2,714 research outputs found

    Is it important to achieve physical activity recommendations at early stages of life to improve bone health?

    Get PDF
    Research in bone health during childhood is limited and important to prevent future diseases, particularly, osteoporosis. Bone parameters using DXA and pQCT in 295 Spanish children were evaluated and we found a benefit of meeting the World Health Organization physical activity recommendations in bone composition in childhood. Purpose To investigate the association between physical activity (PA) and bone health in a Spanish paediatric cohort, considering the influence of meeting/not meeting the current World Health Organization (WHO) PA recommendations and to elucidate if there are differences between boys and girls. Methods In a cohort of children born in the region of Aragon (Spain) in 2009, followed until the age of 7 years, bone parameters were assessed using dual-energy X-ray absorptiometry (DXA) (whole body scan) and peripheral quantitative computed tomography (pQCT) (tibia scanned at the 8% (distal) and 38% (diaphyseal) of the total tibia length) in 295 7-year-old children (154 boys) in the last evaluation performed between 2016 and 2017. PA was assessed using GT3X Actigraph accelerometers. Results Boys had significantly higher areal bone mineral density (aBMD), higher total bone mineral content (BMC) at the diaphyseal site and higher trabecular BMC and vBMD, and higher total bone area at the distal site than girls (p<0.01 for all of them). Both boys and girls complying with the WHO PA recommendations had significantly higher trabecular BMC than their inactive counterparts. Conclusions Meeting WHO PA recommendations has a beneficial effect in bone composition in childhood both in boys and in girls

    Electron correlation resonances in the transport through a single quantum level

    Full text link
    Correlation effects in the transport properties of a single quantum level coupled to electron reservoirs are discussed theoretically using a non-equilibrium Green functions approach. Our method is based on the introduction of a second-order self-energy associated with the Coulomb interaction that consistently eliminates the pathologies found in previous perturbative calculations. We present results for the current-voltage characteristic illustrating the different correlation effects that may be found in this system, including the Kondo anomaly and Coulomb blockade. We finally discuss the experimental conditions for the simultaneous observation of these effects in an ultrasmall quantum dot.Comment: 4 pages (two columns), 3 figures under reques

    Topological structure of plant-bee networks in four Mexican environments

    Get PDF
    We analyzed the topological structure (e.g., links per species, connectance, core-periphery analyses, specialization, nestedness, modularity) of plant-bee interactions of four areas in Mexico. We used qualitative data (binary networks). Mexico exhibits a complex geography and community variation that can affect bee networks. Network architecture is variable within large spatial scales, thus our results should vary according to site characteristics (La Mancha and Totula in Veracruz, Carrillo Puerto in Quintana Roo, and the Tehuacan-Cuicatlan valley, in Puebla), type of vegetation, endemism, altitude, size of area sampled. Network topology varied among sites, and the presence of nested or modular patterns was analyzed for robustness to simulated species extinctions. The lowest species richness was recorded for the Quintana Roo site (15 plant, 25 bee species), and the highest for the Tehuacan-Cuicatlan valley site (88 plant, 231 bee species). There was a tendency to have more connected networks when species richness was low and networks with greater species richness had a higher number of interactions. The distribution of interactions differed between environments but not due to network size and all were significantly nested. The robustness to cumulative extinctions showed a different pattern at each site; the most robust network was at Carrillo Puerto, which also was the site with less species. Sites with more endemic species (e.g. Tehuacan) had more specialized interactions, and were more susceptible to extinction

    Synthesis of Ag-Au Nanoparticles by Galvanic Replacement and Their Morphological Studies by HRTEM and Computational Modeling

    Get PDF
    Bimetallic nanoparticles are important because they possess catalytic and electronic properties with potential applications in medicine, electronics, and chemical industries. A galvanic replacement reaction synthesis has been used in this research to form bimetallic nanoparticles. The complete description of the synthesis consists of using the chemical reduction of metallic silver nitrite (AgNO3) and gold-III chloride hydrate (HAuCl) salt precursors. The nanoparticles display round shapes, as revealed by high-resolution transmission electron microscope (HRTEM). In order to better understand the colloidal structure, it was necessary to employ computational models which involved the simulations of HRTEM images

    Dielectrophoretic assembly of liquid-phase-exfoliated TiS3 nanoribbons for photodetecting applications

    Get PDF
    Liquid-phase exfoliation is a technique capable of producing large quantities of two-dimensional materials in suspension. Despite many efforts in the optimization of the exfoliation process itself, not much has been done towards the integration of liquid-phase-exfoliated materials in working solid-state devices. In this article, we use dielectrophoresis to direct the assembly of liquid-phase-exfoliated TiS3 nanoribbons between two gold electrodes to produce photodetectors working in the visible region. Through electrical and optical measurements we characterize the responsivity of the device and we find values as large as 3.8 mA W-1, which are more than one order of magnitude higher compared to state-of-the-art devices based on liquid-phase-exfoliated two-dimensional materials assembled by drop-casting or ink-jet methods

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
    • …
    corecore