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Bimetallic nanoparticles are important because they possess catalytic and electronic properties with potential applications in
medicine, electronics, and chemical industries. A galvanic replacement reaction synthesis has been used in this research to form
bimetallic nanoparticles. The complete description of the synthesis consists of using the chemical reduction of metallic silver nitrite
(AgNO3) and gold-III chloride hydrate (HAuCl) salt precursors. The nanoparticles display round shapes, as revealed by high-
resolution transmission electron microscope (HRTEM). In order to better understand the colloidal structure, it was necessary to
employ computational models which involved the simulations of HRTEM images.

1. Introduction

Synthesis and characterization of nanocrystals have been a
research topic of high interest in recent decades due to their
potential application in medical (cancer imaging), optical
physics, catalysis, engineered materials, and electronics [1–
6]. Achievement of specific particle morphology depends
solely on right combination of precursors, as well as suitable
selection of temperature and capping agents [7].

Presently, one can find several articles where full explana-
tions are included in chemical synthesis techniques to attain
specific particle morphologies, along with their potential
applications [8]. Monometallic nanoparticles are assumed
to have three basic shapes: decahedral, cubo-octahedral, and
icosahedral. Nanoparticles geometry and facets are made out
of (111) planes as observed in icosahedron; and is attributed
to lowest surface energy γ(111) of nucleation in (111)-
plane; this implies a large internal core-strain values. Cubo-
octahedron presents no internal core-strain and significant
large surface energy constituted primarily by (111) and (100)

facets, whereas decahedron has moderate internal strain and
smaller facets made of (111) and (100) planes. The following
is concluded regarding monometallic nanoparticles: γ(111) <
γ(100) < γ(110) as indicated by Lee and Meisel [9].

Previous theoretical work indicates that the addition of
a second metal, when synthesizing nanoparticles, can lead to
a significant change on its physical-chemical properties, as
reflected also on particle morphology (i.e., core-shell, spher-
ical, and truncated-icosahedral). Very little is known about
bimetallic nanoparticles in terms of its crystallographic
structure, shape, and location of bimetallic precursors, which
can attract attention when studying bimetallic systems.

In order to understand the difference between bimetallic
nanoalloy and bulk systems, Yonezawa and Toshima pro-
posed that some bimetallic nanoalloys (i.e., Au-Ag, Au-Pd)
seem to exist due to miscibility gaps at certain compositions
ratio (i.e., 20%, 30%, and 10%) provoking the formation of
a nanoalloy [10]. Nanoalloy formation could be attributed
to the differences in atomic radii and electron migration
allowing atoms to accommodate, showing shell periodicity
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Figure 1: (a) 20 nm resolution HRTEM image of spherical shape Ag-Au nanoparticles. (b) 5 nm resolution HRTEM image showing lattice
distances. (c) Select area diffraction with (022), (022), and (002) principal reflections. (d) Inverse Fast Fourier Transform of SAD presented
in (c).

(i.e., onion array layers) as observed by conventional electron
microscopy techniques [11].

We present a successful chemical synthesis from Au and
Ag salt precursors for bimetallic spherical shape nanoparti-
cles. Bimetallic particle formation is attributed to a galvanic
replacement reaction and shape. Bimetallic composition
was confirmed by high resolution transmission electron
microscope (HRTEM) results, as well as computational
simulations for reconstruction of HRTEM images.

2. Experimental

Two precursor solutions were used for chemical synthesis
of bimetallic Ag-Au nanoparticles. The first solution was
made dissolving 90 mg of silver nitrite (AgNO3) in 500 mL
of distilled water; later a mixture was added. It was made
with 1% sodium citrate dissolved in 10 mL of distilled water,
which was brought and kept for 1 h to boiling temperature

100◦C. Then a separate second solution that consisted of
240 mg of gold-III chloride hydrate (HAuCl) dissolved in
500 mL of deionized water at 100◦C with the addition of
a mixture of 1% sodium citrate and 50 mL of distilled
water. Finally, both precursor solutions were mixed together
and subjected to vigorous stirring at constant temperature
of 100◦C for 1 h. The stoichiometric equation for particle
formation of Ag-Au galvanic reaction is presented as follows:

3Ag(s) + AuCl− −→ Au(s) + 3Ag+ + 4Cl− (1)

and seems to be in agreement with [12].

3. Results and Discussion

Particle size, shape, and morphology were studied by
HRTEM on an FEI Tecnai TF20 equipped with an STEM
unit, high-angle annular dark-field (HAADF) detector, and
X-Twin lenses. Sample preparation was done by dissolving
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Figure 2: (a) HRTEM of elbow-like nanoparticle, formed by accommodation of three small Ag-Au nanoparticles. (b) 3D reconstruction
image of (a) performed by ImageJ package.

EDX measurements of Ag-Au nanoparticle
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Figure 3: EDX results of Ag-Au nanoparticles, Cu and C signals
are from TEM grid, inset dark field scanning transmission electron
image.

0.5 milligrams in isopropanol placed in an ultrasonic bath for
dispersion of nanoparticle clusters. One drop of the solution
was used for HRTEM on lacey/carbon (EMS LC225-Cu)
grids. Operational voltage was 200 kV in both dark field (DF)
and bright field (BF) mode images, with Scherzer defocus
condition at Δ fSch = −1.2(Csλ)1/2. Energy-dispersive X-ray
analysis, EDX was performed while TEM using a solid angle
of 0.13 sr detector.

Atomic percentage of gold found was about 13% from
EDX results, which was confirmed from calculated molar
concentration on both precursor solutions; ratios of AuCl4
ions with respect to silver were roughly 10%, indicating that
for each gold atom there are three silver neighbors present.
The percentages were consistent, since lattice parameters
in both metals are very similar, for Au-lattice ∼0.4078 nm
and Ag-lattice ∼0.4086 nm for typical FCC bulk structures.
Figure 1(a) presents two round spherical shapes Ag-Au

nanoparticles, Figure 1(b) corresponds to a section of
Figure 1(a) at 5 nm of resolution, Figure 1(d) is presenting
atomistic distances for [111] and [121] planar directions
with atomistic distances of 0.268 nm and 0.278 nm for Au
and Ag atoms, respectively; select area of diffraction indicate
(022), (022), and (002) as principal planar reflections.

Grain boundary was observed for spherical truncated
nanoparticles as presented in Figure 2(a). Grain boundary
can be understood in terms of surface energy thermody-
namics and attributed also to the ionic interaction between
specimens as proposed by Elechiguerra et al. for nanorods
formation [13]. A 3D reconstruction image is presented
in Figure 2(b); the image was reconstructed using ImageJ
package. Figure 3 presents EDX results; the two major peak
signals correspond to C/Cu content on TEM diffraction
grids; gold shows energy intensities at 2 keV and 2.6 keV,
whereas for silver, intensities are observed at 3 keV and
3.4 keV. Using A ccelrys Materials Studio, a computational
nanoparticle model was done. The model was subjected
to TEM simulations using a full dynamical calculation
by multislice method [14]. The TEM simulator is based
on projected potential f (U) = ∑n

i=1 aie
(−ibU2), where U

represents coordinates in reciprocal space (u, v,w). Results
from TEM simulations are presented in Figure 4 and seem
to be consistent with experimental HRTEM presented on
Figure 2(a).

4. Conclusion

A successful synthesis to produce nanoparticles gold and
silver precursor solutions is presented here. Bimetallic Ag-
Au nanoparticles were formed due to a galvanic replacement
reaction, which consists of the migration of ionic Ag and Au
atoms from salt precursors at boiling temperature. Products



4 Journal of Nanomaterials

(a)

90

80

70

60

50

40

30

20

10

0
0 20 40 60 80

Cerius2 HRTEM simulation.

t = 90.00 A def = −582.5 A

Drms = 250.0 A div = 0.30 mrad
Vib = 0.35 A As = 0.0 A at 0.0

E = 600.0 kV Cs = 2.70 nm Ap = 0.70 A−1

(b)

80

70

60

50

40

30

20 40 60 80

Cerius2 HRTEM simulation.
File: hrm017.prj

t = 90.00 A beams = 128× 128

(c)

Figure 4: (a) Computer assisted Ag-Au nanoparticle (Ag-blue and Au-yellow) used to understand HRTEM image presented in 2. (b) TEM
simulation of (a) (Ag-Au nanoparticles) for comparison with experimental HRTEM images.

were analyzed by HRTEM and EDX techniques. EDX results
show energy intensity peaks at 2 keV and 2.6 keV for gold
and 3 keV and 3.4 keV for silver. Particle shape was studied
by computational modeling for specific elbow-like shape for
three small Ag-Au nanoparticles. The model was subjected to
TEM simulations using full dynamical projected potential.
The authors will start testing synthesized Ag-Au nanopar-
ticles as contrasting agents in cancer mapping for biotissue
during magnetic resonance imaging (MRI) studies [15].
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