findings indicate that AFQ056 does not provide benefits as assessed by primary or secondary endpoints.RegistrationClincalTrials.gov NCT02920892

    Role of N-acetylcysteine in the management of COPD

    Get PDF
    The importance of the underlying local and systemic oxidative stress and inflammation in chronic obstructive pulmonary disease (COPD) has long been established. In view of the lack of therapy that might inhibit the progress of the disease, there is an urgent need for a successful therapeutic approach that, through affecting the pathological processes, will influence the subsequent issues in COPD management such as lung function, airway clearance, dyspnoea, exacerbation, and quality of life. N-acetylcysteine (NAC) is a mucolytic and antioxidant drug that may also influence several inflammatory pathways. It provides the sulfhydryl groups and acts both as a precursor of reduced glutathione and as a direct reactive oxygen species (ROS) scavenger, hence regulating the redox status in the cells. The changed redox status may, in turn, influence the inflammation-controlling pathways. Moreover, as a mucolytic drug, it may, by means of decreasing viscosity of the sputum, clean the bronchi leading to a decrease in dyspnoea and improved lung function. Nevertheless, as successful as it is in the in vitro studies and in vivo studies with high dosage, its actions at the dosages used in COPD management are debatable. It seems to influence exacerbation rate and limit the number of hospitalization days, however, with little or no influence on the lung function parameters. Despite these considerations and in view of the present lack of effective therapies to inhibit disease progression in COPD, NAC and its derivatives with their multiple molecular modes of action remain promising medication once doses and route of administration are optimized

    Differentiation of normal and cancer cells induced by sulfhydryl reduction: biochemical and molecular mechanisms

    Get PDF
    We examined the morphological, biochemical and molecular outcome of a nonspecific sulfhydryl reduction in cells, obtained by supplementation of N-acetyl-L-cysteine (NAC) in a 0.1-10 mM concentration range. In human normal primary keratinocytes and in colon and ovary carcinoma cells we obtained evidences for: (i) a dose-dependent inhibition of proliferation without toxicity or apoptosis; (ii) a transition from a proliferative mesenchymal morphology to cell-specific differentiated structures; (iii) a noticeable increase in cell-cell and cell-substratum junctions; (iv) a relocation of the oncogenic beta-catenin at the cell-cell junctions; (v) inhibition of microtubules aggregation; (vi) upregulation of differentiation-related genes including p53, heat shock protein 27 gene, N-myc downstream-regulated gene 1, E-cadherin, and downregulation of cyclooxygenase-2; (vii) inhibition of c-Src tyrosine kinase. In conclusion, a thiol reduction devoid of toxicity as that operated by NAC apparently leads to terminal differentiation of normal and cancer cells through a pleiade of converging mechanisms, many of which are targets of the recently developed differentiation therapy

    Effects of Post-Resuscitation Treatment with N-acetylcysteine on Cardiac Recovery in Hypoxic Newborn Piglets

    Get PDF
    AIMS: Although N-acetylcysteine (NAC) can decrease reactive oxygen species and improve myocardial recovery after ischemia/hypoxia in various acute animal models, little is known regarding its long-term effect in neonatal subjects. We investigated whether NAC provides prolonged protective effect on hemodynamics and oxidative stress using a surviving swine model of neonatal asphyxia. METHODS AND RESULTS: Newborn piglets were anesthetized and acutely instrumented for measurement of systemic hemodynamics and oxygen transport. Animals were block-randomized into a sham-operated group (without hypoxia-reoxygenation [H-R, n = 6]) and two H-R groups (2 h normocapnic alveolar hypoxia followed by 48 h reoxygenation, n = 8/group). All piglets were acidotic and in cardiogenic shock after hypoxia. At 5 min after reoxygenation, piglets were given either saline or NAC (intravenous 150 mg/kg bolus + 20 mg/kg/h infusion) via for 24 h in a blinded, randomized fashion. Both cardiac index and stroke volume of H-R controls remained lower than the pre-hypoxic values throughout recovery. Treating the piglets with NAC significantly improved cardiac index, stroke volume and systemic oxygen delivery to levels not different from those of sham-operated piglets. Accompanied with the hemodynamic improvement, NAC-treated piglets had significantly lower plasma cardiac troponin-I, myocardial lipid hydroperoxides, activated caspase-3 and lactate levels (vs. H-R controls). The change in cardiac index after H-R correlated with myocardial lipid hydroperoxides, caspase-3 and lactate levels (all p<0.05). CONCLUSIONS: Post-resuscitation administration of NAC reduces myocardial oxidative stress and caused a prolonged improvement in cardiac function and in newborn piglets with H-R insults

    Dysfunction of Nrf-2 in CF Epithelia Leads to Excess Intracellular H2O2 and Inflammatory Cytokine Production

    Get PDF
    Cystic fibrosis is characterized by recurring pulmonary exacerbations that lead to the deterioration of lung function and eventual lung failure. Excessive inflammatory responses by airway epithelia have been linked to the overproduction of the inflammatory cytokine IL-6 and IL-8. The mechanism by which this occurs is not fully understood, but normal IL-1β mediated activation of the production of these cytokines occurs via H2O2 dependent signaling. Therefore, we speculated that CFTR dysfunction causes alterations in the regulation of steady state H2O2. We found significantly elevated levels of H2O2 in three cultured epithelial cell models of CF, one primary and two immortalized. Increases in H2O2 heavily contributed to the excessive IL-6 and IL-8 production in CF epithelia. Proteomic analysis of three in vitro and two in vivo models revealed a decrease in antioxidant proteins that regulate H2O2 processing, by ≥2 fold in CF vs. matched normal controls. When cells are stimulated, differential expression in CF versus normal is enhanced; corresponding to an increase in H2O2 mediated production of IL-6 and IL-8. The cause of this redox imbalance is a decrease by ∼70% in CF cells versus normal in the expression and activity of the transcription factor Nrf-2. Inhibition of CFTR function in normal cells produced this phenotype, while N-acetyl cysteine, selenium, an activator of Nrf-2, and the overexpression of Nrf-2 all normalized H2O2 processing and decreased IL-6 and IL-8 to normal levels, in CF cells. We conclude that a paradoxical decrease in Nrf-2 driven antioxidant responses in CF epithelia results in an increase in steady state H2O2, which in turn contributes to the overproduction of the pro-inflammatory cytokines IL-6 and IL-8. Treatment with antioxidants can ameliorate exaggerated cytokine production without affecting normal responses

    N-acetylcysteine reduces oxidative stress in sickle cell patients

    Get PDF
    Oxidative stress is of importance in the pathophysiology of sickle cell disease (SCD). In this open label randomized pilot study the effects of oral N-acetylcysteine (NAC) on phosphatidylserine (PS) expression as marker of cellular oxidative damage (primary end point), and markers of hemolysis, coagulation and endothelial activation and NAC tolerability (secondary end points) were studied. Eleven consecutive patients (ten homozygous [HbSS] sickle cell patients, one HbSβ0-thalassemia patient) were randomly assigned to treatment with either 1,200 or 2,400 mg NAC daily during 6 weeks. The data indicate an increment in whole blood glutathione levels and a decrease in erythrocyte outer membrane phosphatidylserine exposure, plasma levels of advanced glycation end-products (AGEs) and cell-free hemoglobin after 6 weeks of NAC treatment in both dose groups. One patient did not tolerate the 2,400 mg dose and continued with the 1,200 mg dose. During the study period, none of the patients experienced painful crises or other significant SCD or NAC related complications. These data indicate that N-acetylcysteine treatment of sickle cell patients may reduce SCD related oxidative stress
    corecore