463 research outputs found

    Violation of Bell inequality for thermal states of interaction qubits via a multi-qubit Heisenberg model

    Full text link
    We study the violations of Bell inequality for thermal states of qubits in a multi-qubit Heisenberg model as a function of temperature and external magnetic fields. Unlike the behaviors of the entanglement the violation can not be obtained by increasing the temperature or the magnetic field. The threshold temperatures of the violation are found be less than that of the entanglement. We also consider a realistic cavity-QED model which is a special case of the mutli-qubit Heisenberg model.Comment: 5 pages, 5 figures, few changed, accepted by New J. Phy

    Quantum information with continuous variables

    Full text link
    Quantum information is a rapidly advancing area of interdisciplinary research. It may lead to real-world applications for communication and computation unavailable without the exploitation of quantum properties such as nonorthogonality or entanglement. We review the progress in quantum information based on continuous quantum variables, with emphasis on quantum optical implementations in terms of the quadrature amplitudes of the electromagnetic field.Comment: accepted for publication in Reviews of Modern Physic

    Quantum metrology with nonclassical states of atomic ensembles

    Full text link
    Quantum technologies exploit entanglement to revolutionize computing, measurements, and communications. This has stimulated the research in different areas of physics to engineer and manipulate fragile many-particle entangled states. Progress has been particularly rapid for atoms. Thanks to the large and tunable nonlinearities and the well developed techniques for trapping, controlling and counting, many groundbreaking experiments have demonstrated the generation of entangled states of trapped ions, cold and ultracold gases of neutral atoms. Moreover, atoms can couple strongly to external forces and light fields, which makes them ideal for ultra-precise sensing and time keeping. All these factors call for generating non-classical atomic states designed for phase estimation in atomic clocks and atom interferometers, exploiting many-body entanglement to increase the sensitivity of precision measurements. The goal of this article is to review and illustrate the theory and the experiments with atomic ensembles that have demonstrated many-particle entanglement and quantum-enhanced metrology.Comment: 76 pages, 40 figures, 1 table, 603 references. Some figures bitmapped at 300 dpi to reduce file siz

    Cloning Entangled Qubits to Scales One Can See

    Full text link
    By amplifying photonic qubits it is possible to produce states that contain enough photons to be seen with a human eye, potentially bringing quantum effects to macroscopic scales [1]. In this paper we theoretically study quantum states obtained by amplifying one side of an entangled photon pair with different types of optical cloning machines for photonic qubits. We propose a detection scheme that involves lossy threshold detectors (such as human eye) on the amplified side and conventional photon detectors on the other side. We show that correlations obtained with such coarse-grained measurements prove the entanglement of the initial photon pair and do not prove the entanglement of the amplified state. We emphasize the importance of the detection loophole in Bell violation experiments by giving a simple preparation technique for separable states that violate a Bell inequality without closing this loophole. Finally we analyze the genuine entanglement of the amplified states and its robustness to losses before, during and after amplification.Comment: 15 pages, 9 figure

    Entanglement detection

    Full text link
    How can one prove that a given state is entangled? In this paper we review different methods that have been proposed for entanglement detection. We first explain the basic elements of entanglement theory for two or more particles and then entanglement verification procedures such as Bell inequalities, entanglement witnesses, the determination of nonlinear properties of a quantum state via measurements on several copies, and spin squeezing inequalities. An emphasis is given on the theory and application of entanglement witnesses. We also discuss several experiments, where some of the presented methods have been implemented.Comment: review article, 90 pages, 22 figures. v2: more content, v3: small change

    Genuine quantum correlations in quantum many-body systems: a review of recent progress

    Full text link
    Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems.Comment: Review. Close to published version. Comments are welcome! Please write an email to g.dechiara[(at)]qub.ac.u
    corecore