809 research outputs found

    Josephson oscillation of a superfluid Fermi gas

    Full text link
    Using the complete numerical solution of a time-dependent three-dimensional mean-field model we study the Josephson oscillation of a superfluid Fermi gas (SFG) at zero temperature formed in a combined axially-symmetric harmonic plus one-dimensional periodic optical-lattice (OL) potentials after displacing the harmonic trap along the axial OL axis. We study the dependence of Josephson frequency on the strength of the OL potential. The Josephson frequency decreases with increasing strength as found in the experiment of Cataliotti et al. [Science 293 (2001) 843] for a Bose-Einstein condensate and of the experiment of Pezze et al. [Phys. Rev. Lett. 93 (2004) 120401] for an ideal Fermi gas. We demonstrate a breakdown of Josephson oscillation in the SFG for a large displacement of the harmonic trap. These features of Josephson oscillation of a SFG can be tested experimentally.Comment: 7 pages, 10 figure

    The Lorentz and CPT violating effects on the Z\to l^+ l^- decay

    Full text link
    We study the Lorentz and CPT violating effects on the branching ratio BR, the CPT violating asymmetry A_{CPT} and the ratio of the decay width, including only the Lorentz violating effects, to the one obtained in the standard model, for the flavor dependent part of the lepton flavor conserving Z\to l^+ l^- (l=e,\mu,\tau) decay. The inclusion of the Lorentz and CPT violating effects to the standard model contribution is too small to be detected, since the corresponding coefficients are highly suppressed at the low energy scale.Comment: 11 pages, 6 figure

    Bright solitons and soliton trains in a fermion-fermion mixture

    Full text link
    We use a time-dependent dynamical mean-field-hydrodynamic model to predict and study bright solitons in a degenerate fermion-fermion mixture in a quasi-one-dimensional cigar-shaped geometry using variational and numerical methods. Due to a strong Pauli-blocking repulsion among identical spin-polarized fermions at short distances there cannot be bright solitons for repulsive interspecies fermion-fermion interactions. However, stable bright solitons can be formed for a sufficiently attractive interspecies interaction. We perform a numerical stability analysis of these solitons and also demonstrate the formation of soliton trains. These fermionic solitons can be formed and studied in laboratory with present technology.Comment: 5 pages, 7 figure

    Anisotropic field dependence of the magnetic transition in Cu2Te2O5Br2

    Full text link
    We present the results of measurements of the thermal conductivity of Cu2Te2O5Br2, a compound where tetrahedra of Cu^{2+} ions carrying S=1/2 spins form chains along the c-axis of the tetragonal crystal structure. The thermal conductivity kappa was measured along both the c- and the a-direction as a function of temperature between 3 and 300 K and in external magnetic fields H up to 69 kOe, oriented both parallel and perpendicular to the c-axis. Distinct features of kappa(T) were observed in the vicinity of T_N=11.4 K in zero magnetic field. These features are unaltered in external fields which are parallel to the c-axis, but are more pronounced when a field is applied perpendicularly to the c-axis. The transition temperature increases upon enhancing the external field, but only if the field is oriented along the a-axis.Comment: 5 pages, 3 figure

    Radiation induced force between two planar waveguides

    Get PDF
    We study the electromagnetic force exerted on a pair of parallel slab waveguides by the light propagating through them. We have calculated the dependence of the force on the slab separation by means of the Maxwell--Stress tensor formalism and we have discussed its main features for the different propagation modes: spatially symmetric (antisymmetric) modes give rise to an attractive (repulsive) interaction. We have derived the asymptotic behaviors of the force at small and large separation and we have quantitatively estimated the mechanical deflection induced on a realistic air-bridge structure.Comment: 10 pages, 6 figure

    Accumulation of chromium metastable atoms into an Optical Trap

    Full text link
    We report the fast accumulation of a large number of metastable 52Cr atoms in a mixed trap, formed by the superposition of a strongly confining optical trap and a quadrupolar magnetic trap. The steady state is reached after about 400 ms, providing a cloud of more than one million metastable atoms at a temperature of about 100 microK, with a peak density of 10^{18} atoms.m^{-3}. We have optimized the loading procedure, and measured the light shift of the 5D4 state by analyzing how the trapped atoms respond to a parametric excitation. We compare this result to a theoretical evaluation based on the available spectroscopic data for chromium atoms.Comment: 7 pages, 5 Figure

    Structure of the Isovector Dipole Resonance in Neutron-Rich 60Ca^{60}Ca Nucleus and Direct Decay from Pygmy Resonance

    Full text link
    The structure of the isovector dipole resonance in neutron-rich calcium isotope, 60Ca^{60}Ca, has been investigated by implementing a careful treatment of the differences of neutron and proton radii in the continuum random phase approximation (RPARPA). The calculations have taken into account the current estimates of the neutron skin. The estimates of the escape widths for direct neutron decay from the pygmy dipole resonance (PDRPDR) were shown rather wide, implicating a strong coupling to the continuum. The width of the giant dipole resonance (GDRGDR) was evaluated, bringing on a detailed discussion about its microscopic structure.Comment: 13 pages, 2 figures, RevTex

    Nuclear effects in positive pion electroproduction on the deuteron near threshold

    Get PDF
    Positive pion electroproduction from the deuteron near threshold has been considered within an approach based on the unitary transformation method. The gauge independence of the treatment is provided by using an explicitly gauge independent expression for the reaction amplitude. The results of calculations for kinematics of the experiments on forward-angle π+\pi^+ meson electroproduction accomplished at Saclay and Jefferson Laboratory are discussed and compared with those given by the impulse approximation. It is shown that the observed behaviour of the cross sections is in accordance with the calculations based on the pion-nucleon dynamics. In particular, the pion production rate suppression in the 2H(e,eπ+)nn^2H(e,e'\pi^+)nn reaction compared to that for the 1H(e,eπ+)n^1H(e,e'\pi^+)n one can be due to such ``nuclear medium'' effects as nucleon motion and binding along with Pauli blocking in the final nnnn state.Comment: 15 pages, 8 figure

    Effect of the lattice alignment on Bloch oscillations of a Bose-Einstein condensate in a square optical lattice

    Get PDF
    We consider a Bose-Einstein condensate of ultracold atoms loaded into a square optical lattice and subject to a static force. For vanishing atom-atom interactions the atoms perform periodic Bloch oscillations for arbitrary direction of the force. We study the stability of these oscillations for non-vanishing interactions, which is shown to depend on an alignment of the force vector with respect to the lattice crystallographic axes. If the force is aligned along any of the axes, the mean field approach can be used to identify the stability conditions. On the contrary, for a misaligned force one has to employ the microscopic approach, which predicts periodic modulation of Bloch oscillations in the limit of a large forcing.Comment: 4 pages, 3 figure

    Non-perturbative Pion Matrix Element of a twist-2 operator from the Lattice

    Full text link
    We give a continuum limit value of the lowest moment of a twist-2 operator in pion states from non-perturbative lattice calculations. We find that the non-perturbatively obtained renormalization group invariant matrix element is _{RGI} = 0.179(11), which corresponds to ^{MSbar}(2 GeV) = 0.246(15). In obtaining the renormalization group invariant matrix element, we have controlled important systematic errors that appear in typical lattice simulations, such as non-perturbative renormalization, finite size effects and effects of a non-vanishing lattice spacing. The crucial limitation of our calculation is the use of the quenched approximation. Another question that remains not fully clarified is the chiral extrapolation of the numerical data.Comment: 26 pages, 10 figures, v2: final version, accepted for publication in EPJ
    corecore