467 research outputs found

    Light capsules shaped by curvilinear meta-surfaces

    Get PDF
    We propose a simple yet efficient method for generating in-plane hollow beams with a nearly-full circular light shell without the contribution of backward propagating waves. The method relies on modulating the phase in the near field of a centro-symmetric optical wavefront, such as that from a high-numericalaperture focused wave field. We illustrate how beam acceleration may be carried out by using an ultranarrow non-flat meta-surface formed by engineered plasmonic nanoslits. A mirrorsymmetric, with respect to the optical axis, circular caustic surface is numerically demonstrated that can be used as an optical bottle

    Development of slope monitoring device using accelerometer

    Get PDF
    There are many types of instruments that have been used for monitoring the high risk slopes as a precaution to prevent the loss of lives. Unfortunately, there is no such works of installation slope monitoring instrumentation as detectors and preventive actions before the slope failure. Automatic Wireless Accelerometer Monitoring System (AWAM) is a new device of monitoring system using accelerometer, introduced in this research. It is more efficient than conventional techniques and less expensive. The application and operation of this system does not interrupted by physical obstacles, different climate conditions, and the construction works at site. In addition, no contact is required since the accelerometers are installed on the slope. Consequently, geomorphology limitations are not considered as limitations of the system operation. This paper discusses the sensor database system by AWAM and shows the effectiveness of the device to monitor slope failures and act as a warning sign. It was presented in two parts; the first part consisted of the physical modelling calibration test from sensor database system (AWAM device) and from load cell test while the second part discussed on the numerical model simulated by using software (Slope/W and LimitState) and the data from vane shear test. The AWAM device can be used as a monitoring system to detect soil movements. However, accelerometer was able to give AWAM’s readings if the device is moving in tilting modes

    The Loma Prieta Earthquake: Implications of Structural Damage

    Get PDF
    The Loma Prieta earthquake provides a wealth of information on the seismic response of a wide variety of structures over a large metropolitan area. Soil amplification at sites distant from the epicenter contributed significantly to the substantial damages developed during the earthquake. Because of the large shaken area, the earthquake provides much useful information for all those interested in earthquake engineering. Structural damages resulting from the earthquake are reviewed herein with emphasis on buildings and bridges. Implications for modern design and retrofit methods are highlighted. Emphasis is placed on the need to carefully consider soil conditions, to treat the structure as a system rather than as an assemblage of independent elements, to explicitly define performance expectations, and to increase efforts to retrofit older seismically hazardous structures

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    Crossing the Phantom Divide Line in a DGP-Inspired F(R,ϕ)F(R,\phi)-Gravity

    Full text link
    We study possible crossing of the phantom divide line in a DGP-inspired F(R,ϕ)F(R,\phi) braneworld scenario where scalar field and curvature quintessence are treated in a unified framework. With some specific form of F(R,ϕ)F(R,\phi) and by adopting a suitable ansatz, we show that there are appropriate regions of the parameters space which account for late-time acceleration and admit crossing of the phantom divide line.Comment: 23 Pages, 10 figs, Submitted to JCA

    Modelling cascading failures in lifelines using temporal networks

    Get PDF
    Lifelines are critical infrastructure systems with high interdependency. During a disaster, the interdependency between the lifelines can lead to cascading failures. In the literature, the approaches used to analyze infrastructure interdependencies within the social, political, and economic domains do not properly describe the infrastructures’ emergency management. During an emergency, the response phase is very condensed in time, and the failures that occur are usually amplified through cascading effects in the long-term period. Because of these peculiarities, interdependencies need to be modeled considering the time dimension. The methodology proposed in this paper is based on a modified version of the Input-output Inoperability Model. The lifelines are modeled using graph theory, and perturbations are applied to the elements of the graph, simulating natural or man-made disasters. The cascading effect among the interdependent networks has been simulated using a spatial multilayer approach. The adjancency tensor has been used to for the temporal dimension and its effects. Finally, the numerical results of the simulations with the proposed model are represented by probabilities of failure for each node of the system. As a case study, the methodology has been applied to a nuclear power plant. The model can be adopted to run analysis at different scales, from the regional to the local scales

    Structural Finite Element Software Coupling Using Adapter Elements

    Get PDF
    This paper describes a versatile and computationally efficient method for coupling several finite element analysis (FEA) programs together so that the unique modeling and analysis capabilities of each code can be utilized simultaneously to simulate the static or dynamic response of a complete numerical system. An arbitrary number of finite element analysis software packages can be coupled by adding two special types of elements, namely generic and adapter elements, to each of the finite element applications using their programming interface. These elements are inserted at the interfaces between the different sub-domains of the complete system modeled by each finite element analysis software package. Exchange of data between the coupled FEA codes is accomplished in a modular and synchronized manner using OpenFresco (Open-source Framework for Experimental Setup and Control). OpenFresco is an object-oriented, environment independent software framework initially developed for hybrid simulation in which certain aspects of a complete structure are simulated numerically and other aspects are simultaneously tested physically. An important practical advantage of this coupled analysis approach is that all of the connected FEA codes run concurrently and continuously, decreasing analysis time consumption by an order of magnitude or more compared to more traditional approaches that shut down and restart the coupled analysis codes at each integration time step. The implementation and accuracy of this approach to FE software coupling are demonstrated using dynamic analyses of three simple structural models from the field of earthquake engineering

    A first order evaluation of the capacity of a healthcare network under emergency

    Get PDF
    Immediately after an earthquake a healthcare system within a city, comprising several hospitals, endures an extraordinary demand. This paper proposes a new methodology to estimate whether the hospital network has enough capacity to withstand the emergency caused by an earthquake. The ability of healthcare facilities and to provide a broad spectrum of emergency services immediately after a seismic event is assessed through a metamodel that assumes waiting time as main response parameter to assess the hospital network performance. The First Aid network of San Francisco subjected to a 7.2 Mw magnitude earthquake has been used as case study. The total number of injuries and their distributions among the six major San Francisco’s Emergency Departments have been assessed and compared with their capacity that has been determined using a survey conducted by the medical staff of the hospitals. The numerical results have shown that three of the six considered San Francisco’s hospitals cannot provide emergency services to the estimated injured. Two alternatives have been proposed to improve the performance of the network. The first one redistributes existing resources while the second one considers additional resources by designing a new Emergency Department

    Resilience Assessment of City-Scale Transportation Networks Using Monte Carlo Simulation

    Get PDF
    To improve the resilience of critical infrastructure systems, their intrinsic properties need to be understood and their resilience state needs be identified. In the literature, several methods to evaluate networks’ reliability and resilience can be found. However, the applicability of these methods is usually restricted to small-size net-works. In this paper, the transportation network of a large-scale virtual city is considered as a case study. A random removal of the roads is applied simulating the network’s failure. The network reliability is then calculated using the Destruction Spectrum (D-spectrum) method and a Monte Carlo approach has been developed to generate failure permutations that are necessary for the evaluation of the D-spectrum se. In addition, the Birnbaum Importance Measure (BIM) has been adopted in this study to determine the importance of the net-work’s components. The methodology adopted in this study can be also extended to all network-based systems. The paper also introduces resilience indicators as a soft tool to predict the performance and serviceability of transportation networks

    Knowledge, Attitude, and Practice toward Prevention of COVID-19 Among Nursing and Midwifery Students: A cross-sectional Study in Gorgan, Northern Iran

    Get PDF
    Background: Healthcare providers are high-risk groups for the novel coronavirus disease (COVID-19) infection. Nursing students are an essential part of high-risk healthcare providers. The aim of this study was to evaluate the knowledge, attitude, and practice of nursing and midwifery students at Golestan University of Medical Sciences (GOUMS) toward the prevention of COVID-19. Methods: This cross-sectional study was conducted on 174 nursing and midwifery students of GOUMS (northeast of IRAN) in 2020. Data were gathered using an online questionnaire comprising three parts – Knowledge (8 questions), Attitude (10 questions), and Practice (8 questions) toward the prevention of COVID-19. The range of scores in each subscale (knowledge, attitude, and preventive practices) were 8–24, 10–50, and 8–24, respectively. Data were analyzed using the SPSS v.16 software. The Mann–Whitney and Kruskal–Wallis tests were used for the analysis. Results: Overall, in this study, nursing and midwifery students had a good knowledge (mean score: 23.19 ± 2.56), a positive attitude (mean score: 45.48 ± 4.21), and appropriate practice (mean score: 23.30 ± 3.51) regarding COVID-19 prevention. Also, the results revealed a positive correlation between knowledge and attitude (r = 0.1, P = 0.18) and attitude and practice (r = 0.2, P = 0.01) among the students. Conclusion: The findings demonstrated a good preventive knowledge, attitude, and practice toward COVID-19 among nursing and midwifery students
    corecore