105 research outputs found

    Evaluation of the drug solubility and rush ageing on drug release performance of various model drugs from the modified release polyethylene oxide matrix tablets

    Get PDF
    Hydrophilic matrix systems are currently some of the most widely used drug delivery systems for controlled-release oral dosage forms. Amongst a variety of polymers, polyethylene oxide (PEO) is considered an important material used in pharmaceutical formulations. As PEO is sensitive to thermal oxidation, it is susceptible to free radical oxidative attack. The aim of this study was to investigate the stability of PEO based formulations containing different model drugs with different water solubility, namely propranolol HCl, theophylline and zonisamide. Both polyox matrices 750 and 303 grade were used as model carriers for the manufacture of tablets stored at 40 °C. The results of the present study suggest that the drug release from the matrix was affected by the length of storage conditions, solubility of drugs and the molecular weight of the polymers. Generally, increased drug release rates were prevalent in soluble drug formulations (propranolol) when stored at the elevated temperature (40 °C). In contrast, it was not observed with semi soluble (theophylline) and poorly soluble (zonisamide) drugs especially when formulated with PEO 303 polymer. This indicates that the main parameters controlling the drug release from fresh polyox matrices are the solubility of the drug in the dissolution medium and the molecular weight of the polymer. DSC traces indicated that that there was a big difference in the enthalpy and melting points of fresh and aged PEO samples containing propranolol, whereas the melting point of the aged polyox samples containing theophylline and zonisamide was unaffected

    Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|η\eta|<0.8) and transverse momentum range 0.2< pTp_{\rm T}< 5.0 GeV/cc. The elliptic flow signal v2_2, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 ±\pm 0.002 (stat) ±\pm 0.004 (syst) in the 40-50% centrality class. The differential elliptic flow v2(pT)_2(p_{\rm T}) reaches a maximum of 0.2 near pTp_{\rm T} = 3 GeV/cc. Compared to RHIC Au-Au collisions at 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.Comment: 10 pages, 4 captioned figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/389

    Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report on the first measurement of the triangular v3v_3, quadrangular v4v_4, and pentagonal v5v_5 charged particle flow in Pb-Pb collisions at 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow v2v_2 and v3v_3 have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients.Comment: 10 pages, 4 figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/387

    Measurement of D+- and D0 production in deep inelastic scattering using a lifetime tag at HERA

    Get PDF
    The production of D-+/-- and D-0-mesons has been measured with the ZEUS detector at HERA using an integrated luminosity of 133.6 pb(-1). The measurements cover the kinematic range 5 < Q(2) < 1000 GeV2, 0.02 < y < 0.7, 1.5 < p(T)(D) < 15 GeV and |eta(D)| < 1.6. Combinatorial background to the D-meson signals is reduced by using the ZEUS microvertex detector to reconstruct displaced secondary vertices. Production cross sections are compared with the predictions of next-to-leading-order QCD, which is found to describe the data well. Measurements are extrapolated to the full kinematic phase space in order to obtain the open-charm contribution, F-2(c (c) over bar), to the proton structure function, F-2

    Physics of the HL-LHC, and Perspectives at the HE-LHC

    Get PDF

    Urinary, Circulating, and Tissue Biomonitoring Studies Indicate Widespread Exposure to Bisphenol A

    Full text link

    Developing equations to explore relationships between aggregate stability and erodibility in Ultisols of subtropical China

    No full text
    A soil aggregate represents a key soil structural unit that influences several physical soil properties such as water infiltration, runoff and erosion. The relationships between soil aggregate stability and interrill and rill erodibility are critical to process-based erosion prediction models yet remain unclear, likely due to the difficulty of distinguishing between interrill and rill-eroded sediment during the erosion process. This study was designed to partition interrill and sill erosion rates and relate them to the aggregate stability of Ultisols in subtropical China. Six kinds of rare earth elements (REEs) were applied as tracers mixed with two cultivated soils developed over Quaternary red clay or shale at six slope positions. Soil aggregate stability was determined by the Le Bissonnais (LB)-method. Simulated rainfall of three intensities (60, 90 and 120 mm h(-1)) was applied to a soil plot (2.25 m long, 0.5 m wide, 0.2 m deep) at three slope gradients (10 degrees, 20 degrees and 30 degrees) for a duration of 30 min after runoff initiation. The results indicated that rill and interrill erosion rates in the soil developed over shale were considerably greater than those in the soil developed over Quaternary red clay. Equations using an aggregate stability index A(s) to replace the erodibility factor of interrill and rill erosion in the Water Erosion Prediction Project (WEPP) model were constructed after analysing the relationships between estimated and measured rill and interrill erosion data. The results show that these equations based on A, have the potential to improve methods for assessing interrill and rill erosion erodibility synchronously for subtropical Ultisols by using an REE tracing method

    Effects of slaking and mechanical breakdown on disaggregation and splash erosion

    No full text
    The contributions of different mechanisms of aggregate breakdown to splash erosion are still obscure. This study was designed to investigate the effects of various mechanisms of soil disaggregation on splash erosion. Loamy clay, clay loam and sandy loam soil types were used in this research. Soil aggregate stability was determined by the Le Bissonnais method. Deionized water was used to simulate the combined effect of slaking and mechanical disaggregation, whereas alcohol was used to estimate the contribution of mechanical breakdown only. Simulated rain with an intensity of 60 mm hour(-1) was applied at five heights (0.5, 1, 1.5, 2 and 2.5 m) to achieve different amounts of rainfall kinetic energy. The results indicated that the rate of splash erosion increased with the increase in rainfall kinetic energy in tests with both deionized water and alcohol. The rates of splash erosion for three types of soil followed the order of loamy clay soil < clay loam soil < sandy loam soil, but the mean weight diameter (MWD) of disintegrated aggregates followed the reverse order. The rates of splash erosion from the effects of slaking and mechanical breakdown increased with an increase in rainfall kinetic energy. The contributions of slaking and mechanical breakdown to splash erosion decreased for the former, whereas it increased for the latter as rainfall kinetic energy increased. The slaking effect contributed more than 50% of splash erosion. The rates of contribution of slaking and mechanical breakdown to splash erosion depended on rainfall kinetic energy and soil type. Highlights Contributions of different mechanisms of aggregate breakdown to splash erosion remain obscure. Alcohol was used to simulate the effect of mechanical breakdown only. Slaking contributed more than 50% of splash erosion. Contributions by mechanisms of aggregate breakdown depend on rainfall kinetic energy and soil type

    Understanding erosion processes using rare earth element tracers in a preformed interrill-rill system

    No full text
    Tracking sediment source and movement is essential to fully understanding soil erosion processes. The objectives of this study were to identify dominant erosion process and to characterize the effects of upslope interrill erosion on downslope interrill and rill erosion in a preformed interrill-rill system. A coarse textured soil with 2% clay and 20% silt was packed into a physical model of a scaled small watershed, which was divided into eight topographic units and was tagged with eight rare earth element (REE) oxides. Three 30-min rains were made at the sequential intensities of 60, 90, and 120 ram h(-1), and runoff and sediment were collected every 2 min at the outlet. REE concentration in sediment was measured and used to estimate source contributions after fine-enrichment correction. Results showed that interrill erosion rate and sediment concentration increased with downslope distance, indicating that sediment transport might have controlled interrill erosion rates. In contrast, rill erosion rate was limited by rill detachment and development process. Rill erosion contributed most soil loss; however, the proportion decreased from 78 to 61% as rainfall intensity increased and rill network matured over three rains. Interrill erosion was more sensitive than rill erosion to rainfall intensity increases. The former was mostly affected by rainfall intensity in this experimental setup, while the latter was controlled by flow discharge, gradient, and rill evolution stage. The greatest sediment concentration and delivery rate occurred in the stage of the fastest rill development. The increased sediment delivery from interrill areas appeared to suppress rill detachment by concentrated flow. This study enhanced our understanding of interrill and rill erosion processes and provided the scientific insights for improving soil erosion models. (C) 2018 Elsevier B.V. All rights reserved

    Soil internal forces contribute more than raindrop impact force to rainfall splash erosion

    No full text
    Soil internal forces, including electrostatic, hydration and van der Waals, play critical roles in aggregate stability, erosion, and other processes related to soil and water. However, the extent to which soil internal forces influence splash erosion during rainfall remains unclear. In the present study, we used cationic-saturated soil samples to quantitatively separate the effects of soil internal and raindrop impact forces (external) on splash erosion through simulated rainfall experiments. An electrolyte solution was employed as rainfall material to represent the combined effects of soil internal and external forces on splash erosion. Ethanol was used to simulate the sole effect of soil external force on splash erosion. The soil splash erosion rate increased with increasing rainfall kinetic energy in experiments with electrolyte solution and ethanol and was also greatly influenced by soil internal forces. Moreover, the soil splash erosion rate increased first (from 1 to 10(-2) mol L-1) then leveled off (from 10(-2) to 10(-4) molL(-1)) with decreasing electrolyte concentration in the bulk solution. This finding was in agreement with the theoretical analysis of soil internal forces. The contribution rate of soil internal forces on splash erosion was > 65% at a low electrolyte concentration ( 50%. Hence, soil internal forces exerted higher contribution to rainfall splash erosion than raindrop impact force under most field conditions. This work provides new understanding of the mechanism of soil splash erosion and establishes the possibility of controlling splash erosion by jointly regulating the soil internal and external forces
    corecore