1,082 research outputs found

    Scalable Co-Optimization of Morphology and Control in Embodied Machines

    Full text link
    Evolution sculpts both the body plans and nervous systems of agents together over time. In contrast, in AI and robotics, a robot's body plan is usually designed by hand, and control policies are then optimized for that fixed design. The task of simultaneously co-optimizing the morphology and controller of an embodied robot has remained a challenge. In psychology, the theory of embodied cognition posits that behavior arises from a close coupling between body plan and sensorimotor control, which suggests why co-optimizing these two subsystems is so difficult: most evolutionary changes to morphology tend to adversely impact sensorimotor control, leading to an overall decrease in behavioral performance. Here, we further examine this hypothesis and demonstrate a technique for "morphological innovation protection", which temporarily reduces selection pressure on recently morphologically-changed individuals, thus enabling evolution some time to "readapt" to the new morphology with subsequent control policy mutations. We show the potential for this method to avoid local optima and converge to similar highly fit morphologies across widely varying initial conditions, while sustaining fitness improvements further into optimization. While this technique is admittedly only the first of many steps that must be taken to achieve scalable optimization of embodied machines, we hope that theoretical insight into the cause of evolutionary stagnation in current methods will help to enable the automation of robot design and behavioral training -- while simultaneously providing a testbed to investigate the theory of embodied cognition

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Trying to Grasp a Sketch of a Brain for Grasping

    Get PDF
    Ritter H, Haschke R, Steil JJ. Trying to Grasp a Sketch of a Brain for Grasping. In: Sendhoff B, ed. Creating Brain-Like Intelligence. Lecture Notes in Artificial Intelligence; 5436. Berlin, Heidelberg: Springer; 2009: 84-102

    Neuronal assembly dynamics in supervised and unsupervised learning scenarios

    Get PDF
    The dynamic formation of groups of neurons—neuronal assemblies—is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronized oscillations underpin their formation and functioning, with a focus on the temporal structure of neuronal signals. In this context, we investigate neuronal assembly dynamics in two complementary scenarios: the first, a supervised spike pattern classification task, in which noisy variations of a collection of spikes have to be correctly labeled; the second, an unsupervised, minimally cognitive evolutionary robotics tasks, in which an evolved agent has to cope with multiple, possibly conflicting, objectives. In both cases, the more traditional dynamical analysis of the system’s variables is paired with information-theoretic techniques in order to get a broader picture of the ongoing interactions with and within the network. The neural network model is inspired by the Kuramoto model of coupled phase oscillators and allows one to fine-tune the network synchronization dynamics and assembly configuration. The experiments explore the computational power, redundancy, and generalization capability of neuronal circuits, demonstrating that performance depends nonlinearly on the number of assemblies and neurons in the network and showing that the framework can be exploited to generate minimally cognitive behaviors, with dynamic assembly formation accounting for varying degrees of stimuli modulation of the sensorimotor interactions

    Varieties of evolved forms of consciousness, including mathematical consciousness

    Get PDF
    I shall introduce a complex, apparently unique, cross-disciplinary approach to understanding consciousness, especially ancient forms of mathematical consciousness, based on joint work with Jackie Chappell (Birmingham Biosciences) on the Meta-Configured Genome (MCG) theory. All known forms of consciousness (apart from recent very simple AI forms) are products of biological evolution, in some cases augmented by products of social, or technological evolution. Forms of consciousness differ between organisms with different sensory mechanisms, needs and abilities; and in complex animals can vary across different stages of development before and after birth or hatching or pupation, and before or after sexual and other kinds of maturity (or senility). Those forms can differ across individuals with different natural talents and environments, some with and some without fully functional sense organs or motor control functions (in humans: hearing, sight, touch, taste, smell, proprioception and other senses), along with mechanisms supporting meta-cognitive functions such as recollection, expectation, foreboding, error correction, and so forth, and varying forms of conscious control differing partly because of physical differences, such as conjoined twins sharing body parts. Forms of consciousness can also differ across individuals in different cultures with different shared theories, and social practices (e.g., art-forms, musical traditions, religions, etc.). There are many unanswered questions about such varieties of consciousness in products of biological evolution. Most of the details are completely ignored by most philosophers and scientists who focus only on a small subset of types of human consciousness—resulting in shallow theories. Immanuel Kant was deeper than most, though his insights, especially insights into mathematical consciousness tend to be ignored by recent philosophers and scientists, for bad reasons. This paper, partly inspired by Turing’s 1952 paper on chemistry-based morphogenesis, supporting William James’ observation that all known forms of consciousness must have been products of biological evolution in combination with other influences, attempts to provide (still tentative and incomplete) foundations for a proper study of the variety of biological and non-biological forms of consciousness, including the types of mathematical consciousness identified by Kant in 1781

    Neuroevolution: from architectures to learning

    Get PDF
    Artificial neural networks (ANNs) are applied to many real-world problems, ranging from pattern classification to robot control. In order to design a neural network for a particular task, the choice of an architecture (including the choice of a neuron model), and the choice of a learning algorithm have to be addressed. Evolutionary search methods can provide an automatic solution to these problems. New insights in both neuroscience and evolutionary biology have led to the development of increasingly powerful neuroevolution techniques over the last decade. This paper gives an overview of the most prominent methods for evolving ANNs with a special focus on recent advances in the synthesis of learning architecture
    corecore