271 research outputs found

    Quantum mechanics as a theory of probability

    Get PDF
    We develop and defend the thesis that the Hilbert space formalism of quantum mechanics is a new theory of probability. The theory, like its classical counterpart, consists of an algebra of events, and the probability measures defined on it. The construction proceeds in the following steps: (a) Axioms for the algebra of events are introduced following Birkhoff and von Neumann. All axioms, except the one that expresses the uncertainty principle, are shared with the classical event space. The only models for the set of axioms are lattices of subspaces of inner product spaces over a field K. (b) Another axiom due to Soler forces K to be the field of real, or complex numbers, or the quaternions. We suggest a probabilistic reading of Soler's axiom. (c) Gleason's theorem fully characterizes the probability measures on the algebra of events, so that Born's rule is derived. (d) Gleason's theorem is equivalent to the existence of a certain finite set of rays, with a particular orthogonality graph (Wondergraph). Consequently, all aspects of quantum probability can be derived from rational probability assignments to finite "quantum gambles". We apply the approach to the analysis of entanglement, Bell inequalities, and the quantum theory of macroscopic objects. We also discuss the relation of the present approach to quantum logic, realism and truth, and the measurement problem.Comment: 37 pages, 3 figures. Forthcoming in a Festschrift for Jeffrey Bub, ed. W. Demopoulos and the author, Springer (Kluwer): University of Western Ontario Series in Philosophy of Scienc

    Betting on the Outcomes of Measurements: A Bayesian Theory of Quantum Probability

    Full text link
    We develop a systematic approach to quantum probability as a theory of rational betting in quantum gambles. In these games of chance the agent is betting in advance on the outcomes of several (finitely many) incompatible measurements. One of the measurements is subsequently chosen and performed and the money placed on the other measurements is returned to the agent. We show how the rules of rational betting imply all the interesting features of quantum probability, even in such finite gambles. These include the uncertainty principle and the violation of Bell's inequality among others. Quantum gambles are closely related to quantum logic and provide a new semantics to it. We conclude with a philosophical discussion on the interpretation of quantum mechanics.Comment: 21 pages, 2 figure

    Macroscopic objects in quantum mechanics: A combinatorial approach

    Full text link
    Why we do not see large macroscopic objects in entangled states? There are two ways to approach this question. The first is dynamic: the coupling of a large object to its environment cause any entanglement to decrease considerably. The second approach, which is discussed in this paper, puts the stress on the difficulty to observe a large scale entanglement. As the number of particles n grows we need an ever more precise knowledge of the state, and an ever more carefully designed experiment, in order to recognize entanglement. To develop this point we consider a family of observables, called witnesses, which are designed to detect entanglement. A witness W distinguishes all the separable (unentangled) states from some entangled states. If we normalize the witness W to satisfy |tr(W\rho)| \leq 1 for all separable states \rho, then the efficiency of W depends on the size of its maximal eigenvalue in absolute value; that is, its operator norm ||W||. It is known that there are witnesses on the space of n qbits for which ||W|| is exponential in n. However, we conjecture that for a large majority of n-qbit witnesses ||W|| \leq O(\sqrt{n logn}). Thus, in a non ideal measurement, which includes errors, the largest eigenvalue of a typical witness lies below the threshold of detection. We prove this conjecture for the family of extremal witnesses introduced by Werner and Wolf (Phys. Rev. A 64, 032112 (2001)).Comment: RevTeX, 14 pages, some additions to the published version: A second conjecture added, discussion expanded, and references adde

    Probability and Nonlocality in Many Minds Interpretations of Quantum Mechanics

    Get PDF
    We argue that a certain type of many minds (and many worlds) interpretations of quantum mechanics due to Lockwood (and Deutsch) do not provide a coherent interpretation of the quantum mechanical probabilistic algorithm. By contrast, in Albert and Loewer's version of the many minds interpretation there is a coherent interpretation of the quantum mechanical probabilities. We consider Albert and Loewer's probability interpretation in the context of Bell-type and GHZ-type states and argue that it exhibits a certain form of nonlocality which is, however, much weaker than Bell's nonlocality.Comment: 22 pages, last section rewritten, to appear in British Journal for the Philosophy of Scienc

    Generalizations of Kochen and Specker's Theorem and the Effectiveness of Gleason's Theorem

    Get PDF
    Kochen and Specker's theorem can be seen as a consequence of Gleason's theorem and logical compactness. Similar compactness arguments lead to stronger results about finite sets of rays in Hilbert space, which we also prove by a direct construction. Finally, we demonstrate that Gleason's theorem itself has a constructive proof, based on a generic, finite, effectively generated set of rays, on which every quantum state can be approximated.Comment: 14 pages, 6 figures, read at the Robert Clifton memorial conferenc

    New Bell inequalities for the singlet state: Going beyond the Grothendieck bound

    Get PDF
    Contemporary versions of Bell's argument against local hidden variable (LHV) theories are based on the Clauser Horne Shimony and Holt (CHSH) inequality, and various attempts to generalize it. The amount of violation of these inequalities cannot exceed the bound set by the Grothendieck constants. However, if we go back to the original derivation by Bell, and use the perfect anti-correlation embodied in the singlet spin state, we can go beyond these bounds. In this paper we derive two-particle Bell inequalities for traceless two-outcome observables, whose violation in the singlet spin state go beyond the Grothendieck constants both for the two and three dimensional cases. Moreover, creating a higher dimensional analog of perfect correlations, and applying a recent result of Alon and his associates (Invent. Math. 163 499 (2006)) we prove that there are two-particle Bell inequalities for traceless two-outcome observables whose violation increases to infinity as the dimension and number of measurements grow. Technically these result are possible because perfect correlations (or anti-correlations) allow us to transport the indices of the inequality from the edges of a bipartite graph to those of the complete graph. Finally, it is shown how to apply these results to mixed Werner states, provided that the noise does not exceed 20%.Comment: 18 pages, two figures, some corrections and additional references, published versio

    Generalizing Tsirelson's bound on Bell inequalities using a min-max principle

    Full text link
    Bounds on the norm of quantum operators associated with classical Bell-type inequalities can be derived from their maximal eigenvalues. This quantitative method enables detailed predictions of the maximal violations of Bell-type inequalities.Comment: 4 pages, 2 figures, RevTeX4, replaced with published versio
    • 

    corecore