1,527 research outputs found

    Cosmogenesis and Collapse

    Full text link
    Some possible benefits of dynamical collapse for a quantum theory of cosmogenesis are discussed. These are a possible long wait before creation begins, creation of energy and space, and choice of a particular universe out of a superposition.Comment: For a festschrift in Foundations of Physics in honor of Daniel Greenberger and Helmut Rauch in Foundations of Physics. This updates the previous version by adding an appendix (Appendix B) which contains the exact solution of a partial differential equation of importance in the pape

    Quasirelativistic quasilocal finite wave-function collapse model

    Full text link
    A Markovian wave function collapse model is presented where the collapse-inducing operator, constructed from quantum fields, is a manifestly covariant generalization of the mass density operator utilized in the nonrelativistic Continuous Spontaneous Localization (CSL) wave function collapse model. However, the model is not Lorentz invariant because two such operators do not commute at spacelike separation, i.e., the time-ordering operation in one Lorentz frame, the "preferred" frame, is not the time-ordering operation in another frame. However, the characteristic spacelike distance over which the commutator decays is the particle's Compton wavelength so, since the commutator rapidly gets quite small, the model is "almost" relativistic. This "QRCSL" model is completely finite: unlike previous, relativistic, models, it has no (infinite) energy production from the vacuum state. QRCSL calculations are given of the collapse rate for a single free particle in a superposition of spatially separated packets, and of the energy production rate for any number of free particles: these reduce to the CSL rates if the particle's Compton wavelength is small compared to the model's distance parameter. One motivation for QRCSL is the realization that previous relativistic models entail excitation of nuclear states which exceeds that of experiment, whereas QRCSL does not: an example is given involving quadrupole excitation of the 74^{74}Ge nucleus.Comment: 10 pages, to be published in Phys. Rev.

    Wavefunction Collapse and Conservation Laws

    Get PDF
    It is emphasized that the collapse postulate of standard quantum theory can violate conservation of energy-momentum and there is no indication from where the energy-momentum comes or to where it goes. Likewise, in the Continuous Spontaneous Localization (CSL) dynamical collapse model, particles gain energy on average. In CSL, the usual Schr\"odinger dynamics is altered so that a randomly fluctuating classical field interacts with quantized particles to cause wavefunction collapse. In this paper it is shown how to define energy for the classical field so that the average value of the energy of the field plus the quantum system {\it is} conserved for the ensemble of collapsing wavefunctions. While conservation of just the first moment of energy is, of course, much less than complete conservation of energy, this does support the idea that the field could provide the conservation law balance when events occur.Comment: 15 page
    • …
    corecore