18 research outputs found

    Brain-controlled serious games for cultural heritage

    Get PDF

    (IEEE 2019) The Method of Integrating Virtual Reality with Brainwave Sensor for an Interactive Math's Game

    Get PDF
    The implementation of the Virtual Reality (VR) on game is practical for in various fields, especially in the field of Education. The implementation of a mobile based VR game is example where the players of game feel as in the real world. However, the VR game has the weakness on limited interaction of their player with the virtual environment created by the game. Currently, the interactions pass through the buttons on mobile phone and joysticks. For this reason, this research investigates the alternative media to control the virtual environment of the game using brain sensor. The prototype was created using “mindwave neurosky” as brain sensor and thingkgear as sensor drive to construct the experiment of mobile based virtual reality math game. This research tests three modes signal including meditation, attention and beta signal. A meditation signal was taken when the player open and close the eye. While attention and beta signals were taken when the player focuses. The result is some model to control the VR math game with brain sensor for child five or six year old's

    Интеллектуальное кресло-робот со вспомогательными средствами связи с использованием откликов TEP и характеристик диапазона спектра более высокого порядка

    Get PDF
    In recent years, electroencephalography-based navigation and communication systems for differentially enabled communities have been progressively receiving more attention. To provide a navigation system with a communication aid, a customized protocol using thought evoked potentials has been proposed in this research work to aid the differentially enabled communities. This study presents the higher order spectra based features to categorize seven basic tasks that include Forward, Left, Right, Yes, NO, Help and Relax; that can be used for navigating a robot chair and also for communications using an oddball paradigm. The proposed system records the eight-channel wireless electroencephalography signal from ten subjects while the subject was perceiving seven different tasks. The recorded brain wave signals are pre-processed to remove the interference waveforms and segmented into six frequency band signals, i. e. Delta, Theta, Alpha, Beta, Gamma 1-1 and Gamma 2. The frequency band signals are segmented into frame samples of equal length and are used to extract the features using bispectrum estimation. Further, statistical features such as the average value of bispectral magnitude and entropy using the bispectrum field are extracted and formed as a feature set. The extracted feature sets are tenfold cross validated using multilayer neural network classifier. From the results, it is observed that the entropy of bispectral magnitude feature based classifier model has the maximum classification accuracy of 84.71 % and the value of the bispectral magnitude feature based classifier model has the minimum classification accuracy of 68.52 %.В последние годы все больше внимания уделяется навигационным и коммуникационным системам на основе электроэнцефалограммы головного мозга для сообществ с разными возможностями. Для предоставления навигационной системе вспомогательных средств связи в работе предложен настраиваемый протокол, использующий вызванные мыслительные потенциалы, чтобы помочь сообществам с разными возможностями. Представлены функции, основанные на спектрах более высокого порядка, для классификации семи основных задач, таких как Вперед, Влево, Вправо, Да, НЕТ, Помощь и Расслабление, которые можно использовать для управления креслом-роботом, а также для связи с использованием необычной парадигмы. Предлагаемая система записывает восьмиканальный беспроводной сигнал электроэнцефалографии от десяти субъектов, в то время как субъект воспринимал семь различных задач. Записанные сигналы мозговых волн предварительно обрабатываются для удаления интерференционных волн и сегментируются на сигналы шести частотных диапазонов: дельта, тета, альфа, бета, гамма 1-1 и гамма 2. Сигналы полосы частот сегментируются на выборки кадров равной длины и используются для извлечения признаков с использованием оценки биспектра. Кроме того, статистические характеристики, такие как среднее значение биспектральной величины и энтропия с использованием области биспектра, извлекаются и формируются как набор характеристик. Извлеченные наборы функций проходят десятикратную перекрестную проверку с использованием классификатора многослойной нейронной сети. Результаты показали, что энтропия модели классификатора на основе характеристик биспектральной величины имеет максимальную точность классификации 84,71 %, а среднее значение модели классификатора на основе характеристик биспектральной величины – минимальную точность классификации 68,52 %

    Steering a Tractor by Means of an EMG-Based Human-Machine Interface

    Get PDF
    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering

    Brain-Computer Interfacing for Wheelchair Control by Detecting Voluntary Eye Blinks

    Get PDF
    The human brain is considered as one of the most powerful quantum computers and combining the human brain with technology can even outperform artificial intelligence. Using a Brain-Computer Interface (BCI) system, the brain signals can be analyzed and programmed for specific tasks. This research work employs BCI technology for a medical application that gives the unfortunate paralyzed individuals the capability to interact with their surroundings solely using voluntary eye blinks. This research contributes to the existing technology to be more feasible by introducing a modular design with three physically separated components: a headwear, a computer, and a wheelchair. As the signal-to-noise ratio (SNR) of the existing systems is too high to separate the eye blink artifacts from the regular EEG signal, a precise ThinkGear module is used which acquired the raw EEG signal through a single dry electrode. This chip offers an advanced filtering technology that has a high noise immunity along with an embedded Bluetooth module using which the acquired signal is transferred wirelessly to a computer. A MATLAB program captures voluntary eye blink artifacts from the brain waves and commands the movement of a miniature wheelchair via Bluetooth. To distinguish voluntary eye blinks from involuntary eye blinks, blink strength thresholds are determined. A Graphical User Interface (GUI) designed in MATLAB displays the EEG waves in real-time and enables the user to determine the movements of the wheelchair which is specially designed to take commands from the GUI.  The findings from the testing phase unveil the advantages of a modular design and the efficacy of using eye blink artifacts as the control element for brain-controlled wheelchairs. The work presented here gives a basic understanding of the functionality of a BCI system, and provides eye blink-controlled navigation of a wheelchair for patients suffering from severe paralysis

    Data S1: Data

    Get PDF
    We present the evaluation of two well-known, low-cost consumer-grade EEG devices: the Emotiv EPOC and the Neurosky MindWave. Problems with using the consumer-grade EEG devices (BCI illiteracy, poor technical characteristics, and adverse EEG artefacts) are discussed. The experimental evaluation of the devices, performed with 10 subjects asked to perform concentration/relaxation and blinking recognition tasks, is given. The results of statistical analysis show that both devices exhibit high variability and non-normality of attention and meditation data, which makes each of them difficult to use as an input to control tasks. BCI illiteracy may be a significant problem, as well as setting up of the proper environment of the experiment. The results of blinking recognition show that using the Neurosky device means recognition accuracy is less than 50%, while the Emotiv device has achieved a recognition accuracy of more than 75%; for tasks that require concentration and relaxation of subjects, the Emotiv EPOC device has performed better (as measured by the recognition accuracy) by ∼9%. Therefore, the Emotiv EPOC device may be more suitable for control tasks using the attention/meditation level or eye blinking than the Neurosky MindWave device

    Fully portable and wireless universal brain-machine interfaces enabled by flexible scalp electronics and deep-learning algorithm

    Get PDF
    Variation in human brains creates difficulty in implementing electroencephalography (EEG) into universal brain-machine interfaces (BMI). Conventional EEG systems typically suffer from motion artifacts, extensive preparation time, and bulky equipment, while existing EEG classification methods require training on a per-subject or per-session basis. Here, we introduce a fully portable, wireless, flexible scalp electronic system, incorporating a set of dry electrodes and flexible membrane circuit. Time domain analysis using convolutional neural networks allows for an accurate, real-time classification of steady-state visually evoked potentials on the occipital lobe. Simultaneous comparison of EEG signals with two commercial systems captures the improved performance of the flexible electronics with significant reduction of noise and electromagnetic interference. The two-channel scalp electronic system achieves a high information transfer rate (122.1 ± 3.53 bits per minute) with six human subjects, allowing for a wireless, real-time, universal EEG classification for an electronic wheelchair, motorized vehicle, and keyboard-less presentation

    Brain computer interface based neurorehabilitation technique using a commercially available EEG headset

    Get PDF
    Neurorehabilitation has recently been augmented with the use of virtual reality and rehabilitation robotics. In many systems, some known volitional control must exist in order to synchronize the user intended movement with the therapeutic virtual or robotic movement. Brain Computer Interface (BCI) aims to open up a new rehabilitation option for clinical population having no residual movement due to disease or injury to the central or peripheral nervous system. Brain activity contains a wide variety of electrical signals which can be acquired using many invasive and non-invasive acquisition techniques and holds the potential to be used as an input to BCI. Electroencephalogram (EEG) is a non-invasive method of acquiring brain activity which then, with further processing and classification, can be used to predict various brain states such as an intended motor movement. EEG provides the temporal resolution required to obtain significant result which may not be provided by many other non-invasive techniques. Here, EEG is recorded using a commercially available EEG headset provided by Emotiv Inc. Data is collected and processed using BCI2000 software, and the difference in the Mu-rhythm due to Event Related Synchronization (ERS) and Desynchronization (ERD) is used to distinguish an intended motor movement and resting brain state, without the need for physical movement. The idea is to combine this user intent/free will with an assistive robot to achieve the user initiated, repetitive motor movements required to bring therapeutic changes in the targeted subject group, as per Hebbian type learning

    SOPHIA: Soft Orthotic Physiotherapy Hand Interactive Aid

    Get PDF
    This work describes the design, fabrication, and initial testing of a Soft Orthotic Physiotherapy Hand Interactive Aid (SOPHIA) for stroke rehabilitation. SOPHIA consists of (1) a soft robotic exoskeleton, (2) a microcontroller-based control system driven by a brain–machine interface (BMI), and (3) a sensorized glove for passive rehabilitation. In contrast to other rehabilitation devices, SOPHIA is the first modular prototype of a rehabilitation system that is capable of three tasks: aiding extension based assistive rehabilitation, monitoring patient exercises, and guiding passive rehabilitation. Our results show that this prototype of the device is capable of helping healthy subjects to open their hand. Finger extension is triggered by a command from the BMI, while using a variety of sensors to ensure a safe motion. All data gathered from the device will be used to guide further improvements to the prototype, aiming at developing specifications for the next generation device, which could be used in future clinical trials
    corecore