72 research outputs found

    Effect of tetracaine on DMPC and DMPC + cholesterol biomembrane models: Liposomes and monolayers

    Get PDF
    “NOTICE: this is the author’s version of a work that was accepted for publication in Colloids and Surfaces B: Biointerfaces. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Colloids and Surfaces B: Biointerfaces, [Vol. 16, (April 2014)] DOI 10.1016/j.colsurfb.2013.12.042 ""Different types of lipid bilayers/monolayers have been used to simulate the cellular membranes in the investigation of the interactions between drugs and cells. However, to our knowledge, very few studies focused on the influence of the chosen membrane model upon the obtained results. The main objective of this work is to understand how do the nature and immobilization state of the biomembrane models influence the effect of the local anaesthetic tetracaine (TTC) upon the lipid membranes. The interaction of TTC with different biomembrane models of dimyristoylphosphatidylcholine (DMPC) with and without cholesterol (CHOL) was investigated through several techniques. A quartz crystal microbalance with dissipation (QCM-D) was used to study the effect on immobilized liposomes, while phosphorus nuclear magnetic resonance (31P-NMR) and differential scanning calorimetry (DSC) were applied to liposomes in suspension. The effect of TTC on Langmuir monolayers of lipids was also investigated through surface pressure-area measurements at the air-water interface. The general conclusion was that TTC has a fluidizing effect on the lipid membranes and, above certain concentrations, induced membrane swelling or even solubilization. However, different models led to variable responses to the TTC action. The intensity of the disordering effect caused by TTC increased in the following order: supported liposomes < liposomes in solution < Langmuir monolayers. This means that extrapolation of the results obtain in in vitro studies of the lipid/anaesthetic interactions to in vivo conditions should be done carefully.

    Feasibility and Acceptability of a Pilot Knowledge Translation Telementoring Program for Allied Health Professionals

    Get PDF
    Purpose: Knowledge translation (KT) in the health system is critical for the delivery of evidence-based practice. Supporting allied health professionals to plan and implement KT, using strategies that broadly reach across multiple geographical locations of the workforce, are needed. We piloted KT group telementoring via videoconference as an innovative solution to support and empower a vastly dispersed workforce. Methods: The 6-month Knowledge Translation Support Service (KTSS) involved monthly, one-hour, virtual group-based support of clinician-led KT projects within state-run hospital and health services. Supported by an independent facilitator, a panel of KT experts and health service leaders provided constructive critique and KT support for four projects from various disciplines (dietetics, nursing, occupational therapy, physiotherapy and social work) and health districts. Process evaluation included an assessment of program fidelity, dose delivered and engagement. Program acceptability (participants and panel members) was assessed after each session through online surveys. Effectiveness was captured by survey of KT confidence and qualitative interviews of participants perceived benefits of participation. Results: All project leads attended each meeting, with 1-2 specific projects discussed each month. On completion, participants reported high program satisfaction and felt that the KTSS met their expectations and learning needs. Overall the participants described beneficial gains with confidence in KT skills. Conclusions: The telementoring offered exposure to a breadth of expertise not normally accessible, successfully built a team environment in the virtual space and had a positive impact on project progression. Future directions include investing in scalability and sustainability of telementoring strategies for KT support

    Large carnivore expansion in Europe is associated with human population density and land cover changes

    Get PDF
    Aim: The recent recovery of large carnivores in Europe has been explained as resulting from a decrease in human persecution driven by widespread rural land abandonment, paralleled by forest cover increase and the consequent increase in availability of shelter and prey. We investigated whether land cover and human population density changes are related to the relative probability of occurrence of three European large carnivores: the grey wolf (Canis lupus), the Eurasian lynx (Lynx lynx) and the brown bear (Ursus arctos). Location: Europe, west of 64° longitude. Methods: We fitted multi-temporal species distribution models using &gt;50,000 occurrence points with time series of land cover, landscape configuration, protected areas, hunting regulations and human population density covering a 24-year period (1992–2015). Within the temporal window considered, we then predicted changes in habitat suitability for large carnivores throughout Europe. Results: Between 1992 and 2015, the habitat suitability for the three species increased in Eastern Europe, the Balkans, North-West Iberian Peninsula and Northern Scandinavia, but showed mixed trends in Western and Southern Europe. These trends were primarily associated with increases in forest cover and decreases in human population density, and, additionally, with decreases in the cover of mosaics of cropland and natural vegetation. Main conclusions: Recent land cover and human population changes appear to have altered the habitat suitability pattern for large carnivores in Europe, whereas protection level did not play a role. While projected changes largely match the observed recovery of large carnivore populations, we found mismatches with the recent expansion of wolves in Central and Southern Europe, where factors not included in our models may have played a dominant role. This suggests that large carnivores’ co-existence with humans in European landscapes is not limited by habitat availability, but other factors such as favourable human tolerance and policy

    Large carnivore expansion in Europe is associated with human population density and land cover changes

    Get PDF
    Aim: The recent recovery of large carnivores in Europe has been explained as resulting from a decrease in human persecution driven by widespread rural land abandonment, paralleled by forest cover increase and the consequent increase in availability of shelter and prey. We investigated whether land cover and human population density changes are related to the relative probability of occurrence of three European large carnivores: the grey wolf (Canis lupus), the Eurasian lynx (Lynx lynx) and the brown bear (Ursus arctos).Location: Europe, west of 64 degrees longitude.Methods: We fitted multi-temporal species distribution models using >50,000 occurrence points with time series of land cover, landscape configuration, protected areas, hunting regulations and human population density covering a 24-year period (1992-2015). Within the temporal window considered, we then predicted changes in habitat suitability for large carnivores throughout Europe.Results: Between 1992 and 2015, the habitat suitability for the three species increased in Eastern Europe, the Balkans, North-West Iberian Peninsula and Northern Scandinavia, but showed mixed trends in Western and Southern Europe. These trends were primarily associated with increases in forest cover and decreases in human population density, and, additionally, with decreases in the cover of mosaics of cropland and natural vegetation.Main conclusions: Recent land cover and human population changes appear to have altered the habitat suitability pattern for large carnivores in Europe, whereas protection level did not play a role. While projected changes largely match the observed recovery of large carnivore populations, we found mismatches with the recent expansion of wolves in Central and Southern Europe, where factors not included in our models may have played a dominant role. This suggests that large carnivores' co-existence with humans in European landscapes is not limited by habitat availability, but other factors such as favourable human tolerance and policy

    Past, present and future of chamois science

    Get PDF
    The chamois Rupicapra spp. is the most abundant mountain ungulate of Europe and the Near East, where it occurs as two spe- cies, the northern chamois R. rupicapra and the southern chamois R. pyrenaica. Here, we provide a state-of-the-art overview of research trends and the most challenging issues in chamois research and conservation, focusing on taxonomy and systematics, genetics, life history, ecology and behavior, physiology and disease, management and conservation. Research on Rupicapra has a longstanding history and has contributed substantially to the biological and ecological knowledge of mountain ungulates. Although the number of publications on this genus has markedly increased over the past two decades, major differences persist with respect to knowledge of species and subspecies, with research mostly focusing on the Alpine chamois R. r. rupicapra and, to a lesser extent, the Pyrenean chamois R. p. pyrenaica. In addition, a scarcity of replicate studies of populations of different subspecies and/or geographic areas limits the advancement of chamois science. Since environmental heterogeneity impacts behavioral, physiological and life history traits, understanding the underlying processes would be of great value from both an evolutionary and conservation/management standpoint, especially in the light of ongoing climatic change. Substantial contri- butions to this challenge may derive from a quantitative assessment of reproductive success, investigation of fine-scale foraging patterns, and a mechanistic understanding of disease outbreak and resilience. For improving conservation status, resolving taxonomic disputes, identifying subspecies hybridization, assessing the impact of hunting and establishing reliable methods of abundance estimation are of primary concern. Despite being one of the most well-known mountain ungulates, substantial field efforts to collect paleontological, behavioral, ecological, morphological, physiological and genetic data on different popu- lations and subspecies are still needed to ensure a successful future for chamois research and conservation

    Brown bear attacks on humans : a worldwide perspective

    Get PDF
    The increasing trend of large carnivore attacks on humans not only raises human safety concerns but may also undermine large carnivore conservation efforts. Although rare, attacks by brown bears Ursus arctos are also on the rise and, although several studies have addressed this issue at local scales, information is lacking on a worldwide scale. Here, we investigated brown bear attacks (n = 664) on humans between 2000 and 2015 across most of the range inhabited by the species: North America (n = 183), Europe (n = 291), and East (n = 190). When the attacks occurred, half of the people were engaged in leisure activities and the main scenario was an encounter with a female with cubs. Attacks have increased significantly over time and were more frequent at high bear and low human population densities. There was no significant difference in the number of attacks between continents or between countries with different hunting practices. Understanding global patterns of bear attacks can help reduce dangerous encounters and, consequently, is crucial for informing wildlife managers and the public about appropriate measures to reduce this kind of conflicts in bear country.Peer reviewe

    Effects of body size on estimation of mammalian area requirements.

    Get PDF
    Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied blockcross validation to quantify bias in empirical home range estimates. Area requirements of mammals 1, meaning the scaling of the relationship changedsubstantially at the upper end of the mass spectrum

    A comprehensive analysis of autocorrelation and bias in home range estimation

    Get PDF
    Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function [AKDE], SilvermanÂŽs rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ((Formula presented.)) to quantify the information content of each data set. We found that AKDE 95% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the hold-out sets by AKDE 95% (or 50%) estimates was 95.3% (or 50.1%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing (Formula presented.). To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animalÂŽs movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small (Formula presented.). While 72% of the 369 empirical data sets had >1,000 total observations, only 4% had an (Formula presented.) >1,000, where 30% had an (Formula presented.) <30. In this frequently encountered scenario of small (Formula presented.), AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data.Fil: Noonan, Michael J.. National Zoological Park; Estados Unidos. University of Maryland; Estados UnidosFil: Tucker, Marlee A.. Senckenberg Gesellschaft FĂŒr Naturforschung; . Goethe Universitat Frankfurt; AlemaniaFil: Fleming, Christen H.. University of Maryland; Estados Unidos. National Zoological Park; Estados UnidosFil: Akre, Thomas S.. National Zoological Park; Estados UnidosFil: Alberts, Susan C.. University of Duke; Estados UnidosFil: Ali, Abdullahi H.. Hirola Conservation Programme. Garissa; KeniaFil: Altmann, Jeanne. University of Princeton; Estados UnidosFil: Antunes, Pamela Castro. Universidade Federal do Mato Grosso do Sul; BrasilFil: Belant, Jerrold L.. State University of New York; Estados UnidosFil: Beyer, Dean. Universitat Phillips; AlemaniaFil: Blaum, Niels. Universitat Potsdam; AlemaniaFil: Böhning Gaese, Katrin. Senckenberg Gesellschaft FĂŒr Naturforschung; Alemania. Goethe Universitat Frankfurt; AlemaniaFil: Cullen Jr., Laury. Instituto de Pesquisas EcolĂłgicas; BrasilFil: de Paula, Rogerio Cunha. National Research Center For Carnivores Conservation; BrasilFil: Dekker, Jasja. Jasja Dekker Dierecologie; PaĂ­ses BajosFil: Drescher Lehman, Jonathan. George Mason University; Estados Unidos. National Zoological Park; Estados UnidosFil: Farwig, Nina. Michigan State University; Estados UnidosFil: Fichtel, Claudia. German Primate Center; AlemaniaFil: Fischer, Christina. Universitat Technical Zu Munich; AlemaniaFil: Ford, Adam T.. University of British Columbia; CanadĂĄFil: Goheen, Jacob R.. University of Wyoming; Estados UnidosFil: Janssen, RenĂ©. Bionet Natuuronderzoek; PaĂ­ses BajosFil: Jeltsch, Florian. Universitat Potsdam; AlemaniaFil: Kauffman, Matthew. University Of Wyoming; Estados UnidosFil: Kappeler, Peter M.. German Primate Center; AlemaniaFil: Koch, FlĂĄvia. German Primate Center; AlemaniaFil: LaPoint, Scott. Max Planck Institute fĂŒr Ornithologie; Alemania. Columbia University; Estados UnidosFil: Markham, A. Catherine. Stony Brook University; Estados UnidosFil: Medici, Emilia Patricia. Instituto de Pesquisas EcolĂłgicas (IPE) ; BrasilFil: Morato, Ronaldo G.. Institute For Conservation of The Neotropical Carnivores; Brasil. National Research Center For Carnivores Conservation; BrasilFil: Nathan, Ran. The Hebrew University of Jerusalem; IsraelFil: Oliveira Santos, Luiz Gustavo R.. Universidade Federal do Mato Grosso do Sul; BrasilFil: Olson, Kirk A.. Wildlife Conservation Society; Estados Unidos. National Zoological Park; Estados UnidosFil: Patterson, Bruce. Field Museum of National History; Estados UnidosFil: Paviolo, Agustin Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Nordeste. Instituto de BiologĂ­a Subtropical. Instituto de BiologĂ­a Subtropical - Nodo Puerto IguazĂș | Universidad Nacional de Misiones. Instituto de BiologĂ­a Subtropical. Instituto de BiologĂ­a Subtropical - Nodo Puerto IguazĂș; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Nordeste; ArgentinaFil: Ramalho, Emiliano Esterci. Institute For Conservation of The Neotropical Carnivores; Brasil. Instituto de Desenvolvimento Sustentavel MamirauĂĄ; BrasilFil: Rösner, Sascha. Michigan State University; Estados UnidosFil: Schabo, Dana G.. Michigan State University; Estados UnidosFil: Selva, Nuria. Institute of Nature Conservation of The Polish Academy of Sciences; PoloniaFil: Sergiel, Agnieszka. Institute of Nature Conservation of The Polish Academy of Sciences; PoloniaFil: Xavier da Silva, Marina. Parque Nacional do Iguaçu; BrasilFil: Spiegel, Orr. Universitat Tel Aviv; IsraelFil: Thompson, Peter. University of Maryland; Estados UnidosFil: Ullmann, Wiebke. Universitat Potsdam; AlemaniaFil: Ziឝba, Filip. Tatra National Park; PoloniaFil: Zwijacz Kozica, Tomasz. Tatra National Park; PoloniaFil: Fagan, William F.. University of Maryland; Estados UnidosFil: Mueller, Thomas. Senckenberg Gesellschaft FĂŒr Naturforschung; . Goethe Universitat Frankfurt; AlemaniaFil: Calabrese, Justin M.. National Zoological Park; Estados Unidos. University of Maryland; Estados Unido

    The impact of COVID-19 on the management of European protected areas and policy implications

    Get PDF
    The COVID-19 pandemic led to many European countries imposing lockdown measures and limiting people’s movement during spring 2020. During the summer 2020, these strict lockdown measures were gradually lifted while in autumn 2020, local restrictions started to be re-introduced as a second wave emerged. After initial restrictions on visitors accessing many Nature Protected Areas (PAs) in Europe, management authorities have had to introduce measures so that all users can safely visit these protected landscapes. In this paper, we examine the challenges that emerged due to COVID-19 for PAs and their deeper causes. By considering the impact on and response of 14 popular European National and Nature Parks, we propose tentative longer-term solutions going beyond the current short-term measures that have been implemented. The most important challenges identified in our study were overcrowding, a new profile of visitors, problematic behavior, and conflicts between different user groups. A number of new measures have been introduced to tackle these challenges including information campaigns, traffic management, and establishing one-way systems on trail paths. However, measures to safeguard public health are often in conflict with other PA management measures aiming to minimize disturbance of wildlife and ecosystems. We highlight three areas in which management of PAs can learn from the experience of this pandemic: managing visitor numbers in order to avoid overcrowding through careful spatial planning, introducing educational campaigns, particularly targeting a new profile of visitors, and promoting sustainable tourism models, which do not rely on large visitor numbers.European Research Council (ERC) under the European Union’s Horizon 2020 research programme (Project FIDELIO, grant agreement no. 802605)

    Evaluating expert-based habitat suitability information of terrestrial mammals with GPS-tracking data

    Get PDF
    Aim Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species. Location Worldwide. Time period 1998-2021. Major taxa studied Forty-nine terrestrial mammal species. Methods Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types. Results IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively. Main conclusions We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data
    • 

    corecore