1,065 research outputs found
Transport of a quantum degenerate heteronuclear Bose-Fermi mixture in a harmonic trap
We report on the transport of mixed quantum degenerate gases of bosonic 87Rb
and fermionic 40K in a harmonic potential provided by a modified QUIC trap. The
samples are transported over a distance of 6 mm to the geometric center of the
anti-Helmholtz coils of the QUIC trap. This transport mechanism was implemented
by a small modification of the QUIC trap and is free of losses and heating. It
allows all experiments using QUIC traps to use the highly homogeneous magnetic
fields that can be created in the center of a QUIC trap and improves the
optical access to the atoms, e.g., for experiments with optical lattices. This
mechanism may be cascaded to cover even larger distances for applications with
quantum degenerate samples.Comment: 7 pages, 8 figure
Electric and magnetic form factors of strange baryons
Predictions for the electromagnetic form factors of the Lambda$, Sigma and Xi
hyperons are presented. The numerical calculations are performed within the
framework of the fully relativistic constituent-quark model developed by the
Bonn group. The computed magnetic moments compare favorably with the
experimentally known values. Most magnetic form factors G_M(Q^2) can be
parametrized in terms of a dipole with cutoff masses ranging from 0.79 to 1.14
GeV.Comment: 15 pages, 8 figures, 3 tables, submitted to Eur. Phys. J.
Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments
The recently developed technique of Cyclotron Radiation Emission Spectroscopy
(CRES) uses frequency information from the cyclotron motion of an electron in a
magnetic bottle to infer its kinetic energy. Here we derive the expected radio
frequency signal from an electron in a waveguide CRES apparatus from first
principles. We demonstrate that the frequency-domain signal is rich in
information about the electron's kinematic parameters, and extract a set of
measurables that in a suitably designed system are sufficient for disentangling
the electron's kinetic energy from the rest of its kinematic features. This
lays the groundwork for high-resolution energy measurements in future CRES
experiments, such as the Project 8 neutrino mass measurement.Comment: 15 pages, 10 figure
No Dynamics in the Extremal Kerr Throat
Motivated by the Kerr/CFT conjecture, we explore solutions of vacuum general
relativity whose asymptotic behavior agrees with that of the extremal Kerr
throat, sometimes called the Near-Horizon Extreme Kerr (NHEK) geometry. We
argue that all such solutions are diffeomorphic to the NHEK geometry itself.
The logic proceeds in two steps. We first argue that certain charges must
vanish at all times for any solution with NHEK asymptotics. We then analyze
these charges in detail for linearized solutions. Though one can choose the
relevant charges to vanish at any initial time, these charges are not
conserved. As a result, requiring the charges to vanish at all times is a much
stronger condition. We argue that all solutions satisfying this condition are
diffeomorphic to the NHEK metric.Comment: 42 pages, 3 figures. v3: minor clarifications and correction
Identification of the TeV Gamma-ray Source ARGO J2031+4157 with the Cygnus Cocoon
The extended TeV gamma-ray source ARGO J2031+4157 (or MGRO J2031+41) is
positionally consistent with the Cygnus Cocoon discovered by -LAT at GeV
energies in the Cygnus superbubble. Reanalyzing the ARGO-YBJ data collected
from November 2007 to January 2013, the angular extension and energy spectrum
of ARGO J2031+4157 are evaluated. After subtracting the contribution of the
overlapping TeV sources, the ARGO-YBJ excess map is fitted with a
two-dimensional Gaussian function in a square region of , finding a source extension =
1.80.5. The observed differential energy spectrum is
photons cm
s TeV, in the energy range 0.2-10 TeV. The angular extension is
consistent with that of the Cygnus Cocoon as measured by -LAT, and the
spectrum also shows a good connection with the one measured in the 1-100 GeV
energy range. These features suggest to identify ARGO J2031+4157 as the
counterpart of the Cygnus Cocoon at TeV energies. The Cygnus Cocoon, located in
the star-forming region of Cygnus X, is interpreted as a cocoon of freshly
accelerated cosmic rays related to the Cygnus superbubble. The spectral
similarity with Supernova Remnants indicates that the particle acceleration
inside a superbubble is similar to that in a SNR. The spectral measurements
from 1 GeV to 10 TeV allows for the first time to determine the possible
spectrum slope of the underlying particle distribution. A hadronic model is
adopted to explain the spectral energy distribution.Comment: 16 pages, 3 figures, has been accepted by ApJ for publicatio
Strange particle production in proton-proton collisions at TeV with ALICE at the LHC
The production of mesons containing strange quarks (K, ) and both
singly and doubly strange baryons (, Anti-, and
+Anti-) are measured at central rapidity in pp collisions at
= 0.9 TeV with the ALICE experiment at the LHC. The results are
obtained from the analysis of about 250 k minimum bias events recorded in 2009.
Measurements of yields (dN/dy) and transverse momentum spectra at central
rapidities for inelastic pp collisions are presented. For mesons, we report
yields () of 0.184 0.002 stat. 0.006 syst. for K and
0.021 0.004 stat. 0.003 syst. for . For baryons, we find
= 0.048 0.001 stat. 0.004 syst. for , 0.047
0.002 stat. 0.005 syst. for Anti- and 0.0101 0.0020 stat.
0.0009 syst. for +Anti-. The results are also compared with
predictions for identified particle spectra from QCD-inspired models and
provide a baseline for comparisons with both future pp measurements at higher
energies and heavy-ion collisions.Comment: 33 pages, 21 captioned figures, 10 tables, authors from page 28,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/387
Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ
The extended gamma ray source MGRO J1908+06, discovered by the Milagro air
shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ
experiment at TeV energies, with a statistical significance of 6.2 standard
deviations. The peak of the signal is found at a position consistent with the
pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional
Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees,
consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The
observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54
\pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured
gamma ray flux is consistent with the results of the Milagro detector, but is
2-3 times larger than the flux previously derived by H.E.S.S. at energies of a
few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable
excess rate observed by ARGO-YBJ along 4 years of data taking support the
identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula
of PSR J1907+0602, with an integrated luminosity above 1 TeV about 1.8 times
the Crab Nebula luminosity.Comment: 6 pages, accepted for pubblication by ApJ. Replaced to correct the
author lis
- …
