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1 INTRODUCTION 

Good physical connectivity in the urban and rural ar-
eas is essential for the economic growth of commu-
nities. Because of its intensive use of infrastructures, 
the transport sector is considered an important com-
ponent of the economy and a common tool used for 
development. Transport networks need to provide a 
continuous service for communities, and this neces-
sitates a good understanding of their resilience and 
reliability states. For instance, understanding how 
the topology of the network changes under disrup-
tive events can be fundamental in the decision mak-
ing process. It could also speed up rescue operations 
and help in evaluating cascading effects on other in-
terdependent networks. This paper explores mostly 
the reliability of large scale networks. Reliability is a 
very broad concept and its application is extended to 
all engineering fields. In general terms, network reli-
ability can be defined as the probability of connect-
ing the nodes of the network (Chang & Li 2014). 
Other authors consider reliability as the quality of 
the transportation system in terms of optimal travel 
time, i.e. the probability that a trip between two 
nodes takes less than a certain time (Immers et al. 
2002). Another widely used concept is the capacity 
reliability, which is the probability that the network 
capacity can accommodate a certain traffic volume at 
a required level of service (Chootinan et al. 2005, 
Chen et al. 2013, Niu et al., 2017). Reliability has al-

so been studied under specific situations, such as the 
emergency response, using both ideas of travel time 
and level of service (Edrissi et al. 2015). Looking at 
graph theory, Guidotti et al. (2017) have used the 
connectivity measures as a tool to determine whether 
a network is reliable or not. 

In this work, the reliability of the transportation 
network of a large scale virtual city is evaluated. The 
reliability definition adopted in (Gertsbakh & 
Shpungin 2008, Gertsbakh & Shpungin 2012, 
Gertsbakh & Shpungin 2016) is considered in this 
study. According to the researchers, reliability is re-
lated to the probability that some nodes, called ter-
minals, remain connected. Thus, the system fails 
when the terminals are no more connected. The ter-
minal nodes are strategic nodes with pre-defined 
survival probabilities assigned by the competent au-
thorities. Knowing these probabilities helps greatly 
in improving the network (Peeta et al. 2010). How-
ever, it can be rather difficult to have access to such 
data. For this reason, a different failure criterion has 
been chosen in this work. Moreover, another per-
formance parameter, the Birnbaum Importance 
Measure (BIM), is considered to study the behavior 
of the analyzed network. This parameter represents 
the importance of the network’s components 
(Gertsbakh & Shpungin 2012); that is, components 
with a high BIM index are vulnerable components. 
The determination of the reliability and BIM indexes 
is relatively simple for small networks, but when ap-
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ABSTRACT: To improve the resilience of critical infrastructure systems, their intrinsic properties need to be 
understood and their resilience state needs be identified. In the literature, several methods to evaluate net-
works’ reliability and resilience can be found. However, the applicability of these methods is usually restricted 
to small-size networks. In this paper, the transportation network of a large-scale virtual city is considered as a 
case study. A random removal of the roads is applied simulating the network’s failure. The network reliability 
is then calculated using the Destruction Spectrum (D-spectrum) method and a Monte Carlo approach has been 
developed to generate failure permutations that are necessary for the evaluation of the D-spectrum se. In addi-
tion, the Birnbaum Importance Measure (BIM) has been adopted in this study to determine the importance of 
the network’s components. The methodology adopted in this study can be also extended to all network-based 
systems. The paper also introduces resilience indicators as a soft tool to predict the performance and servicea-
bility of transportation networks. 



plied to a large-scale road transportation network, 
the computational effort becomes a significant as-
pect to take into account. 

The paper also introduces various resilience indi-
cators of transport networks that can serve as a soft 
tool to predict and assess the resilience and function-
ality of the transportation system. The indicators are 
still not exhaustive and they mainly cover the physi-
cal aspect of the network only. Further work will be 
developed to consider organizational and managerial 
aspects of the network. 

The paper is structured as follows: a brief intro-
duction of the performance indexes with their equa-
tions is presented in section 2. Section 3 introduces 
some strategies to overcome the computational is-
sues. A case study is presented in section 4, where 
the description of the network and the obtained re-
sults are provided. Finally, resilience indicators for 
transport networks are proposed in section 5. 

2 NETWORK RELIABILITY AND 
COMPONENTS’ IMPORTANCE 

2.1 Destruction spectrum 

The Destruction spectrum, or simply D-spectrum, is 
a representation of a network’s structure and its fail-
ure definition (Gertsbakh & Shpungin 2009). The 
system in Figure 1 is used to introduce the concept 
of the D-spectrum. The nodes in the system are as-
sumed reliable while the edges are unreliable; that is, 
only edges are subject to failure. In this example, the 
system’s failure is defined as the loss in connectivity 
between the terminal nodes a and c.  

 
 

 
 

Figure 1. A simple network with two critical nodes. 

 
 
The system’s failure can be reached through dif-

ferent sequences of failing components. For in-
stance, if the edges (1; 2; 5; 3; 4) fail, the two nodes 
a and c become disconnected, and thus the system 
fails. Another permutation leading to the same result 
can be (3; 5; 4; 1; 2). The failing component at 
which the system becomes down is called the anchor 
of the permutation. In the two permutations above, 
edges 5 and 4 are the anchors respectively. The total 

number of failure permutations in a system is k!, 
where k is the number of unreliable elements. After 
identifying all failure permutations, the D-spectrum 
set of the network is computed as follows: 
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where di is the ith component of the spectrum, xi is 

the total number of permutations whose anchor’s or-

der is i, k is the total number of unreliable compo-

nents. It is obvious from the equation above that the 

summation of all elements is 1 (Σi di  = 1). 
It is worth to note that the failure probability of 

each edge is not considered in the D-spectrum. One 
may simply consider a random removal of the edges 
in the sense that all edges have the same failure 
probability. Otherwise, a strategic edge removal can 
be considered but it requires additional analyses. For 
instance, in transportation networks, the removal of 
an edge (road) may be linked to the level of damage 
of the adjacent buildings. This requires fragility 
analysis to determine the level of damage that each 
building is subject to. 

2.2 Network reliability 

Generally, a network can be considered reliable 
when it offers a certain level of service or perfor-
mance, even during emergency situations. Most of 
the reliability definitions that can be found in the lit-
erature deal with the concept of reliability in proba-
bilistic terms. According to the definition of 
Gertsbakh & Shpungin (2008), each element of the 
network (nodes and edges) is given a probability p of 
being available and a probability q = 1 - p of being 
unavailable. All these probabilities contribute in the 
determination of the network’s reliability. The for-
mulation used to calculate the reliability index R(N) 
is given in Equation (2). This one is valid when all 
unreliable components have the same failure proba-
bility. 
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where yi is the cumulative D-spectrum, given by the 
following equation: 
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2.3 Components’ importance 

The Birnbaum Importance Measure (BIM) is a pa-
rameter that describes the importance of network’s 
components. The vulnerability of the components is 
what determines their corresponding value of BIM. 



This measure can be a tool to identify the critical 
components of a network in order to strengthen 
them. The following equation is used to compute the 
BIM index of a single component j: 
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where zi,j = Zi,j / k!, in which Zi,j is the number of 
permutations satisfying two conditions: (a) if the 
first i elements of the network are down, then the 
network is down; (b) element j is among the first i 
elements of the permutation. By doing some ma-
nipulation, the expression in Equation (4) can be 
written in a different form, shown in Equation (5). It 
is worth to note that both reliability and BIM indexes 
share a common factor in their equations, and this 
provides a unique characteristic to compute both in-
dexes in a single operation. 
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3 METHOD: APPLICATION TO LARGE-SCALE 
NETWORKS 

Theoretical reliability analyses are not always appli-
cable to large problems. For instance, the applica-
tions of the above mentioned equations are limited to 
small networks with defined number of components. 
This is due to the presence of factorial in the denom-
inator of the spectrum set (Eq.(1)). The same prob-
lem appears when computing the reliability index R, 
although we know in advance that this is a number 
between 0 and 1, regardless of the network’s size. In 
this section, we present strategies to apply the D-
spectrum to large scale networks and compute the 
reliability index and BIM-spectra. 

3.1 D-spectrum for large scale networks: a Monte 
Carlo approach 

We propose the use of a Monte Carlo approach to 
generate the failure permutations needed to compute 
the D-spectrum. Hereafter, the algorithm of the 
Monte Carlo simulation is presented.  

 
Algorithm: Generate permutations and compute the 
D-spectrum 
1) Define a failure criterion for the network (e.g. per-

centage of failed components, number of discon-
nected nodes, etc.). 

2) Start a permutation counter (n = 1). 
3) Choose a component (edge or node) randomly 

from 1 to k and store it (i.e. the chosen number 
represents a failed component). 

4) Check if the network’s failure criterion defined in 
step 1 is met: 
a. If yes, store the permutation and go to step 5; 
b. If no, choose another number from 1 to k ex-

cluding the numbers previously chosen and then 
go back to step 4. 

5) Set n = n + 1 and repeat the steps 3 and 4 for M 
times to generate M permutations. 

6) Group the permutations according to their an-
chor’s value (i.e. the anchor value coincides with 
the vector’s length of the permutation). 

7) Compute the D-spectrum using Equation (1). 
 
In case of targeted removal, the network’s com-

ponents should be linked with given failure probabil-
ities or lifetime distributions. In this case, step 3 is 
adjusted so that the removal process is not random. 

3.2 Reliability and BIM indexes for large scale 
networks: incremental computation 

Practically, computing the reliability and BIM in-
dexes is not possible for moderate to large networks. 
The reason is that both numerator and denominator 
in the second term of the reliability index (Eq.(2)) 
and in the first term of the BIM index (Eq.(5)) are 
too large. However, it is known in advance that the 
reliability index is a number that ranges between 0 
and 1 regardless of the network’s size. Symbolic cal-
culation represents an effective tool to solve such 
kind of numerical problems. Also, a more compact 
writing of the equation has been used. Defining M as 
shown in Equation (6), it is possible to rewrite the 
expressions of reliability and BIM indexes (Eqs 7-8).  
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4 CASE STUDY: THE TRANSPORTATION 
NETWORK OF A VIRTUAL CITY 

4.1 Network definition 

The road transportation network of a virtual city has 
been modeled as an undirected graph (Figure 2). An 
undirected graph G = (V, E) consists of a set of ver-
tices (or nodes), representing the intersections, to-
gether with an edge set E. The elements belonging to 
E are called edges or links, and represent the roads 
of the network. In an undirected graph every pair of 
nodes is connected, so each path can be passed 



through in both directions. Actually, a road map 
would be a directed graph, as the streets have a cer-
tain way. However, in emergency conditions, it is 
likely that respecting the directions becomes a sec-
ondary aspect. 

 

 
 

Figure 2. The transportation network of the virtual city. 

 
 
The road transportation system consists of 19,614 

edges connecting 15,012 nodes. Mathematically, the 
network has been described with an adjacency ma-
trix A, which is a square matrix with a side dimen-
sion equal to the number of the nodes. The elements 
inside A can be either 1 or 0. If ai,j = 1, it means that 
there is a connection (road) between node i and node 
j, while 0 means that the two nodes are not linked. 
Since the graph is not directed, the resulting adja-
cency matrix is symmetric. This matrix allows to de-
scribe and modify the topology of the network and to 
automate all the calculations. 

4.2 Network’s failure criterion 

The definition of the failure criterion is strictly relat-
ed to the reliability of the network. Despite its im-
portance, there is not a unique definition for the fail-
ure criterion of a network. Gertsbakh & Shpungin 
(2008) proposed the criterion of terminal connectivi-
ty; that is, if critical nodes are disconnected, the net-
work becomes down. This criterion is applicable to 
small scale networks, but when dealing with large 
networks a huge computational effort would be 
needed to identify whether the nodes are connected 
or not. In this work, a simpler network failure crite-
rion is adopted. The network is considered unavaila-
ble when at least 5% of the nodes are isolated (not 
connected to any edge). 

4.3 Results 

The methodology introduced in section 3 has been 
applied to the case study. Due to the large size of the 

analyzed network, the results are not shown using 
vectors or matrices, but rather using graphs. 

First, the above mentioned algorithm has been 
used to generate the failure permutations of the edg-
es. The number of permutations considered in this 
case study is 3.5 million. The generated permuta-
tions have been subsequently used in the calculation 
of the D-spectrum. The result of the D-spectrum is 
shown in Figure 3. It can be clearly seen that there 
are only few non-zero elements in the distribution, 
and they are all gathered in a small range. The distri-
bution of the D-spectrum is a perfectly normal dis-
tribution confirming that the assumed number of 
permutations was large enough to represent the prob-
lem. The location of the distribution’s peak depends 
greatly on the chosen failure criterion of the network 
and on the number of components forming the net-
work. More study will be dedicated to know the rea-
son of having a normal distribution and to identify 
the effect of the failure criterion and number of 
components on the position of the distribution’s 
peak. Moreover, looking at the definition of the D-
spectrum, the sum of all its elements is 1. This is 
verified in Figure 4, which shows the distribution of 
the cumulative D-spectrum. 

 
 

 
 

Figure 3. (a) The D-spectrum of all components of the case 

study network; (b) a zoomed view at the distribution peak. 



 
 

Figure 4. (a) The cumulative D-spectrum of all components of 

the case study network; (b) a zoomed view at the transitional 

part. 

 
 
Following the D-spectrum, the BIM index of the 

network’s components and the network reliability 
index R have been evaluated. The BIM index results 
of the networks’ components have been normalized 
with respect to the maximum value. Figure 5 shows 
the BIM results of the first 100 components. The 
BIM indexes of the other components range between 
the upper the lower bounds, 1 and 0.98 respectively. 
This implies that the variance in the results is very 
small. In fact, the importance index of the edge is 
ruled by the network configuration and the failure 
probability of the edge. In our network, we consid-
ered an equal failure probability for the edges, which 
was represented by the random removal process. The 
small difference in the importance of the edges was 
only due to the network’s configuration. 

The reliability of the network was computed us-
ing Equation (7). It is worth to mention that the net-
work reliability depends mainly on the following 
factors: (a) the network size (number of components 
in the network k); (b) the component’s failure proba-
bility q; (c) the network’s failure criterion (embed-
ded in the cumulative D-spectrum term y); (d) and 
the network’s topography (embedded in the cumula-

tive D-spectrum term y). The reliability of the ana-
lyzed network was found to be 46%. However, this 
number considers equal failure probabilities for all 
network components. This is rarely the case because 
usually the effect of disruptive events on a network 
system is not spatially uniform. 

 

 
 

Figure 5. The BIM spectra of the network's components. 

5 RESILIENCE INDICATORS FOR 
TRANSPORTATION NETWORKS 

Indicators are quantifiable variables that represent 

selected characteristics of resilience (Cutter 2016). 

Generally, individual indicators can be combined to 

create a single resilience index (Kammouh et al. 

2017b). The index illustrates the multi-dimensional 

nature of resilience by aggregating multiple indica-

tors, but also condenses its complexity into a single 

numeric value. 

To study the resilience of a critical infrastructure, 

it is important to tackle the different resilience as-

pects of the system. For example, having a well-

planned transportation network can result in a non-

resilient system if the organizational and the mana-

gerial aspects are not considered. The user-behavior 

aspect can also contribute in the overall resilience of 

the analyzed system. While non-physical compo-

nents are fundamental to study the resilience of 

transport networks, in this work only the physical 

aspect in considered. 

The functionality of the physical aspect of trans-

portation infrastructure has a great impact on the re-

silience of entire system. The physical aspect can be 

divided into two main parts: the inherent physical 

characteristics of the traffic and the network topog-

raphy, which is the geometry of the network that de-

fines the location of the links (i.e. roads, subway 

lines, path, bridges, etc.) and nodes (i.e. intersec-

tions, stations, etc.). 



The physical characteristics of transportation in-

frastructure includes factors like resisting strength, 

pavement condition, road width, number of lanes, 

lighting system, safety elements, etc. All of these at-

tributes and basic elements control the proper func-

tion of transport system, especially when it is under 

rare events, such as earthquakes, floods, hurricanes, 

landslides, etc. (which have long-term effect) and 

frequent events like traffic accidents, road mainte-

nance (which temporarily disable intended function) 

(Soltani-Sobh et al. 2016).  

Generally, an infrastructure with enough redun-

dant capacity can minimize the impact of adverse 

events and keep the system in a relatively stable 

state. For example, when a car accident occurs on a 

road with emergency lanes or with a Variable Mes-

sage Signs (VMS), travelers can use the extra lane or 

change to an alternative way that is suggested by the 

VMS before getting stuck in the traffic. Moreover, 

the degradation of the road environment influences 

the driving conditions, which affect the road capacity 

and result in the failure of the whole system. 

In addition to the physical characteristics, the de-

gree of betweenness and connectivity of the network 

system should be considered to assess the resilience 

of transportation networks. The concept of between-

ness quantifies the number of shortest paths that pass 

through a node (Leu et al. 2010). As shown in Figure 

6, node A has the highest betweenness among all 

four nodes. In a previous study, it was proved that a 

failure of the node with the highest betweenness can 

cause the maximum damage to the network because 

it reduces the efficiency and the survivability of the 

entire system (Zhang et al. 2011). Moreover, Stei-

glitz et al. (1969) proposed that the residual connec-

tions between nodes can increase the performance of 

the network. In other words, the more number of re-

liable passageways between an origin and a destina-

tion, the more resilient is the transportation system.  

 

 

 
 

Figure 6. An illustration of the concept of connectivity and be-

tweenness. 

 

 

This is illustrated in Figure 6, where links 1, 2, 3 

represent three alternative paths connecting the two 

nodes C and D. So, users would have alternative 

choices when one of the three routes is closed. This 

implies that the system has a high redundancy, 

which is the ability to remain (nearly) unchanged 

with disturbance. 

Table 1 shows an extended list of resilience indi-

cators that describe the physical system of the trans-

portation network. Most of the indicators have been 

collected from the literature while some of them 

have been proposed by the authors. The indicators 

are grouped under different components representing 

the major aspects of the system. Each of the indica-

tors is accompanied by a measure that allows the an-

alytical evaluation of the indicator. Each measure is 

normalized with respect to a fixed quantity, the tar-

get value (TV), which is an essential quantity defined 

by the authority to provide a baseline to measure the 

corresponding indicator. Moreover, the indicators 

have been identified by their nature: ‘Static indicator 

(S)’ assigned to indicators that are not affected by 

the perturbation/disaster, and ‘Dynamic indicator 

(D)’ assigned to the indicators whose val-

ue/serviceability changes after the event.  

Indicators must be weighted according to their 

contribution towards the resilience of the system. 

Kammouh et al. (2017a) introduced and exemplified 

three weighting methods for resilience indicators 

based either on the dependence tree analysis or on 

the spider plot analysis (Kammouh et al. 2017a, 

Kammouh et al., in press). 
 

Table 1. Components and indicators of the physical system of 

transportation networks. 

Component/ 

indicator 

Measure 

(0≤value≤1) 

Reference Nature 

1-Links/Connectors 

-Accessibility  Number of 

links/passageways per 

destination ÷ TV 

(Ip & 

Wang 

2011) 

D 

-Road density Number of alternative 

links between an 

origin and destination  

÷ TV 

(Jenelius 

2009) 

D 

-Road width Average width of 

road ÷ TV 

(Jenelius 

2009) 

S 

-Lanes of road Number of lanes 

available ÷ TV 

(Litman 

2006) 

D 

-Link (road, 

track, etc.) con-

dition 

% links with full 

functionality during 

the event 

* D 

2-Vehicles  

-Mode of 

transport 

Number of multi-

mode choices per 

destination ÷ TV 

(Ip & 

Wang 

2011) 

D 

-Service level Average speed of ve-

hicles in normal con-

dition ÷ TV 

* S 

-Characteristics Degree of preference * S 



of vehicles of specific vehicles 

(regarding perfor-

mance, comfort level, 

etc.)÷ TV 

3-Other Facilities/Structures  

-Quality of fa-

cilities 

1-(% deficiency of 

facilities in past 

events ÷ TV) 

(Tamvakis 

& Xenidis 

2012) 

S 

-Critical com-

ponents 

Number of rounda-

bout/emergency lanes 

÷ TV 

* S 

-Maintenance 

of facilities 

Number of mainte-

nance during an in-

terval of period ÷ TV 

(Tamvakis 

& Xenidis 

2012) 

S 

-Essential infra-

structure ro-

bustness 

% infrastructures that 

remained operational 

during emergencies in 

past events 

(Reduction 

2012) 

S 

-Traffic load 

capacity 

Number of excessive 

capacity (emergency 

lanes, tracks, airlines, 

etc.) ÷ TV 

(Cox et al. 

2011) 

D 

-Urban form Number of city cen-

ters per 100,000 peo-

ple ÷ TV 

(Mishra et 

al. 2012) 

S 

-Size of net-

work (connec-

tivity) 

Number of connectiv-

ity of intersection ÷ 

TV 

(Zhang et 

al. 2011) 

D 

-Size of net-

work (between-

ness) 

1-(Number of be-

tweenness of intersec-

tions ÷ TV) 

(Zhang et 

al. 2011) 

D 

4-Accessories  

-Tool kit inside 

vehicles 

1-(Presence of tool 

kits, like extinguisher, 

escape hammer, etc.); 

0 (otherwise) 

* S 

-Path environ-

ment 

Number of safety el-

ements (isolation 

strips, traffic lights, 

etc.) per km ÷ TV 

(Soltani-

Sobh et al. 

2016) 

S 

5-Serviceability  

-Characteristics 

of traffic lines 

Frequency and capac-

ity of each line ÷ TV 

(Dorbritz 

2011) 

D 

-Travel time re-

liability 

number of punctual 

service assisted by 

control system ÷ total 

number of service 

(Leu et al. 

2010) 

S 

* Indicator proposed by the authors 

6 CONCLUSIONS 

This paper presents a methodology to evaluate mul-
tiple performance indexes for large scale networks. 
In the literature, several methods to evaluate net-
works reliability and resilience can be found. The 
application of such methods to large scale networks 
is not feasible due to the computational complexity. 
In this paper, the case of large scale networks is 
tackled. The case study considered in this work is 
the transportation network of a virtual city. First, the 
road map of the city is transformed into an undi-
rected graph, which consists of 15,012 nodes and 
19,614 edges. A random removal of the edges is ap-
plied as a failure mechanism until the network’s 
failure point is reached. The network reliability is 

then calculated using the Destruction Spectrum (D-
spectrum) method assuming the same failure proba-
bility for all edges. A Monte Carlo approach is used 
to generate failure permutations which are necessary 
for evaluating the D-spectrum. In addition, the net-
work’s edges have been ranked from the most to the 
least important by applying the Birnbaum Im-
portance Measure (BIM). To overcome the computa-
tional obstacles, an algorithm and calculations tech-
niques have been presented and discussed. 

The results obtained in this study are used to 
identify the vulnerable components of the network. 
The vulnerable components are the ones that should 
be focused on to improve the overall resilience of the 
infrastructure. The analysis concept adopted in this 
study is applicable to all network-based infrastruc-
ture systems such as water, gas, transportation, etc. 
Future work is geared towards replicating the analy-
sis methodology to the case of strategic edge remov-
al. The edge removal mechanism will be linked to 
the buildings’ damage assuming a certain destructive 
event.  

The paper also proposed a list of resilience indi-
cators for transport networks that describe the physi-
cal aspect of the system. Future studies will focus on 
identifying other indicators related to other resilience 
aspects of the transportation infrastructure. 
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