We consider a Bose-Einstein condensate of ultracold atoms loaded into a
square optical lattice and subject to a static force. For vanishing atom-atom
interactions the atoms perform periodic Bloch oscillations for arbitrary
direction of the force. We study the stability of these oscillations for
non-vanishing interactions, which is shown to depend on an alignment of the
force vector with respect to the lattice crystallographic axes. If the force is
aligned along any of the axes, the mean field approach can be used to identify
the stability conditions. On the contrary, for a misaligned force one has to
employ the microscopic approach, which predicts periodic modulation of Bloch
oscillations in the limit of a large forcing.Comment: 4 pages, 3 figure