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Abstract  

 

The area in which this thesis is based on, is referred to as Adaptive Robotics. The main objective 

of this approach is to synthesize agents that evolve or develop their skills autonomously through 

interaction with a natural or artificial environment. The research aims at identifying the 

possibility of self-organizing systems to build an internal representation of the input space, able to 

handle the case of an unknown environment, and moreover, examine the causes, consequences 

and solutions to the conflicting problem of catastrophic forgetting that these systems are prone to.   

 

The ability to navigate is arguably the most fundamental competence of any mobile agent, 

besides the ability to avoid basic environmental hazards. Recent studies of insect behavior and 

navigation reveal a number of elegant strategies that can be valuable when applied to the design 

of autonomous robots, without the need for higher level cognitive processes such as object 

identification and labelling. These bio-mimetic approaches have been reviewed, focusing on a 

self-organizing cognitive model of mental development, that allows for a common description of 

biological map building behavior.  The motivation came from the assumption that self organizing 

systems could be used to reduce the amount of predefinition put in by a human operator  and  the 

ability to address noisy, inconsistent or no meaningful information with respect to the task being 

performed. In addition, a visual  interpretation scheme, mimicking   simple cells in the primary 

visual cortex, have been examined and critically analysed. 

 

The research undertaken resulted in the development of a novel rehearsal map building scheme  

that is proven to build a representation of the environment, sequentially, from acquired visual 

snapshots of physical locations.  These results also demonstrate the ability of the scheme to 

efficiently address the plasticity elasticity dilema presented by various connectionist models such 

as the self organizing map (SOM), neural gas (NG) and growing neural gas algorithm (GNG). 

This is encouraging enough to prompt further research that could result in an autonomous  agent 

capable of self-localizing with a satisfactory degree and reliability in unknown  and dynamically 

changing environments. 

 

This thesis also explores the advantages of evolutionary sub-goal robot navigation with a 

cognitive map architecture. Experiments in simulation show that an evolved robot, adapted to 
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both exteroceptive and proprioceptive data, was able to successfully navigate through a list of 

sub-goals minimizing the problem of local minima in which evolutionary process can get trapped. 

The results demonstrate that a navigation behavior could be learned without the need for  an in 

depth knowledge of the problems to be solved, especially in highly complex environments. 
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1. Introduction 
 

Chapter 1 provides general information on the scope of research and an insight on simultaneous 

localization and map building for autonomous mobile robots. In addition, a formulation of the 

problems is described, as well as the key issues that need to be addressed.  An overview of the 

aims and objectives is also provided, and reference to the software and tools used is presented. 

The chapter concluded with an outline of the systems proposed as well as an outline of the 

remainder of the thesis. 

 

 

 

 

1.1 Autonomous Robots: The Case 

 
Autonomous robots are robots which can perform desired tasks in unstructured environments 

without continuous human intervention. Many kinds of robots have some degree of autonomy and 

different robots can be autonomous in different ways. A high degree of autonomy is particularly 

desirable in fields such as space exploration, where communication delays and interruptions are 

unavoidable. Other more mundane uses benefit from having some level of autonomy, like 

cleaning floors, mowing lawns, and waste water treatment. 

 

Today's ''autonomous'' robots in industrial assembly lines perform in directed environments 

within limited degrees of freedom. Unstructured environments in the workplace are challenging 

and can lead to unpredictable or even chaotic behavior. In more advanced factories robots can be 

capable of independent action in unpredictable terrains. The robot may need to navigate in 

dynamic areas with moving objects and humans. Thus, the robot needs to be able to determine a 

feasible path for navigation.  

 

Navigation is one of the most fundamental competencies of any moving agent. Without the 

ability to localize, to identify goal directions and to plan paths towards the goal it is impossible to 
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exploit the benefits of mobility fully. Furthermore, if mobile robots are ever to have an impact on 

the way humans live, or industrial production processes, they need the ability to navigate. More 

specifically, mobile robots intended for real world applications need to be able to:  

 

 navigate autonomously, without human supervision, 

 navigate in unstructured dynamically changing environments 

 navigate without prior explicit models of the environment or other pre-supplied map 

knowledge. 

 

The operation of simultaneous localization which serves to navigate an autonomous robot and 

map building mechanism which provides an environmental model is called SLAM (Simultaneous 

Localization and Map Building). Thrun  [2008], provides an introduction to SLAM and   a survey 

of paradigms which applies non parametric density estimation methods such as the particle filter 

method.  Dissanayake et al.,  [2000] refers to the solution to  the  SLAM problem as the “Holy 

Grail” of the autonomous vehicle research community. While various sensors are used for this 

algorithm, vision-based approaches are relatively new and have attracted more attention in recent 

years.  

1.2. Approaches to robot autonomy 

The research field that is involved with the development of autonomous robots is very extensive 

and diverse. Τhe area in which this thesis is based on, is referred to as Adaptive Robotics (AR). 

The main objective of this approach is  to synthesize robots that evolve or develop their skills 

autonomously through interaction with a natural or artificial environment. 

 

1.2.1 Developmental robotics 

Developmental robotics (DR), also known as epigenetic robotics is a subfield of robotics in which 

ideas from artificial intelligence, developmental psychology, neuroscience and dynamical 

systems theory are used to develop complex  cognitive architectures. For a brief review on 

methods and approaches on developmental robotics, see [Lungarella et al., 2003]. The aim of 

developmental robotics is to model the development of complex mental processes in natural and 

artificial systems. This approach focuses on the autonomous self-organization of general purpose, 
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task nonspecific, control systems. Unlike evolutionary robotics which operates on populations of 

many individuals, developmental robotics learning comes from within the system and operates on  

single individuals (or small groups of individuals). 

 

1.2.2 Evolutionary robotics 

Evolutionary robotics (ER) is another emerging subfield of robotics research within the much 

larger field of autonomous robots. ER is related to developmental robotics, although different, 

and the primary goal is to develop automatic methods for developing autonomous robot 

controllers or even whole robots [Harvey et al., 2005]. The advantage is that they do not require 

in depth knowledge of the problems that have to be solved especially in highly complex 

environments that humans do not understand well. Yamada, [2005] proposed a behavior based 

evolutionary strategy for a robot to recognize environments. The study dictates that behaviors 

could be learned better than hand-coded ones. 

ER frequently operate on populations of candidate controllers. Initially a population of randomly 

configured controllers is created and then repeatedly modified according to a fitness function in 

order to evolve a specific task. The most common approach is to use genetic algorithms (Gas) to 

evolve the population of candidate controllers in a repeating way that mimics natural evolution. 

Usually ER applies to control behaviors but can just as well apply to the evolution of the physical 

structure of the robot. Artificial neural networks are a common choice when designing a 

controller because of the applicability to relate sensor inputs to actuators outputs. In that context, 

Suzuki et al., [2006] explored a landmark-based navigation method by evolving a neural network 

controlling both vision and action of a mobile robot.   

1.3 Research Aims and Objectives 

The elaboration of this study involved two complementary schemes. The first scheme relates with 

the sensory coverage and interpretation of raw sensorial data in order to form discrete perceptual 

signatures for each robot position. The sensor that was chosen as the most appropriate is a 

standard panoramic camera, while visual descriptors such as color and texture used to describe 

the content of the images. In this manner, the localization of a robot on a pre-computed map 

could be reduced to an appearance based image recognition task [Akers et al., 2010]. The 

methods utilized to extract color visual descriptors  are the widely used color histograms. For 

texture representation and discrimination, both Gabor filters [Gabor 1946] and wavelets analysis 
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used [Chui, 1992], since these have been found to be particularly appropriate in modelling the 

visual cortex of mammalian brains [Lee, 1996].  Field [1987] compared  various coding schemes 

for natural image representations, based on Gabor filter responses in a way that resembles the 

spatial-frequency tuning of mammalian simple cells. 

 

The  approaches adopted for robot mapping tasks,  based on  theories of self organizing systems 

and cognitive models of mental development. The motivation came from the assumption that self 

organizing systems could be used to reduce the amount of predefinition put in by a human 

operator   and  the ability to address noisy, inconsistent or no meaningful information with respect 

to the task being performed. The research undertaken resulted in: the development of a novel 

rehearsal map building scheme  that is proven to build a map of the environment in which a robot 

operates.  The results also demonstrate the ability of the scheme to efficiently address the 

plasticity elasticity dilema presented by various connectionist models such as the self organizing 

map (SOM), neural gas (NG) and growing neural gas algorithm (GNG). Based on this cognitive 

map model, a simulated agent proved to be capable of self-localizing with a satisfactory degree 

and reliability.   

 

By examining these approaches, several research objectives were formed which are: analyse the 

potentiality of an appearance based visual methodology, to describe what the robot perceives as 

surrounding environment, in a way that is both discriminant and fault tolerant. The mechanism 

must  be noise immune with the  ability to generalize, while not depend on identification and 

recognition of distinct objects in the environment that need to be a priori known.  

 

 Identify the possibility of self-organizing systems to  build an internal representation of 

the input space able to handle the case of an unknown environment. 

 Develop a system that simulates an autonomous  moving agent as a basis for studying 

situated artificial intelligence for autonomous agents.  

 Examine the causes, consequences and solutions to the  conflicting problem of 

catastrophic forgetting in neural networks. Topological representations should be plastic 

enough to adapt to changing environments and learn new information, while maintaining 

important information preserved over time.  

 Explore the advantages of robot navigation with a cognitive map architecture and 
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investigate the possibility of practical applications such as path planning and goal 

reaching. 

 

1.4 Thesis Outline 

The first section of this report critically reviews the relevant literature. It describes previous 

research into spatial and temporal reasoning for mobile robots and animal vision perception. It 

seeks to identify weaknesses in such research fields as well as highlighting areas that provide 

opportunities for further work.  The major part of this section analyse the structures and the 

occurring complexities in the framework of this scheme.  

 

The second section of this thesis articulates previously idealizing assumptions with the properties 

of artificial world environments and discusses the occurring problems. In order to circumvent 

these problems, the thesis introduces the concept of automatic topology preservation, which can 

be used to describe environments preserving similarities as much as possible. This section of this 

thesis also presents an application demonstrating the ability of a mobile robot to plan a route and 

navigate autonomously using  an appearance based topological representation of space. Since it is 

difficult for humans to interpret this spatial representation, with respect to the environment that 

have been mapped, a genetic strategy incorporated along with a neural motion controller  in order 

to autonomously perform the assigned task. The third section of this thesis brings into focus the 

problem of  catastrophic forgetting in connectionist architectures, such as self organizing maps, 

and a proposed solution from literature that could prevent this undesirable effect is analysed and 

presented.  

 

More analytically this thesis is organized as follows: Chapter 2 provides an analysis of the robot 

simulator that have been implemented to support this thesis. Chapter 3 provides an insight into 

the problem of  robot map building as well as the key issues that need to be addressed in order to 

provide an effective solution. Chapter 4 provides a brief introduction to the technology of 

Artificial Neural Networks focusing on unsupervised learning and presents the the most relevant 

research studies in the field of autonomous robot navigation, that employ self organizing 

algorithms. Chapter 5 refers to the concept of spatial representation and a variety of inspiring 

biologically plausible models are introduced and analysed. Chapter 6 focuses on the problem of 

catastrophic forgetting in connectionist architectures, and propose solutions from the  literature 
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ranging from rehearsal to recurrent learning of sequences. Chapter 7  gives an overview of the 

techniques used for global feature detection and extraction and the problem of robot map building 

is standardized to a content based image retrieval problem. Chapter 8  demonstrates research 

results in the fields of visual feature selection, extraction and scene interpretation, alongside with 

a map building mechanism based on a self organizing map algorithm. Chapter 9,  examines the 

way in which a robot might use the sub-symbolic representations of an environment that have 

emerged through self-organization. Experiments carried out using both proprioceptive and 

exteroceptive information, through an evolutionary strategy. Chapter 10 presents a comparative 

study that evaluates the effectiveness of applying the  self-refreshing learning procedure  to  three 

well known unsupervised learning algorithms. 
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2.  Experimental Setup 

 

This chapter refers to experimental methodologies and approaches. It also provides an in depth 

analysis of the simulator that have been implemented to support the needs of this thesis.  Finally, 

the terrain exploration strategies are being analysed and the challenges that met are being 

discussed. 

 

 

 

 

2.1 Simulation Arguments 

Developing controllers for developmental or evolutionary strategies requires a large number of 

evaluations or large populations of robots.  In the case of evolutionary strategies, initial 

population controllers may behave harmfully by crashing to nearby obstacles, destroy the robotic 

platform or even cause injuries to humans. Usually, evolutionary strategies are used to reach an 

optimum solution for some complex optimization process and the major challenge is to transfer 

the evolved controller from the simulator to a physical robot [Zagal et al., 2004]. The reason is 

that evolution is free to explore all possibilities to obtain a high fitness value, including any 

inaccuracies of the simulation [Nelson et al., 2009]. The main advantages are summarized below. 

 Rapid prototyping of algorithms. 

 Simple basis for studying situated artificial intelligence for autonomous robots. 

 Inexpensive, especially in multi-agent applications. 

 Adjustable environment conditions (lighting, sensor noise). 

 Faster and safer than a real robot. 

The main drawback of using a simulator is that the generated results may perform poorly in real 

world conditions because of sensor readings, motor response  inaccuracies and differences in 

interaction dynamics between robots and the environments [Brooks, 1992].  But robot controllers 

could be able to evolve to match the specificities of a simulation that differs from real world 

conditions [Mouret & Doncieux, 2012]. Improvements in software frameworks that simulate 

physical properties and dynamics like collisions, friction and forces, have led to simulation results 

that closely model real world situations. These software tools are usually faster than real time for 
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most evolution scenarios. Physics based simulators are widely used by the research community 

for every type of robot from simple differential drive to articulated ones.  

 

2.2 Why a 3D Robot Simulator 

A 3D robot simulator must accurately simulate the dynamics of the robots and of the objects in 

the environment, thus allowing for a faultless evaluation of robot behavior. Another important 

feature is the support of flexible robotic platforms, different  scenarios and terrains, as well as 

support for high-end sensors and visual realism. An omnidirectional vision camera is such a high-

end sensor, increasingly popular in the robotics research area. These sensors combine 

conventional cameras and mirrors primarily to obtain large field of views. The available solutions 

regarding 3D robot simulators, even in high-end commercial solutions, did not provide support 

for such sensors, which led to the decision of building a simulator with the desired features to 

support the needs of this thesis. 

 

2.3. Simulator Features 

The core of the simulator was written in the C# programming language with Matlab based 

scripting for the simulation scenarios. It is able to simulate collision avoidance behavior, with 

infrared like sensors and bumpers, and navigation strategies, such as random walk,  evolving on a 

flat surface. The main process cycle can be described in three steps (figure 2.1). First, the 

controller sends control signals to each wheel and the robot updates its position. Then, the sensors 

collects the measurements. Finally, the controller update its state based on current sensor signals. 

 

 

 

 

 

 

 

Figure 2.1. Behavioral circle of the simulator. 

 

 

Both the robot and the simulated environment use the well known Bullet physics library, a freely 
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available software package that models gravity, mass, friction, and collisions. In order to model 

the environment as well as the view from the omni-directional camera, the simulator make use of 

the  XNA graphics framework. The choice of using Microsoft's DirectX technology, based on the 

photorealistic quality of produced results and  advanced optical effects, such as  simulations of 

light and shadows. Trivial image processing tasks like color histogram extraction, color space 

transofrmations and image conditioning are addressed by the well known open Computer Vision 

(openCV) library.  

 

The simulator use the MATLAB engine as an automation server from C# via COM automation. 

Matlab is well suited to perform numerical calculations and data visualization, especially for 

complex machine vision tasks and neural network applications. Another advantage of the  

interface is that allows for simultaneously debugging C# application from both the C# side and 

the MATLAB side, using debuggers on each side. 

 

2.3.1. The robot 

All experiments were carried out using a simulated differential drive mobile robot model. This is 

a mobile robot whose movement is based on two separately driven wheels placed on either side of 

the robot body. It can thus change it's direction by varying the relative rate of rotation of its 

wheels and hence does not require an additional steering motion (figure 2.2). If both the wheels 

are driven in the same direction and speed, the robot will go in a straight line. Otherwise, 

depending on the speed of rotation and its direction, the center of rotation may fall anywhere in 

the line joining the two wheels. Since the direction of the robot is dependent on the rate and 

direction of rotation of the two driven wheels, these quantities should be sensed and controlled 

precisely. Differential wheeled robots are used extensively in robotics, since their motion is easy 

to program and can be well controlled. Virtually all consumer robots on the market today use 

differential steering, primarily for its low cost and mechanical simplicity. 
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Figure 2.2.  Differential drive is a model of controlling a robot with only two motorized wheels placed on either side of 

the robot body. The direction change by varying the relative rate of rotation of each wheel. 

 

2.3.2. The Environment 

The simulator make use of the XNA scene model to structure objects within the environment. The  

scene requires simulation of lighting, geometry, textures and model surfaces  and objects are 

defined as 3D meshes which may be modified by a set of transformations.  The robot can be 

placed at the specified position and orientation in the environment. All objects may have physical 

properties and can be either movable or static. Figure 2.3. illustrates how objects  are coded in the 

simulator. 
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Figure 2.3. Close view of a simulated scene with various geometries and textures.  

 

 

2.3.3. Omnidirectional Camera 

Since traditional cameras suffer from the problem of having a limited visual field, an 

omnidirectional camera is used to obtain 360-degree field of view of the global scene. A common 

omnidirectional vision system in robotics is the catadioptric camera. The catadioptric camera 

consists of a vertically oriented color camera and a spherical mirror floating in front of the lens.  

To model the reflective surface of the sphere, a method of environmental mapping known as 

Cube Mapping [Greene, 1986] has been applied. This is a technique for approximating the 

appearance of reflective surface by means of a precomputed texture image (figure 2.4). The 

image is  generated, for every simulation step, by projecting the surroundings of the sphere onto 

the six faces of a cube. Then this cubical texture is wrapped onto the sphere to represent reflection 

lighting properties. An un-warped  panorama of the simulated catadioptric camera can be seen in 

figure 2.5.  
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figure 2.4. Cube textures and sphere mapping. Visual snapshots obtained from the robot moving in a 3D artificial 

environment. 

 

 

 

 

 

 

 

 

 

 

figure 2.5. Spherical to cylindrical coordinates. An un-warped image from the omni-directional sensor. 

 

2.3.4. Dynamics 

The simulator dynamics module supports the Bullet physics libary. Bullet is an open source 

physics engine that provides an approximate simulation of physical systems such as collision 

detection, rigid body and fluid dynamics. The main uses are in video games in which simulations 

are real time but is also well suited for high-performance scientific simulations. The primary limit 

of a physics engine is the precision of the numerical values representing the positions of forces 

and forces acting upon objects. Bullet physics library is published under the zlib license. The 

main features are: 

 Rigid body and soft body simulation with discrete and continuous collision detection. 

 Collision shapes include primitive shapes like sphere, box and cylinder. 
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 Convex hull shapes using Gilbert – Johnson – Keerthi distance algorithm (GJK).   

 Non-convex and triangle mesh. 

 Soft body objects like cloth,  rope and deformable objects. 

 A rich set of rigid body and soft body constraints with constraint limits and motors. 

The dynamics module allows for simulating object interactions close to real world object 

interactions. Although, physics engines uses many approximations to optimize for speed and are 

relatively imprecise,  it is  difficult to substitute with kinematics  when simulating mobile robots 

that collide or physically interact with its environment. 

 

2.4. Control Behaviors 

The robot considered to move in a plane by rotation and by forward translation.  At each time 

step, the robot may issue either of two types of commands. First, the robot may rotate by a certain 

amount.  Second, a translation command may be issued, instructing the robot to advance forward 

by a given distance. Rotation and translation commands are executed precisely but the actual 

distance traveled may be less than the commanded distance due to wheel slippage, friction and 

simulation inaccuracies. The robot  uses only relative odometry to plan each successive step. 

 

2.4.1. random walk 

The general intuition is that robots should be like insects, equipped with simple control 

mechanisms tuned to their environments. Therefore, a model of movement using a  simple two 

dimensional Brownian random walk has been implemented. Such an approach  can imitate the 

navigation behavior of simple moving animals and microorganisms. The motion model is 

described as follows. Each successive step taken in a random direction is completely independent 

of previous steps taken and as the direction moved at each step is completely random (figure 2.6). 

Another potential advantage of this approach is minimization of simulation artifacts such as 

cyclic behavior.  
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Figure 2.6. Motion model of two dimensional Brownian random walk. 

 

2.4.2 Obstacle Avoidance and Navigation 

Simple soft bumpers and proximity sensors are used as the main navigation sensors for collision 

detection and reaction. As soon as an object enters the impact area of a bumper, the robot reacts 

by moving backwards and then rotating, left or right, to some random degree between 60
0
 and 

120
0
. Proximity sensors are used mainly for a specific behavior of a wall following control loop. 

When following a wall, the robot tries to keep a constant distance from the wall. If an object 

appears in front of the robot, it should veer away of the wall and around the obstacle.  

 

2.5 Summary 

Recently, the use of a robotics simulators for autonomous robotics is highly recommended 

regardless of whether an actual robot is available or not. A simulator is a safe and cost effective 

solution  and a final version of the controller may be transferred on an actual robot but the success 

of off-line testing and evaluation  depends on how similar the real environment of the robot is to 

the simulated environment. Although a simulator is only an abstract model of real world 

situations, it can be very useful in exploring aspects of the problem of autonomous agents, 

especially in the fields of developmental and evolutionary robotics.  
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In this chapter, the simulator that was used to conduct the experiments of this research, was 

presented and the technical and functional characteristics were analysed. Behavior based robot 

simulators allows for actions that are more biological in nature when compared to simulators that 

are more computational, because robots can learn from mistakes and are capable of demonstrating 

complex behaviors such as evolving the capacity of moving in the environment. The simulator 

integrates the Bullet dynamics library,  which provide excellent real time simulation, and embeds 

them in  a 3D graphics engine that serves for the optical results.  

 

The simulator also hosts a set of algorithms representative for different approaches such as neural 

networks and genetic algorithms. All these algorithms have been built in the Matlab environment. 

The robot exhibits basic hardwired behavior for navigation purposes such as obstacle1.0 

avoidance and random walk navigation and is able to respond and adapt in real time. Accuracy 

can be in varying degrees for an optimum blend of speed and accuracy, being as computationaly 

intensive as it needed. A matlab interface has also been implemented for rapid prototyping, 

evaluation of behaviors and for data visualization purposes.   
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3. Robot Localization  
 

Chapter 3 Begins with a definition of what is an autonomous mobile robot and what are the 

prerequisites to incorporate such capabilities. The chapter also provides general information on 

the problems of determining the position of a mobile robot and map building as well as the key 

issues that need to be tackled in both problems. Moreover, an overview of sensor technologies is 

provided with a reference to the types of data obtained from various sensors. Finally, the most 

widespread methods of self-localization are highlighted and briefly analysed. 

 

 

 

 

 

3.1. Autonomous Robots 

Service robots capable of every type of autonomous movement for general-purpose use in 

environments such as sickrooms and offices encounter unique challenges, and demand the ability 

to operate without failure. Therefore it is necessary that they possess special skills. 

 

 Realistic robotic applications of the future demand a high degree of system autonomy in 

unstructured environments. These environments and their sensor signatures are hardly ever 

known a priori at the time the robot is designed. Therefore, it is a requisite for these robots to 

incorporate learning capabilities so as to perform in previously unexplored environments. 

 

 The fundamental requirement of this skill is position estimation (self-localization) as this is a 

precursor to addressing issues relating to a robot’s mobility such as planning efficient routes, 

avoiding cyclic behavior, and predominantly preventing the robot losing track of its position 

relative to the rest of the environment. 

 

 For a robot to associate behaviors with a place requires it to make positional estimation and to 

be able to plan and follow routes. Early robotic platforms in the 1970s routinely used wire or 
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rail guidance before progressing into more flexible, geometrical triangulation algorithms based 

on active beacons or self supporting, tracking of salient natural or artificial features. 

3.2. Sensing the Environment 

To be fully autonomous, a robot must rely on its own perceptions to localize. Perception of the 

world generates representation concepts, topological or geometrical, within a mental framework 

relating new concepts to preexisting ones. The space of possible perceptions available to the robot 

for carrying out this task may be divided into two categories: 

 

 Internal perception (proprioception) or perceptions of its own interactions with the world, 

associate changes of primitive actuator behavior like motor states. 

 External or sensory perception (exteroception) is sensing things of the outside world. A 

robot’s exteroceptors include all kind of sensors like proximity detectors or video 

cameras.  

 

Sensors such as whiskers cannot sense their environment without physical contact with the world. 

Proximity sensors such as ultrasonic sonar and infrared range finders have a short range and 

imply interference and wraparound, thus precise sensing of the environment requires high degree 

of directionality. Proximity sensors may help avoid running into an obstacle and can be used to 

handle geometrical concepts such as distances to help build geometrical and topological maps. 

 

Vision sensors are the richest source of information. However, they provide challenges in terms 

for example of extensive storage requirements and the time to process the vast amount of data 

available.  Information extracted from images can be low level primitives such as color and 

texture information, together with higher level information such as the shapes of objects, optical 

flow, etc.   

 

A modern approach in machine vision is to deal with images as combinations of different colored 

and textured regions. The content of these regions should be as similar as possible and the content 

of different regions should be as dissimilar as possible.  

 

A special issue of vision sensor is the panoramic or omni-directional vision system with a single 

camera [Baker & Nayar, 1998].  Images are obtained by placing a convex mirror a short distance 
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from a camera as shown in figure 3.1. These systems provide a 360
o
 view of the robot’s 

environment around the vertical axis in addition to ~30 above horizontal axis. They have become 

increasingly popular and are now used in many applications including autonomous navigation 

and teleconference. Argyros et al., [2001] have proposed  a solution for a mobile robot homing 

behavior that is based on the extraction of low level visual ques extracted from an 

omnidirectional camera.   Their main advantages include:  

 

 Largest field of view compared to orthographic or standard cameras.  Landmarks are 

always in the field of view except for occasional occlusion. This is advantageous when 

utilizing topological representations as the more information the image contains the more 

stable it is. 

 Orientation independency when employed with statistical methods such as histograms 

and distribution functions 

 No rotation mechanism is required, thus they consume less power and therefore have 

increased reliability. 

 

The main disadvantage is that acquired images are of lower resolution therefore not well suited 

for applications like local fine-grained texture perception. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Omnidirectional vision sensor. 
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3.3. Localization 

Localization refers to the task of identifying places in the environment after prior exploration and 

map-building by the robot. Localization is one of the fundamental problems to be solved when 

designing a navigation system. If a robot does not know where it is, it cannot effectively plan 

movements or reach target positions.  Map-based localisation depicts the following advantages. 

 

1. Robot's position may be available to human operators and have also been used as a 

medium for human-machine interaction [Topp, 2008]. 

 

2. Even if robot position is difficult for humans to interpret, with respect to the environment 

that have been mapped, the robot autonomously can perform a variety of assigned tasks 

such as navigation. 

 

3.4. Types of localization 

Broadly speaking, there are two major options to achieve robot navigation. One is to use 

proprioceptive sensors such as wheel encoders, and to perform navigation through path 

integration (often referred to as dead reckoning). The other option is to use exteroceptive sensors, 

and to navigate using landmarks or general features of the scene. Position estimation in an 

outdoor environment can be realized with GPS systems which are becoming standard equipment. 

Furthermore, differential GPS (DGPS) has an accuracy of a few centimetres if enough satellites 

are visible hence fulfilling the potential for robot navigation. Unfortunately, the signal from the 

GPS satellites is too weak to penetrate most buildings, making GPS useless for indoor 

localization.  

 

3.4.1. Continuous Localization  

Continuous localization, known also as position-tracking or relative positioning, is a technique 

that allows a robot to maintain an accurate estimate of current location by performing regular, 

small corrections to the odometry. However, as dead reckoning is based on pro-prioception, i.e. 

completely independent from outside information, errors in the estimate are accumulated over 

time (wheel slippage, uneven floors, etc). Methods to correct tracking of the position, whithin the 
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framework of dead reckoning, are impossible and rely on mechanisms that can update the correct 

location of  the robot, by referring to external information, for example landmarks. The prototype 

of algorithms proposed to solve position tracking is the Kalman Filter. [Leonard & Durrant, 1991] 

. In the context of vision based robotics, Lowe presented a method to extract invariant image 

features in order to perform matching between different views in a scene [Lowe, 2004]. 

 

3.4.2. Absolute Localisation 

Absolute localization is based on signals from external sensors to determine the global position 

and orientation of the robot. The robot has become lost through some arbitrary circumstances and 

is unable to localize using past experience, i.e., no initial or approximate estimate of the position 

is available. To tackle the problem, an explicit model of a given environment is needed to 

estimate the location using sensor data. Common frameworks are the Multi Hypotheses 

Localization [Jensfelt & Kristensen, 2001], Histogram Filters [Burgard et al., 1996] and Particle 

Filters [Dieter et al., 1999]. 

 

3.4.3. Simultaneous Localization and Mapping 

Simultaneous localization and mapping (SLAM) generally refers to processes used by 

autonomous agents to build up a geometrical map within an unknown environment while at the 

same time keeping track of their current position. SLAM  is not straightforward due to inherent 

uncertainties in discerning the robot's relative movement from its various sensors. If  at the next 

iteration of map building, sensor measurements are erroneous or even slightly inaccurate, then 

any additional features will distort the map. Without a  frequent  update of the robot's correct 

location, these positional errors build cumulatively, and the robot loose the ability to know its 

precise location. There are various techniques to compensate for this such as landmark extraction 

and map update from previously detected landmarks so as to re-skew recent parts of the map.  

Some of the statistical techniques used in SLAM include Kalman filters [Casarrubias et al., 

2010], particle filters (aka. Monte Carlo methods) and scan matching of range data [Vargas et 

al.,2010], [Nieto et al., 2007]. For an in-depth survey methods for map building, see [Thrun, 

2002]. 

 

SLAM has not yet been fully perfected, but it is starting to be employed in unmanned aerial 

vehicles, autonomous underwater vehicles, planetary rovers and newly emerging domestic robots. 

It is generally considered that "solving" the SLAM problem has been one of the notable 
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achievement of  robotics research in the past decades. Pioneering work in the field of SLAM was 

conducted in the mid 1980s and  early 1990s  by two independent teams [Smith & Cheeseman, 

1987] , [Leonard & Dyrrant-Whyte, 1991]. 

3.5. The Kidnapped Robot Problem 

A robot at an unknown position must surmise an occupied location based on recent sensory 

information against prior knowledge of the environment. When a well localized robot is 

transferred to some random location without being told it needs to embody some kind of spatial 

reasoning.  

 

 

The kidnapped robot problem [Engelson & McDermott, 1992], is a special issue which differs 

from the global localization problem because a kidnapped robot is unable to estimate it's own 

position via a localization process. If the agent is not aware of the beginning location it would not 

know how to go somewhere else. Guessing that you are positioned in your bed when you wake up 

in the morning may be right unless you have been transferred  to another location in the middle of 

the night. Awareness of this initial position is very important if your next navigation plan is to 

visit your work space location. The kidnapped robot problem is often used to test a robot's ability 

to recover autonomously from localization failures.  

 

3.6. Traditional Position Estimation Methods 

 

3.6.1. Beacon based localization   

Position is calculated through simple triangulation. A popular implementation is the Global 

Position System (GPS) promising to become the standard navigation solution for almost all 

Automated Vehicle Systems (AVS). Similar systems using infrared beamers or radio beacons 

demand modifications to surrounding environment. Usually these systems cannot be used 

indoors. 

  

3.6.2. Kalman Filters 

The Kalman filter is a recursive solution to the discrete-data linear filtering problem [Welch & 

Bishop, 1995]. A lot of research has been done on this algorithm and it has been used extensively 
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throughout the topic of robot localization. This method is mainly used for position tracking, i.e. 

the initial position is known and subsequently the movement is tracked. The Kalman filter gives 

an estimate of the state of a dynamic system from noisy measurements.  

 

The Kalman filter is a recursive estimator, this means that only the estimated state from the 

previous and current steps are required to predict the new state. The algorithm works in a two 

step-process and  uses a series of measurements observed over time. For every  time and 

measurement pair,  previous a posteriori estimates are used to calculate the new a priori estimates 

and from them the new a posteriori estimates.  

 

Kalman filter can be used to compensate for the errors that occurs when odometry is employed 

during robot movement. As a condition for this method, both initial position and orientation, have 

to be known in advance. Kalman filters are known to be efficient and accurate in determining 

position and heading of the robot but  are generally not well suited to solve the kidnapped-robot 

problem. Kurz, [1996] proposed a free space partitioning method to generate environmental maps 

through a learning classifier and  an extended Kalman filter algorithm to compensate with the 

dead-reckoning drift. 

 

  

3.6.3. Probabilistic Localization 

3.6.3.1. Markov Localization 

Markov localization utilizes a probabilistic algorithm [Fox et al., 1999]. This means that rather 

than maintaining a single assumption on which is the best estimate of the pose of a robot, the 

technique maintains a probability density over the space of every possible place and direction. 

These densities occurs in several formats and each format represents some kind of information 

about the positional status of the robot. To look at a case, because of lack of any information 

concerning the position of the robot, the density will appear as a uniform distribution. When, on 

the other hand, there is great confidence as to the position this will appear as a distribution with a 

peak located around the supposedly true position. This procedure is also capable of tracking 

multiple hypothesis, i.e. the cases for which there is not a clear view of the position occupied by 

the robot.  Positions for which there is a high probability that the robot is located have a higher 

density and positions where the robot is not likely to be found, have comparatively low 

probability densities (figure 3.2).  
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figure 3.2. Markov localization uses an explicit, discrete representation for the probability of all positions in the state 

space. Upper side shows belief state where higher peaks means higher probability. Down side shows actual robot 

position in a hypothetical 1D space. 

 

 

Unlike Kalman Filters, Markov Localization has the ability to recover from situations in which 

the robot, after a certain amount of time, has absolutely no idea about its current position, but 

have trouble localizing when placed in a dynamic environment where people might be moving 

around or pieces of furniture are continually repositioned. Some approaches (grid-based) tend to 

use enormous amounts of memory and the resolution and size of the state space have to be 

determined before starting with the computational part. During each prediction and measurement 

steps, all the cells are updated. If the number of cells in the map is too large, the computation can 

become too heavy for real-time operations.  

 

As an example, consider a robot moving in a physical space with dimensions of 50x50 meters. 

Suppose also that the required accuracy is a cell with dimensions of 0.1x0.1 meters and 

orientation step of 1 degree.  Calculating, in this case, all possible positions and orientations of 

the robot leads to a result which includes 50x50x100x360 = 90,000,000 cells which need to be 

updated at each step consideration. Of the above leads to the conclusion that fine fixed 

decomposition grids result in very big state space. 
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3.6.3.2. Monte Carlo Localization 
 

Τhe idea of identifying the position of an agent with Monte Carlo method,   also known as 

Particle Filter, is  different compared to approaches such as Kalman filters and Markov 

localization. In this case, the probability of the robot being in a particular position is represented 

by a set of samples that are randomly drawn from it [Fox et al., 1999]. Τhe method is based on a 

recursive Bayes filter that estimates the posterior distribution of a single or multiple positions, 

which are conditioned on the sensor measurements.  

 

The main advantage of this method, compared to the above, lies in the fact that is computationally 

less expensive, especially when compared to grid-based Markov localization. Τhe additional 

advantage is that it has the ability to track the position of a robot locally and localize it globally. 

On the other hand, particle filters are not  well suited to perform with high dimensional data 

obtained from sensors  such as cameras. Beyond this, cases may arise that demand a large number 

of particles to be sampled for convergence. If the number of particles increases significantly the 

results tend to be less accurate. 

 

3.6.4. Vision Based Localization 

Real world applications demand more detailed sensor information to provide the robot with better 

world understanding. Visual sensors are potentially the most powerful source of information and 

appear to be the best candidates for autonomous robot applications. The two main methodologies 

widely used today are divided into those that are based  in distinctive objects [Se et al., 2005] and 

those that catch the general appearance [Ascani et al., 2008], or the  nuance, of the scene view. In 

case of Landmarks placed at various points in the environment, robots can better estimate their 

position in the environment through their representative visual information. However, landmark-

based methodology relies heavily on identification and recognition of distinct objects in the 

environment that need to be a priori known. Also, due to noisy measurements and dynamically 

changing environments, the process of object  identification might become quite challenging.  Αll 

the above issues, may be efficiently tackled in the context of an appearance-based navigation 

strategy. However, some disadvantages of appearance based systems including lack of depth 

information and image occlusions renders them    unsuitable for specific applications. 
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3.6.5. Landmark based Localization 

Often used complementary to odometry for recalibration and updating purposes. Landmark based 

position estimation mechanisms are challenging to apply in natural and unstructured 

environments. The difficulty  essentially lies in the conception of the technique that extracts and 

model the landmarks from raw sensor data. When applied in a non structured environment, it is 

not easy to find distinguishable objects especially from different viewpoints. Moreover, landmark 

based techniques  may require object recognition abilities.  

 

Using these salient landmarks even if they can easily be recognized from one position, may be 

difficult to recognize  for successive observation steps. Since pattern recognition techniques are 

prone to different scales, orientations and  partial occlusions,   a robot may fail to recognize a 

salient landmark from some perspective views. Usually these distinct locations are used only to 

update current estimation of location and tracking. [Loevsky & Shimshoni, 2010] proposed a 

localization method  based on a triangulation system supported by artificial landmarks. [Bais & 

Sablatnig, 2006] proposed a system that  based on range measurements of a single landmark from 

two arbitrary points. Many other approaches to visual servoing and mobile robot navigation have 

been based on tracking feature points or landmarks from  panoramic imagery [Argyros et al., 

2001], [Fiala & Basu, 2004].  

 

However, sometimes the recognition of landmarks is not unambiguous (“perceptual aliasing”). 

This means that two different places can be perceived the same (figure 3.3). For example, in a 

building, a person may not be sure about knowing where he is, only with the visual information, 

because all the corridors look the same. Navigation can become unreliable, and additional 

methods have to be sought to establish the navigator’s position unambiguously.  

 

 

 

 

 

 

 

 

Figure 3.3. Perceptual aliasing problem.  
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3.6.6. Selecting image landmarks  

Not all features points are equally effective as landmarks. Generally speaking, promising 

landmarks must be salient and distinguishable. Salient means highlighted objects that can be 

observed for a great range of locations, e.g. a red fire distinguisher in a white empty room, and 

distinctive means difficult to confuse during recognition with objects that look similar or have 

similar visual qualitative features.  

 

Generally landmarks can be artificial or natural. Natural landmarks are more desirable because it 

is not necessary to modify the environment. But these landmarks are difficult to isolate from the 

background and recognition depends on lighting conditions viewing directions and occlusions 

especially in dynamically changing surroundings. On the contrary, artificial landmarks are easier 

to detect, specially designed to be independent  to different lighting conditions, rotations or 

translations, but  at the cost of modifications in the environment like drawing unique patterns in 

the walls. Various localization systems have been based on developing methods for selecting 

visually distinctive landmarks [Knapek et al., 2000], [Miller et al., 2011].  

 

 

3.7.  Appearance based localization 

Landmark-based localization methods rely on the assumption that landmarks can be detected and 

accurately interpreted from raw sensors readings.  However interpretation from sensor readings to 

accurate geometric representation is  complex and error prone. From another viewpoint, an 

appearance-based method of environment is not encoded as a set of geometrical visual features, 

but as an appearance map that includes a collection of sensor readings obtained at known 

positions. Krose et al., [2002] applied a Principal Component Analysis to panoramic images to 

build an internal representation of the environment. A feature matching technique proposed by 

[Ascani et al., 2008] to address the issue of topological localization by matching the current view 

with reference images. Two different approaches were compared based on SIFT and SURF image 

features. An appearance-based place recognition method, that use a panoramic camera, presented 

by Ulrich & Nourbakhsh, [2000] that use nearest neighbor learning classification and image 

histogram matching.  The proposed system proved robust on  classifying correctly the input color 

images.  
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The advantage of this representation is that the raw sensor readings generate a qualitative estimate 

of position. The currently perceived image  can be directly matched with past experiences stored 

in the  appearance-based topological representation. Sensor readings,  that used in this way, does 

not rely on precise metric measurements as opposed to traditional geometrical based maps.  

 

In the field of computer vision the use of appearance based techniques have become widespread 

in recent years [Akers et al., 2010]. A comparison between the two families of  vision based 

localization methods can be found in [Sim et al., 2003], showing that appearance-based methods 

are more robust to noise, occlusions and changes in illumination than landmark based-methods. 

The source of inspiration is that small animals, such as insects, navigate through natural 

environments seemingly with little effort [Collet, 2010]. Despite their relatively simple nervous 

system and hence limited memory capacity, bees and desert ants are able to find their way back.  

Such a level of efficiency indicates flexible representations of the surroundings based on visual 

cues taken from target locations like home and food sources.  [Cartwright et al., 1982],[Dill et al., 

1993],[Collett et al., 1998]. These representations seems to have an appearance based flavor 

rather than a Cartesian arrangement of landmarks. To visit target locations after prior exploration, 

insects traverse in a way that reduce discrepancies between the stored snapshot and their current 

retinal image.   

 

 As stated before the main drawback of appearance-based methods is that localization is only 

possible in previously mapped  areas. Recently, several  applications have shown promising 

results. [Booij et al., 2007] proposed an appearance based topological map method extracting 

semantic information about scenes. Another approach, that also accounts for the perceptual 

aliasing problem, proposed the use of appearance only  information to localize a robot in a known 

map [Cummins et al., 2007]. Like landmark based mechanisms, appearance based navigation 

systems suffer from the problem of perceptual aliasing, the fact that different locations gives 

identical sensory perceptions. A possible solution whould be the incorporation of temporal 

information or odometry to resolve any conflicts.  

 

3.8. Summary 

Localization and map building is a fundamental task in order to achieve high levels of autonomy 

in robot navigation thus different approaches have been proposed that exhibit satisfactory 

behavior, most of them in a probabilistic framework. Visual sensors are potentially the most 
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powerful source of information and appears to be the best candidates for autonomous robot 

applications. Vision based localization methods can be divided in two families. First, landmark 

based methods that rely on the assumption that distinct element position can be accurately 

extracted from sensor data. Second, appearance based methods that model the environment from 

a set of sensor readings obtained at known positions and can be directly compared with the 

previous observations stored in the appearance map. This simple way to use sensor readings 

makes the appearance-based  approach really appealing, although, an appearance map is always 

required to store previous sensory perceptions of the environment. Taking inspiration from 

nature, insects seem to use memorized visual representations to find their way back to places of 

interest, like food sources and nests. The fact that small insects with simplistic brains exhibit 

good localization capabilities, with apparent ease, makes it a good candidate for developing and 

testing bio-inspired methods for robot navigation and mapping. Moreover, using visual snapshots 

withοut requiring intensive processing, such as identifying special landmarks,  immediately 

relates to an appearance based context. 
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4.  Neural Networks  

 

Chapter 4 presents a brief history and an introduction to the technology of Artificial Neural 

Networks focusing on the well known variations of unsupervised learning. Additionally, the most 

relevant research studies in the field of autonomous robot navigation, that employ self organizing 

algorithms, is presented, in order to establish the current problems and decide the methodology 

of addressing them. 

 

 

 

 

 

4.1 Introduction 

The first neural network was proposed in 1956 by Frank Rosenblatt. It was called a Perceptron. 

Thirteen years later a publication known as Perceptrons, by Minsky et al., [1969], resulted in a 

significant fillip to neural network research. Τheir publication laid the foundations for the general  

neural network architecture but also pointed out some serious limitations. Τhe main issue was that 

Perceptron could not perform a basic logical computation of a XOR (exclusive-or). The second 

significant issue was that computers were not sophisticated enough to effectively handle the long 

run time required by large neural networks. Τhese findings almost devalued research in neural 

networks but later advances like the back-propagation algorithm [Rumelhart et al., 1986] along 

with greater processing power brought back the research interest and within a short time became 

widespread.  

 

Designed around the brain-paradigm of Artificial Intelligence, neural networks attempt to model 

the biological brain. Neural networks have been used to model complex relationships between 

inputs and outputs, and to find patterns in data. Neural networks mimick the biological neural 

networks in that functions are performed decentralized and in parallel by all units. Neural 

network theory has served both to better identify how the neurons in the brain function and to 

provide the basis for efforts to create artificial intelligence. Because an ANN can capture many 

kinds of relationships it allows the user to quickly and relatively easily model phenomena which 

otherwise may have been very difficult or impossible to explain.  
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Neural networks are also fault tolerant in that a set of inappropriate data or a number of destroyed 

nodes will not render the network useless.  What has attracted the most interest in neural 

networks is the possibility of learning. Given a specific problem to solve,  learning means using a 

set of observations to find a solution to the problem by optimizing the general state.  In general, 

there are two types of learning: supervised and unsupervised. 

 

4.1.1. Supervised Learning 

The correct answers are known and used in a feedback manner to train the network for the given 

problem. This type of learning utilizes both input vectors and output vectors. The input data are 

fed to the input and the output data are being associated with the inputs. In a special type of 

supervised learning, reinforcement learning, the network is only told if it's output is right or 

wrong. Back-propagation algorithms make use of this style. 

 

4.1.2. Unsupervised Learning 

Unsupervised learning is a type of training that tries to reveal data structures from data that seems 

to be heterogeneous. Since the data given to the neural network are unlabeled, there is no error or 

reward signal to evaluate a potential solution. This distinguishes unsupervised learning from 

supervised learning. The greatest advantage is that no human interaction is needed for 

unsupervised learning. This can be an extremely important feature, especially when dealing with 

a large and/or complex data set that would be time-consuming or difficult to a human to compute.  

 

4.2. Clustering 

Clustering is the process of organizing a collection of n-dimensional vectors into groups whose 

members share similar features in some way. Each of these groups is represented by a n-

dimensional vector called a codebook vector. The aim of clustering is to categorize large  data 

collections by classifying in smaller sets of similar content. The most well known soft clustering 

algorithm is the K-means algorithm by MacQueen, [1967]. This method of cluster analysis aims 

to partition n observations into k clusters in which each observation belongs to the cluster with the 

nearest mean (figure 4.1) 
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figure 4.1.  Clustering results of the K-means algorithm. Blue dots correspond to cluster centroids and 

 lines separates the Voronoi cells.  

 

This results in a partitioning of the data space into Voronoi cells. Since it is a heuristic algorithm, 

there is no guarantee that it will converge to the global optimum, and the result may depend on 

the initial clusters. As the algorithm is usually very fast, it is common to run it multiple times 

with different starting conditions. However, in the worst case, k-means can be very slow to 

converge: in particular it has been shown that there exist certain point sets, even in 2 dimensions, 

on which k-means takes exponential time, that is      , to converge [Vattani, 2008]. Other 

algorithms widely used for vector quantization is the Kohonen’s Self Organizing Map (SOM), 

[Kohonen, 1982] and the Growing Neural Gas algorithm described by [Fritzke, 1995]. For  a brief 

overview of data clustering, and well known clustering methods, see [Jain, 2010]. 

 

In some cases little or no information is available about the input distribution or the size of the 

input data set, in these cases it is hard to determine a priori the number of nodes to use, such is the 

case in Kohonen’s SOM and in the NG algorithm and also in classical K-means clustering. The 

GNG is an incremental  algorithm that only has parameters constant in time, thus, there is no need 

to determine the number of nodes a priori since nodes are added incrementally. Insertion of new 

nodes stop when a user defined performance criteria is met or if a maximum network size has 

been reached.  



Chapter 4 – Neural Networks 

34 

 

4.3. Topology Preserving Networks 

In unsupervised learning the only fact available is the input set. What such a network can serve 

for is among the others topology preservation and vector quantization. Topology preserving 

means that close input signals are mapped to neurons which are close in the lattice structure and 

conversely, close neurons in the lattice structure come from close input signals in the input space 

preserving similarities between data as much as possible (figure 4.2). The key to a topological 

relationship is based on an abstraction of knowledge in terms of connectivity by mapping an input 

set of information into a data structure. A graph is such a kind of abstract data structure that 

consists of  points or nodes connected by links called lines or edges retaining similarity relations 

between the original data and the data after mapping.  

 

Figure 4.2. Topology preservation through vector quantization. A 5x5 self-organizing map network expanding to 

capture a 2D input manifold. Initially all nodes are located in random positions.  

 

Unsupervised learning architectures are often considered topographic or topology preserving 

networks as a consequence of the competitive learning method. The term definition of topology 

preservation and a mathematical relationship with geometrical structures such as Voronoi 

Diagrams and Delaunay Triangulation have been the case study of Martinetz et al., [1991]. 

 

Vector quantization is based on competitive learning so it is closely related to self organizing 

models. It works by dividing a large set of points into groups having approximately the same 

number of points closest to them. Each group is represented by a neuron and consists of all the 

points that belong to the area of influence of this particular neuron by means of some distance 

metric. This abstraction of knowledge can be seen as a semantic model which does not involve 

memory of a specific event. 
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4.4 Kohonen Feature Maps 

Sensory pathways in the brain are organized in such a way that its arrangement reflects some 

physical characteristic of the external stimulus being sensed. Kohonen self organising feature 

map, tries to mimic two-dimensional arrangements of neurons in the brain [Kohonen, 1995]. 

SOM, maybe the most popular unsupervised artificial neural network, is an algorithm that maps 

similar input vectors, which are close to each other onto contiguous locations in the output space. 

The dimensions of the node lattice and node number are chosen in advance. Kohonen feature 

maps are popular also because of their dimensionality reduction capabilities, meaning that they 

project multidimensional input space into normally one or two dimensional space. Ishii et al., 

[2004] proposed a navigation method, based on a SOM in order to reduce the dimensions of 

parameters, for an autonomous underwater vehicle. It is also possible for interconnected 

structures of more dimensions although difficult to implement. For every input presented to the 

net, the distance between input and every node in the map is calculated to find the winner node. 

The node with minimum distance is the winner node or best matching unit. The winner node and 

neighbours update their corresponding weights through some function, typically a Gaussian.  

 

A self-organizing map consists of a single-layer feed-forward network where the outputs are 

arranged in a fixed grid of neurons (figure 4.3). Each input is connected to all output neurons. 

Every neuron holds a weight vector of the same dimension as the input vectors. The number of 

input dimensions is usually much higher than the output grid dimension. Winner node, or best 

matching unit is the node closest to input vector with respect to a metric as is euclidean distance 

metric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Kohonen Self-Organising Map 
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4.4.1. Practical application 

The Self-Organizing Map algorithm can be broken up into 6 steps.  

 

1. For each node, weight vector is initialized.  

 

2. An input vector Vi is randomly chosen from the set of training data and fed to the 

network.  

 

3. All nodes and their associated vectors Wi are examined to find the closest one to  the 

input vector. The winning node is commonly known as the Best Matching Unit (BMU). 

The metric used is the euclidean distance (equation 4.1). 

 

                     
   
       (4.1) 

 

4. The radius of the neighbourhood of the BMU is calculated. The radius starts from an 

initial value and diminishes on each time step. An Initial value equal to the radius of the 

network is a frequent choice. A common exponential decay value is the following 

(equation 4.2). 

 

             
  

 
   (4.2) 

 

5. Any nodes in the range of the BMU are adjusted to make it more closely to the input 

vector (equation 4.3a, 4.3b). The amount that should be changed to look like the input 

signal is determined by the distance from the BMU. Weight vector adjusted according to 

the following equation. Where L is the decay of the learning rate λ. 

 

                             (4.3a) 

            
  

 
    (4.3b) 

 

6. Repeat from step 2 for N iterations. 
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4.5. Neural Gas 

The neural gas (NG) is a biologically inspired adaptive algorithm coined by Martinez et al., 

[1991]  partially inspired by the physical properties of  uniform gases and partially the work of 

the self organizing neural networks. A gas does not have a fixed shape or size but in the absence 

of gravity will expand to fill a container. Once a container shape of points in a given distribution 

has been defined, freely moving "particles" expand in the shape in a uniform way, creating a 

grating of particles. NG is topology representing neural network,  that is after reaching 

convergence, the network nodes would be representing the distribution being modelled. NG is 

applied where there is a need for data compression or vector quantization and often referred to as 

a robust alternative to k-means algorithm.  Given a distribution     that consists of vectors   the 

algorithm involves the following steps. 

 

1. All weight vectors               are initialized. 

 

2. For each time step  a data vector   is randomly chosen and the distances between the 

data vector and every weight vector are calculated and sorted.   denotes the index of the 

closest weight vector,     the index of the second closest weight vector etc. and      the 

most distant weight vector from input signal x.  

 

3. Each weight vector               is adapted according to the formula 4.4.   

   
           

  

        
    (4.4) 

 

Where  is the adaptation step size and λ is the neighbour range. Both  and   are decrease while 

time step  increase. After a sufficient number of adaptation steps NG nodes, represented by their  

corresponding weight vectors, cover the data distribution with minimum error.  

 

NG algorithm does note create or remove nodes. For each training pass all nodes are adapted as 

opposed to GNG where only the two closest nodes are being affected. The NG model can be seen 

as a Gradient descent  optimization algorithm on a cost function since all weight vectors are 

adapted with a decreasing step size while increasing distance order.  
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4.6. Growing Neural Gas 

Growing Neural Gas, an incremental neural network [Fritzke, 1995] can learn the topological 

relationships from an input set of vectors using a variation of the Hebbian rule. GNG is a network 

that dynamically add or remove nodes and can approximate the input space with higher accuracy 

compared to a network with predefined structure such as the self organizing feature map. General 

applications of GNG are vector quantization, interpolation and clustering. Conversely to SOM, 

GNGs are mainly used for expansion rather than dimensionality reduction. 

 

 

     

 

 

 

 

 

 

 

a. 6 Nodes in R2                  b. The Voronoi diagram 

 

c.  

 

 

 

 

 

 

 

c. The Delaunay triangulation                     d. both 

 

figure 4.4. The Delaunay triangulation and the Voronoi diagram.  

 

Before analyzing the algorithm operation it is considered necessary to analyze some concepts 

from computational geometry. Starting with a simple example, assume there exists five vectors in 
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R2 as depicted in figure 4.4.(a) these vectors can be referred to as nodes. The main property of a 

Voronoi representation is that for each node a region exists around that node where belonging 

points are closer to that node than to any other nodes. The Delaunay triangulation is a graph 

structure where nodes with a common Voronoi edge are connected by an additional edge (Fig. 

4.4.(c)). Alternately, it can be defined as a triangulation of the nodes with the additional property 

that for every triangle the circumcircle of that triangle does not contain any other nodes. Since 

GNG algorithm is self-adaptive, i.e. it can deploy its nodes and move them independently to 

represent any given distribution and to create or destroy interconnections,  renders it suitable for 

applications with distributions varying over time. It appeared that cases that are most appropriate 

are those where change is occurring slowly.  

 

GNG start with two nodes and gradually build  a graph in which nodes are neighbour nodes and 

are connected by an edge. The neighbour information is maintained throughout execution by a 

variant of competitive Hebbian learning (CHL). An edge is inserted between the two closest 

nodes when an input signal is applied, measured in Euclidian distance. Depending on the needs of 

the application, any metric may be used. The shape produced by CHL is called the “induced 

Delaunay triangulation” which is a special sub-category of the Delaunay triangulation. The 

induced Delaunay triangulation optimally preserves topology in a very general sense. Τhe action 

of CHL is of great importance since it  regulates movement and insertion of new nodes. The 

algorithm uses a small number of dependent variables which are constant in time.  Αdditionaly, 

there is no need to indicate before execution the number of nodes because this will continue to 

expand until some criterion is met. This criterion may be a performance threshold or an index that 

reached the maximum size network. 

 

4.6.1 GNG algorithm explained 

The execution steps of the algorithm are analyzed bellow.  This analysis was considered 

appropriate to facilitate better understanding of application to experiments. 

 

1. Initially, two nodes randomly positioned are created and connected with a zero age edge. 

The error of both nodes is 0. 

 

2. Οne input vector is randomly chosen from the distribution. 
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3. Find the two best matching units with respect to the input signal   . If the reference 

vectors of the nodes are    and    , the distances from input vector are          and 

         

 

4. The winner node s update its local error by adding the squared distance between    and    

 

                         (4.5) 

 

5. Best matching unit s and all connected neighbors are shifted towards   by fractions 

  and   of the distance.   ,         

 

                                                             (4.6) 

                  , ∀                 (4.7) 

 

6. All emanating edges from node s increment their age. 

 

7. If s and t are connected with an edge then this age becomes 0. If they are not connected 

create a new edge between. 

 

8. Scan all edges for an age larger that     , remove if any found. If then any nodes appears 

with no connections, remove them also. 

 

9. If current iteration is an integer multiple of λ and maximum node count has not been 

reached, insert a new node. This is done as follows. 

 

 Find the node u with largest error 

 Find the neighbor v of node u with the largest error. 

 Create a new node r between u and v in the position: 

 

    
         

 
     (4.8) 

 

 Create edges between u and r,  v and r and remove edge     
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          between u and v. 

 Error variables of u and v  decrease and error of node u is  

          asigned to error of node r. 

 

                   (4.9) 

                   (4.10) 

                   (4.11) 

 

10.  Decrease error variables of all nodes  j by a factor β 

 

                          (4.12) 

 

11.  Repeat from step 2 until a stopping criterion is met.  

 

 

4.7. Self Organization in Robot Localization  

Static sensor signals clustering based on self organizing maps have been used before for robot 

localisation. Early adoptions of this method include an autonomous robot with map building 

ability through a SOM network [Nehmzow et al., 1991]. Different unsupervised neural network 

architectures have been used to realize topological relationships between input and output space. 

Wichert, [1997]  proposed an image based navigation system based on self-organization of visual 

snapshots. Werner et al., [2006] developed a system that extracted color histograms as input 

vectors for a  SOM algorithm. Growing neural gas  has been used for a  visual based self-

localisation of a mobile agent in indoor environment by Baldassari et al., [2003]. Images acquired 

from  a  camera, moving in a pathway, in order to build an implicit topological representation of 

the environment. These simulations dictated the effectiveness of the GNG model in recognition 

speed, classification tasks and in particular topology preserving as compared to the popular SOM 

model. The performance gap ascribed  to the fact that  nets dynamically adding or removing 

nodes  can approximate the input space more accurately than a network with a predefined 

structure and size such as SOM. As can be seen (figure 4.5)  a predefined grid such as SOM can 

not describe a topology with the same accuracy as compared to a network that dynamically add or 

remove nodes and edges.  Τhis is more clear when the distributions depict irregularities such as 

convexities and holes.  This is true also  since SOM resembles a losy compression scheme by 
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applying  a data projection from a multidimensional space, where perceptual signatures are 

described,  to preferably only a two dimensional space. Other proposed methods based on 

principal component analysis (PCA)  can compute global only image properties [Tamimi et al., 

2004]. These navigation systems suffer from the problem of perceptual aliasing, the fact that 

different physical locations can give rise to identical sensory perceptions.   

 

 

Figure 4.5. Topology preservation for SOM & GNG 

 

4.8 Modular neural networks 

Biological studies showed that the human brain functions not as a single massive network, but as 

a collection of small networks. The combination of the desirable features of different neural 

computation ways  gave birth to the concept of modular neural networks, in which several small 

networks cooperate or compete to solve problems. An idea behind a multi-network approach is to 

build a voting system engaging a number of dedicated networks assigned purposely.  

Gerecke et al., [2003] proposed an approach to mobile robot localization that makes use of  

ensembles of self-organizing maps.  A test and select approach applied with the individual 

evidence vectors (IEVs) and common evidence vectors (CEV) architectures. The study was run 

on a simulation of a Nomad-200  mobile robot, encircled evenly with 16 ultra sonic and 16 infra 

red  sensors. Ensembles showed significant improvement over their single SOM counterparts but 
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with a loss of speed. Yamada, [1996] described the application of a SOM that recognizes rooms 

using behavioral sequences with only low-sensitive local sensors, and results evaluated in a real 

world robot.  

These approaches applied in the standard way, however, has its drawbacks. One of them is the 

fact that the localization stage is strictly separated from the learning stage. All images are being 

captured during the exploration phase, and only then it is possible to construct the model. The 

model built in this way can not be modified unless original images have been reserved. To update 

the model with new images, a new data-base with training vectors should be made. Therefore, 

standard approaches are not optimal for performing simultaneous learning and localization. 

Furthermore, the original images take a lot of storage space.  

 

4.9. Summary 

There are two reasons why self organizing maps should be used in preference to pre-installed, 

fixed mechanisms in autonomous mobile robot navigation. The first one is a methodological 

consideration, the second reason has to do with the nature of the robot’s perception of its 

environment [Nehmzow, 2000].The first argument, therefore, for using self-organisation in 

mobile robot navigation is that it can reduce the amount of predefinition put in by a human 

operator. Robot sensors are subject to noise. Sensory perception  of a robot can be  plain wrong 

and therefore misleading, contradictory, e.g. sensor information regarding the same object 

coming from different sensors, or  useless, e.g. no meaningful information from sensors with 

respect to the task being performed by the robot.  

 

Learning mechanisms of self-organization make use of the data that is actually available, without 

prior assumptions. This takes care of useless data. Self organizing mechanisms such as Kohonen 

SOM can cluster information topologically, which addresses the problem of noise. Finally, if a 

wrong sensor signal is   inconsistent or in contrary to neighbor sensors providing the correct 

reading, self-organization have proven to be a good method of eliciting that information. The 

second argument in favour of self-organization, therefore, is that such mechanisms are well suited 

to process the kind of data obtained from robot  sensors. Because of these properties, they 

considered to be suitable for the needs of this thesis.  All unsupervised learning algorithms that 

are analysed in this chapter have been used to model topology-based mapping.  By abstracting 

visual sensory data, these algorithms used to represent scene snapshots into discrete sub-spaces, 

forming a sensory representation of the environment's appearance.  
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5. Representing Time and Space 

 

Chapter 5 refers particularly to the concept of spatial representation and outlines the 

qualitative characteristics that these representations should have. The chapter also review 

various methodologies  as well as the critical points of current research contribution. In 

addition, an investigation of the combined representation of space and time and the ways in 

which robot navigation could benefit.  Finally, a variety of inspiring biologically plausible 

models are introduced.   

 

 

 

 

 

5.1. The need for a map  

As explained in Chapter 2, during the design of an autonomous mobile robot, the space 

representation model must simultaneously support the functions of localization, navigation 

and  map-building. The model of the environment should have the following attributes:  

 

1. It should incorporate different  types of features extracted from  raw sensor data. 

 

2. The spatial representation should be able to be searched efficiently. Features 

associated with places should be transformable to whatever format may be required 

for both prediction as well as correspondence matching between extracted and stored 

features.  

 

3. Ιnformation accumulated in the form of a map representation  should be  diversified 

about each object to facilitate disambiguation from other objects.  

 

4. Maps should allow for the easy inclusion of new areas and the update of the 

parameters of stored areas.  
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5. The environment should at least be distinguished into two main regions. Positive 

space representing current robot position and negative space the area in which the 

robot can move freely.  

 

 

5.2. Environment Representation 

The most natural representation of a robot's environment is a map. In addition to representing 

places in an environment, a map may include other information, including properties of 

objects, regions that are unsafe or restricted to traverse, or information of prior experience. An 

internal representation of space can be used by a robot to pre-plan and pre-execute tasks that 

may be performed later. Within this map a mobile robot must be able to estimate its pose. 

However, in many practical applications like exploration tasks, a map is not available or it is 

highly uncertain. Therefore, in such situations the robot must build its own map. The goal for 

an autonomous robot is to be able to both construct and use  a map.  

 

From a biological perspective, some animals, like insects, have evolved in such a way that a 

triggered response is  sufficient to keep them alive. For these animals the environment is not 

interpreted as a map. A little more advanced navigation capabilities may dramatically 

improve skills related to autonomy [Trullier et al, 1997].  

 

5.2.1. Geometric Representation 

Geometric maps are quantitative representations made up of discrete geometric primitives like 

lines, polynomial functions, points and so forth. They characterized by large scale detail. The 

primary shortcoming of geometrical model based representation relates to the fact that they 

can be difficult to infer reliably from sensor data [Sim et al., 2003]. Geometric  maps,  such  

as  occupancy  grids  [Martin et al., 1996] representation employs a tessellation of space into 

cells (typically 2D or 3D) where each cell stores a probabilistic estimate of its state. Hence,  

each  cell  represents  a  rectangular  area  of  the  environment  and  it  stores the  value  that  

indicates  the  occupation  state  for  this  area.  Usually this is  done  by  labeling  the  cells  

with  “unknown”, “free” or “occupied” values or with a value that represents the likelihood of 

the cell being occupied or not. Τo fill all the cells with the appropriate values using 

probabilistic methods can be very expensive in terms of computing power,  which  becomes  
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more  expensive as  the  environment  map  increases. For some real time applications 

occupancy grids may not be a viable solution [Dissanayake et al., 2000]. The ability to 

represent the environment and the possibility of  incorporating new data even if they originate 

from different sensor types, are the main advantages of geometrical maps.  

 

5.2.2. Topological Representation 

The term topological map refers to a map which captures the connectivity of the environment 

and has been simplified so that only vital information remains and unnecessary detail has 

been removed. These maps lack geometric information like scale, distance or direction but the 

relationship between points is maintained. The simplicity of topological maps support much 

more efficient planning than metric maps [Sim & Dudek, 2003],  

 

The key to a topological relationship is based on an abstraction of the environment in terms of 

connectivity between discrete regions or objects with edges connecting them. In the purest 

form, this may involve a complete absence of metric data. A robot employing this 

representation has no real understanding of the geometric relationship between locations in 

the environment but the enclosed information is sufficient for the robot to conduct point to 

point motion. The use of graphs has been exploited by many robotic systems to represent the 

environment. Early efforts include   the work of [Nehmzow & Smithers, 1991] that used a 

self-organizing map prior to building a map. Another proposed method automatically 

generates topological maps based on Delaunay triangulation [Tarutoko et al., 2006]. 

 

 

A graph is a kind of abstract data structure that consists of  points or nodes connected by links 

called lines or edges. Each node corresponds to one of the unique landmarks and each edge 

corresponds to known  paths between landmarks. If the environment consists of  networks of 

corridors and rooms like in many indoor environments such as office building or a hospital, it 

is less complex to specify the topology   of important locations and their connection suffice.  

 

Evidence also indicates that humans represent physical spaces topologically rather than  

geometrically [Lynch, 1972] . For example, when providing the clues needed to lead someone 

in a building, directions are usually of the form “go  down the hall, turn right at the elevator, 
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open the second door on your left,” rather than in geometric form. 

 

5.3. Spatio -Temporal Reasoning 

Describes how the relationships between regions change with time [Lynch, 1960]. Refers also  

to the ability to visualize spatial patterns and mentally manipulate them over a timeline 

sequence. This ability, often referred to as "thinking in pictures", is important for generating 

and conceptualizing solutions to multi-step problems that arise in areas such as simultaneous 

localization and map building for mobile robots. The key is to identify an instantaneous 

relation occurring during a transition between events. 

There have been a number of approaches to representing time in unsupervised neural 

networks. Temporal Kohonen Map [Varsta et al., 2001] is a variation of standard Kohonen 

SOM [Kohonen, 1995] with time delayed feedback. The network learns by associating 

current input to previous activity states. Hence, each neuron responds to a sequence of inputs. 

A possible drawback is the difficulty of determining the proper length for the delay line. 

Recurrent SOM (RSOM) [Koskela et al., 1998], can be presented as an enhancement of 

temporal Kohonen Map, finds regularities and nonlinear dependencies that exist in the data. 

Usually this model predicts the future of a temporal process. Both networks are good for 

prediction and auto completion of sequential patterns but proved not well suited for episodic 

memory representation.  

Nehmzow et al., [1991] proposed a system based on self-organizing maps to recognize simple 

environments. Another behavior based  approach proposed by Yamada, [2004]. In this work, 

sequences of motor action states tracked and transformed into input vectors for a self 

organizing network. Yamada cited that these behavioral input vectors are significantly  

sensitive to noise like small objects. 

Another localisation mechanism for autonomous mobile robots  based on current and 

preceding perceptions of the world was developed by Nehmzow, [1999]. This system uses 

both spatial and episodic information to establish the robot’s position in the world. The 

system consists of two stages. The first stage processes  raw sensory perceptions of the robot 

by  clustering them using a self organizing map. The second stage then clusters the last τ 

perceptions  in order to encode episodic information. Through this processes, meaningful 

internal representations of a mobile robot’s environment emerged, without any external 
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intervention.  Episodic mapping mechanism outperformed  static mapping mechanism 

offering disambiguation of two locations with similar perceptual signatures in different  time-

line  locations. Although the learning process is performed offline. 

 

5.4 Rats and Honeybees 

Recently, a large number of autonomous agents has been built but non of these systems has 

reached the flexibility and navigation capabilities of animals or even insects. This has 

motivated robotics researchers to investigate biologically inspired mechanisms that can be 

implemented on autonomous mobile robots. 

 

5.4.1. Local Rule Concept 

The local rule concept [Dyer, 1991], [Wehner et al., 1990] proposes that navigation is guided 

by multiple and independent memories. In novel situations, the animal’s behavior is 

dominated by one of these memories. Studies of insects [Collett, 2010] suggests that when 

they travel they memorize sequences of visual snapshots experienced on routes that lead to 

food and nest locations. In order to reach goal positions the insect correlates  currently 

perceived images with an image previously memorized and sets an appropriate goal. The 

correlation is a measure of association (resemblance) between two images to find those 

portions that match according to the measure of correlation. 

 

5.4.2. Cognitive map concept 

Cognitive maps, a term originally coined by Tolman, [1948], are types of mental processing 

humans use to structure and store spatial knowledge, allowing the mind to visualize images in 

order to reduce cognitive load, and enhance recall,  learn and decode information about the 

relative locations and attributes of phenomena in the spatial environment.  

Humans and animals are thought to form maps from their environment to aid navigation. 

Lynch, [1972] developed a library of generic components which he hypothesized that humans 

use to construct cognitive maps of urban environments. He also introduced the concept of 

place legibility, which is essentially the ease with which people understand the layout of 

place. 
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 Lynch  isolated distinct features of a city, with an intention to describe the essentials that 

renders it so vibrant, and attractive to people. To understand the layout of a city, people first 

and foremost create a mental map. Mental maps of a city are mental representations of what 

the city contains, and its layout according to the individual. These mental representations, 

along with the actual city, contain many unique elements, which are defined by Lynch as a 

network of paths, edges, districts, nodes, and landmarks.  

 

First, paths are linear separators, examples includes roads  and sidewalks. The second 

element, edges, are all other linear separators not included in the path group, such as  walls, 

and seashores. Third, districts are logically and physically distinct sections  of the city, 

usually relatively substantial in size, which have an identifying character about them. A 

wealthy neighborhood such as Beverly Hills is one such example. Fourth, nodes are the 

strategic points which exhibit  similar characteristics. Prime examples of nodes include a busy 

intersection with the same type of light posts. The fifth set of elements, are the  physical 

objects, in sharp contrast to their immediate surroundings, that act as reference points. 

Landmarks can be a church spire, mountain, school, or any other object that aids in 

orientation when way-finding. 

 

Gould, [1986] experimented with honey bees in order to show that the integration of multiple 

memories leads to the generation of novel information. In conflicting situations, animals 

would thus be expected to be able to find effective solutions to navigational problems. These 

representations suggest geostable map-like memory organisation  supported by celestial 

landmarks. Considerable evidence indicates [Cosens & Toussaint, 1985] that wood ants 

Formica Aquilonia use local landmarks to aid goal reaching. When changes were made in the 

environment, such as reallocating rocks, the insect updated their paths towards goal reaching.  

A self localization system based on the cognitive map model presented  by Gerecke et al., 

[1999]. The system employs a self organizing map to provide a list of candidate locations for  

which the robot is likely to be located. The localization method based on the self organizing 

map to disambiguate the output by moving the robot a small distance away from the initial 

position and accumulating evidence. The results show that the location of the robot can be 

computed with a satisfactory degree of reliability and accuracy within a fairly small radius of 

uncertainty.  
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5.4.3. Place Cells 

The existence of "cognitive maps" is inferred from the ways in which rats solve certain spatial 

problems. Problems like maze solving seem difficult and require  efficient and intelligent 

solutions. Maps are postulated because spatial problem solving can not be accomplished with 

only the  overall  structure. 

 

Place cells were first described  by O'Keefe et al., [1971]. Based on this discovery, O'Keefe et 

al., [1978] hypothesized that the primary function of the rat hippocampus is to form a 

cognitive map of the rat's environment. Both internal and external stimuli support the firing of 

these cells. Place cells depends largely on visual ques but are also active in the dark, 

suggesting  that   place cells firing   may also refer to a  complementary odometry  behavior. 

Other neurons with spatial firing properties are the grid cells, head direction cells, and spatial 

view cells. Franz et al., [1998] presented a topological representation scheme that employs 

visual homing strategies inspired by these findings of insect ethology. Moreover, Butz et al., 

[2010] inspired by the rat's hippocampus investigated the generation of a sensorimotor 

cognitive map based on a variation of the growing neural gas algorithm. A method have been 

presented by Hafner [2000], that use a computational model of cognitive maps for robot 

navigation purposes. The model, based on a self organizing algorithm, creates a topological 

map during an exploration phase. Hafner suggests that the self organizing code-vectors can be 

seen as equivalent to “place cells”. Another computational model of “place cells” spatial 

learning capabilities have been proposed by Strosslin et al., [2005], that use visual and self 

motion information in order to feed the input neurons of an unsupervised Hebbian learning 

algorithm. The approach validated both in a real and a simulated robot. 

 

Takahashi et al., [2001] investigated a method for robot navigation based in self organizing 

maps and reinforcement learning. The proposed  system, inspired by hippocampal place cells 

on rat's brains, consists of units which are being activated for specific locations within an 

environment (figure 3). In order to generate  a map adapting to a real world environment, data 

derived from locations occupied by the robot and topologically organized with a Kohonen self 

organizing map.  
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Figure 5.1. Hippocampal neurons firing patterns [Kazu Nakazawa et al., 2004] 

 

Barrera et al., [2008] presented a robot architecture with spatial cognition and navigation 

capabilities mimicking place cells neurons in hippocampus. The robot controller, based on 

hebbian learning, was able to build a topological map during exploration using reinforcement 

learning by means of an Actor-Critic architecture to enable learning and unlearning of goal 

locations. For a review about the approaches that implement biomimetic behaviors in the field 

of autonomous robot navigation, see [Franz et al., 2000]. 

 

 

5.5. Summary 

Animals and even insects depict spatial interpretation abilities that  dramatically outperform 

current methodologies for robotic navigation. Evidence form the neurosciences supports 

different hypotheses of how navigation skills are structured in the animal's brain. 

Investigating the structure and function of biological systems as models for the design of 

autonomous machines,  may lead to autonomous robots which exhibit great navigational 

abilities.  

 

This survey provides empirical evidence which support a fundamental premise for a bio-

inspired topological and appearance based map building model. More specifically, formations 

of neurons in the hippocampus of rat's brains exhibit high activation rates  whenever an 

animal is in a specific location in an environment, while insects seem to integrate multiple 
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sensor signals to generate novel spatial information. Moreover, according to the Cognitive 

Map Concept, surrounding environments  may be decomposed into simple topological maps, 

in the form of a graph structure, consisting of significant places connected with known 

pathways.  
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6. Learning and Forgetting 

 

This chapter first considers the nature of two memory models, semantic and temporal. Then 

focuses on the problem of catastrophic forgetting in connectionist architectures, such as artificial 

neural networks, and  explore ways that would prevent this undesirable effect. The chapter 

continue with proposed solutions from the  literature ranging from rehearsal to recurrent 

learning of sequences. 

 

 

 

6.1. Semantic Memory 

Semantic memory includes generalized knowledge that does not involve memory of a specific 

event. Semantic memory refers to the memory of meanings and  understandings, and other 

concepts related to knowledge and unrelated with the experience. Semantic and episodic memory 

constitute what is known as declarative memory, which is one of the two major divisions in 

memory. 

 

6.2. Episodic Memory 

Episodic memory refers to the memory of events, times, places and associated emotions and other 

knowledge in relation to an experience. It is thought of as being a "one-shot" learning 

mechanism. and needs a single exposure to an episode to remember it. Semantic memory, on the 

other hand, can take into consideration multiple exposures to each referent and the semantic 

representation is updated on each exposure. 

 

Episodic memory can be thought of as a data structure that ties together items in semantic 

memory. For example, semantic memory will reveal what a landmark looks like. All episodic 

memories concerning a district location will reference this single semantic representation of  the 

landmark and, likewise, all new experiences of this landmark will modify the single semantic 

representation of this landmark. An episodic mapping mechanism presented by Nehmzow, [1999]  

use a dual layer SOM network to classify both perceptual and episodic information from a mobile 

robot. 
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6.3. Catastrophic Forgetting 

In most artificial neural networks, learning capabilities suffer from sudden and total forgetting of 

all previous learned information. Carpenter et al., [1988] describe this problem with the analogy 

of a person growing up in one city, before moving to a second city. Catastrophic interference 

would be if the process of learning about the second city prevented this person from remembering 

how to reach the  house in which they grew up. Catastrophic interference is an implausible aspect 

of natural cognitive systems. Humans and animals do not forget suddenly. They are designed to 

adapt to unstructured and dynamically changing environments through interaction with their own 

experiences. This process of adaptation without being guided or managed is referred to the 

literature as unsupervised learning.    

  

Neural networks memory function is served from a single weight set. This specificity gives to 

these networks the ability to generalize, to be fault tolerant and noise immune. Although this lack 

of modularity also causes interference to previously stored patterns with the newly arrived 

patterns during learning [French, 1999].  

 

Catastrophic interference is a symptom which indicates a more general condition occurring in 

almost all memory systems, the so called plasticity-elasticity dilemma [French, 1999]. 

Representations developed by neural networks should be plastic enough to adapt to changing 

environments and learn new information, but stable enough so that important information is 

preserved over time. Both are desirable properties but the requirements of stability and plasticity 

are in conflict. In case of graph based topological representations, stability dictates mapping of 

input space while keeping a representation structure and relationships. Plasticity depends on 

extending input space and thus topology. A balanced model is difficult to achieve [Robins, 1995].  

Excessive plasticity often dramatically labelled as 'catastrophic forgetting' can be summarized as 

follows. After every original training is finished the network is exposed to the learning of new 

information, then the originally learned information will typically be greatly disrupted or lost. 

The problem of catastrophic forgetting was initially mentioned by McCloskey et. al., [1989]. The 

problem of catastrophic forgetting can be seen in figure 6.1.  During first step  a Self-organising 

map learns a  random tolopogy. During the next step  a new distribution is presented to the 

network. The algorithm experience total forgetting of the old distribution. This is also known as 

the luck of elasticity problem.  
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(a) The network learning the first distribution.  

 

     

 

 

 

 

 

                                     (b) The network learning the second distribution. 

      

figure 6.1. Catastrophic forgetting for a Self-Organising Network. Newly learned information completely erases all 

previously learned information. 

 

 

6.4 Rehearsal and Pseudo-Rehearsal Learning 

Several recent cases have highlighted the potential problems of catastrophic forgetting and 

explored various solutions mainly with variations of Hopfield [Robins et al., 1998] or Back-

propagation type networks [French, 1999], [Ans et al., 2000]. 

 

A particular connectionist approach to avoid catastrophic interference is to ‘rehearse’ the history 

of events as new learning occurs. This solution is unrealistic for most applications since it 

requires permanent access to all previously experienced events. The key issue as proposed by Ans 

et al., [2004] is to use a pseudo-rehearsal mechanism in place of a true rehearsal process. Each 

time a new item is to be learned, a temporary set of ‘pseudo-items’ should be created and learned 

alongside the original item. 

 

This simple algorithm works remarkably well, in that it appears to substantially reduce 

interference between sequential training items while still allowing new information to be learned. 
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Pseudo-pattern data set can be self generated from just feeding the target neural network with 

noise and tracking the corresponding output. These internally generated patterns represent an 

approximation of the static learned information so far.  

 

Some pseudo-rehearsal mechanism implementations [Ans et al., 2000] use reverberating process 

to generate pseudoitems. These pseudoitems act as attractor patterns generated from 

reverberations within a recurrent network structure. The aforementioned implementations have in 

common the use of the back-propagation learning algorithm and a dual-network architecture 

where two complementary networks exchange pseudo-items.  [McClelland et al, 1995] suggested 

that the hippocampus and neocortex act  as separately but complementary memory systems. 

Specifically, the hippocampus short-term memory storage gradually transfers memories over time 

into neocortex for long term memory storage. 

 

It has been suggested that this pseudo-rehearsal process could, in fact, be the mechanism that the 

human brain uses to correlate old and new information. Robins has viewed the pseudo-rehearsal 

method as an equivalent to the biological function of dream sleep consolidation hypothesis, which 

essentially explains integration of newly acquired information into existing long-term memory 

[Robins et al., 1999].  

 

6.5. Recurrent Neural Networks 

Unlike feed-forward networks, recurrent networks can be sensitive and adapt to past inputs. It is 

well known that conventional neural networks can be successfully used to define any function as 

long as there is a large enough number of hidden neurons. Τhe fundamental difference compared 

with a feed-forward architecture is that they operate both in an input space and  a space of hidden 

internal states. In its basic form, a recurrent  network  is a feed forward network with an 

additional connection from the hidden unit to itself.  

 

This seemingly small change to the network has a big impact in the overall behavior. When an 

input occurs, neurons calculate their outputs in the same manner as that of a feed forward 

network. However,  input now contains a term which reflects the state of the network (the hidden 

unit activation) before the pattern was seen. When patterns are subsequently presented, the hidden 

and output units states will represent a history of all patterns that have been learned so far. The 

behavior of the network is based on a temporal sequence of inputs. Feedback connections can be 
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freely configured from any unit to any other, even to the same unit. 

 

6.6. Elman network 

This is a simple recurrent network originated by Elman, [1990]. In these simple variations for 

each time step, a copy of the data of the hidden layer is transferred to a temporary layer (figure 

6.2). The operation is being analyzed as follows: 

 

 Copy inputs for time t to the input units 

 Compute hidden unit activations using net input from input units and from copy layer. 

 Compute output unit activations as u1.0sual 

 Copy new hidden unit activations to copy layer. 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Elman network architecture. 

 

6.7. Summary 

Almost all natural cognitive systems gradually forget previously learned information. Artificial 

neural networks exhibit catastrophic forgetting of old information as new information is acquired. 

The ability of these networks to generalize is also the cause of completely  erasing previous 

learned information. Gradual forgetting is not a totally undesirable effect. Forgetting can be 

interpreted as making space for new knowledge. In the case of an online robot mapping 

procedure, in a dynamic  or changing environment , unlearning parts of the map is highly 

desirable in order to update the spatial representation. As long as the memory requirements are 

limited,  when online learning is employed, past  correlates with ‘history’ which leads to memory 

requirements independent of their size.  
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This survey explores various solutions to the problem of catastrophic forgetting which have not 

yet been applied to unsupervised learning networks. Additionally, regarding a case where a 

mobile robot navigates in an unknown environment, the space of possibl sensor perceptions are 

not available at once. By combining a self organizing algorithm, that acts as the main topology 

mapper, with a self-refreshing mechanism, a robot could be able to map unknown environments 

incrementally and online. 
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7.  Scene Interpretation 

 

Chapter 7 presents an overview of the techniques used for global feature detection and 

extraction. At this stage, the problem of robot self-localization is reduced to a content based 

image retrieval problem.  Both color and texture image descriptors are proposed to ensure 

discrimination robustness.  Finally, In order to analyse texture information, two common choices 

are presented, Gabor filters and Wavelet decomposition analysis.   

 

 

 

 

7.1. Image analysis 

Image representation as a grid of pixel values is rather unnatural. An image slightly rotated or 

translated, changes completely the order of pixel values but to a human observer the data still 

looks very similar. Moreover, human visual perception system is able to understand the gist of a 

novel image, very fast, independent of it's complexity [Oliva et al., 2006]. Image analysis aims to 

extract meaningful and quantitative information from such large data matrices. Siagian et al., 

[2009], presented a robot localization system using biologically inspired vision, where image gist 

computed as global statistical signatures of the images. These signatures where further processed 

using a Monte Carlo localization algorithm. Most techniques are useful for a small range of tasks 

compared to human visual system that is capable of generic analysis for a wide range of tasks.  

 

7.2. Image Indexing 

Content based image retrieval (CBIR) is the application of computer vision to the image retrieval 

problem, that is, the problem of searching for digital images in large databases. ‘Content-based’ 

means that the search will analyze the actual contents of the image. The term 'content' in this 

context might refer to colors, shapes and textures, or any other information that can be derived 

from the image itself. Without the ability to examine image content, searches must rely on meta-

data such as captions or keywords, which may be laborious or expensive to produce. 

The term CBIR seems to have originated in 1992, when it was used by T. Kato to describe 

experiments into automatic retrieval of images from a database, based on the colors and shapes 



Chapter 7 – Scene Interpretation 

60 

 

present. Since then, the term has been used to describe the process of retrieving desired images 

from  collections on the basis of syntactical image features. Smith et al., [1996] proposed a 

technique which use color content to evaluate retrieval from a database of images and video. The 

techniques, tools and algorithms that are used  for CBIR originate from fields such as  pattern 

recognition, signal processing, and computer vision. 

A set of image signatures extracted by a mobile robot during terrain exploration, can be 

manipulated as a large abstract image database. Fraundorfer et al., [2007] proposed a vision-based 

localization and mapping method using image collections. Based on this method, robot's world 

represented as a linked collection of way-point images. The fundamental scheme behind a CBIR 

approach for self localization can be based on a measure of resemblance between the currently 

acquired image and the base of images stored as perceptual signatures regarding familiar terrain. 

Gonzalez et al., [2002] suggests a qualitative position refinement technique that localize a rover 

when it comes back in a previously perceived area, using an image indexing technique on 

panoramic views based on principal component analysis. The limitation of this procedure is that 

cannot perform incrementally, because all learning images are required to compute the subspace.  

 

7.3. Image  content descriptors 

The remainder of this chapter describes  methods to extract meaningful information from images 

so that they can easily be compared. Visual descriptors, are the building blocks to correlate pixel 

information with image content information as conceptualized by humans or animals. 

7.3.1. Color Descriptors 

Color is both subjective and personal. Color perception is a reaction in the brain to specific visual 

stimuli. Examining images based on the color information they contain is one of the most widely 

used techniques because it does not depend on image size or orientation. Color searches  usually 

involve color distributions like histograms  or correlograms, though this is not the only technique 

in practice. The aim of color spaces is to aid the process of describing color between people or 

between machines or programs. Each color space is suitable for a specific range of applications or 

specific optical devices. Color spaces, are abstract models, that describe the way colors are 

represented as a group of three or four components. 
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7.3.1.1. RGB Color Space 

This is the most well known space that is based on a tri-chromatic theory. The system is additive 

and very common in computer systems. The space is defined as a combination of the three 

chromaticities of Red Green and Blue primary colors. Since human vision system works in a 

similar way the RGB color model is well suited for computer graphics. Main characteristics 

include ease of implementation and device-independency. The main drawback is that color 

interpretation is not linear with visual perception.   

 

7.3.1.2. LAB Color Space  

The LAB space consists of a luminosity layer L, chromaticity-layer a indicating where color falls 

along the red-green axis, and chromaticity-layer b indicating where the color falls along the blue-

yellow axis. All of the color information is in the a and b layers. The advantage of such a 

representation, is the ability to measure the difference between two colors using a simple distance 

metric like Euclidean. Moreover, LAB color space has been reported to perform better than RGB 

in terms of clustering and classification when unsupervised learning algorithms such as NG and 

GNG are used [Marimpis et al., 2012]. 

 

 

The L*a*b* color space designed to approximate human visual perception rather than the output 

of physical devices. Compared to other color spaces like RGB, perception of lightness or color 

uniformity matches more accurately the human visual perception.  

 

7.3.2. Color Histograms 

Color histograms are considered to be robust for robot map-building [Werner et al., 2007]  and 

due to their statistical nature, provide a complete rotationally invariant representation when 

employed with panoramic cameras. Τhe main drawback, when referring to classification tasks, is 

that the representation ignores shape and texture lying on images. Color histograms exhibit 

considerable overlap when used to describe an image. Two images with different content may 

have identical histograms because they share the same color information. Additionally, color 

histograms are subject to noise interference such as varying lighting conditions and quantization 

errors. However, color information is faster to compute,  making it suitable for real-time 

applications, and also suitable for appearance based image retrieval tasks where object detection 

and recognition is not practically applicable.  
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7.4. Texture 

Τhere is not an actual definition that describes the concept of texture. Structural approach deals 

with image textures as a set of fundamental units named textured elements (texels). This approach 

is oriented on analyzing artificial textures and it is possible to describe their spatial relations by 

using voronoi tesselation applied on texels. Another approach,   provides information about the 

spatial arrangement of color intensities in the image. This approach, based on statistical analysis, 

tries to describe them with clear quantitative measures.  In general, this is well applied to natural 

textures because these are made of irregular patterns. 

 

Texture measures search for visual patterns in images and how they are spatially defined. 

Practically texture measures depend on how many textures are detected in the image and where in 

the image these textures are located. Later studies on human vision shows that the retina and 

brain have receptive fields (filters) responding only to specifically oriented lines within  a region 

of the retina, known as the complex cells [Field, 1987]. Complex cells are insensitive to local 

changes in feature positions therefore attractive for low dimensional representation of images  

and generalization.  

 

7.4.1. Gabor Filters 

Gabor filters are a common choice for texture analysis. Gabor analysis [Gabor, 1946] is based on 

linear bandpass filters whose impulses response is a Gaussian windowed sinusoid.  Because 

windowing operation express a point-wise product of the Gaussian and sinusoid function, the 

Fourier transform of the filter kernel is the convolution of the Fourier transform of the sinusoid 

function and the Fourier transform of the Gaussian function. A 2D Gabor function is described as 

follows:  

 

    (7.1) 
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In this equation,  represents the wavelength of the cosine factor,  represents the orientation 

angle of the Gaussian envelope in degrees,  is the phase offset in degrees, and  is the spatial 

aspect ratio, and specifies the ellipticity of the support of the Gabor function. 

 

The main motivation to use 2-D Gabor filter banks is to represent images in a way somewhat 

similar to complex cells. Other advantages of  Gabor filters is noise cancelation and redundancy 

reduction. Gabor filters have been proved very efficient on detecting relationships among image 

elements, as collinearity, parallelism, connectivity and repetitivity [Yvas et al., 2006]. 

Gabor filter banks are directly related to Gabor wavelets (Morlet wavelets), since a family of 

functions is built from dilations and rotations of a single mother function. In general, Gabor 

wavelets are not computationally cost effective. Usually, frequency domain sampling is achieved 

via a Gabor filter bank with various scales and rotations as can be seen in figure 7.1. The filters 

are convolved with the image, resulting in a so-called Gabor space. This process is closely related 

to processes in the primary visual cortex. Relations between filtered regions are very distinctive 

between objects in an image  and important activations can be extracted from the Gabor space in 

order to create a sparse object representation. 

 

 

 

 

 

                            

                        

 

 

Figure 7.1. Examples of  2D Gabor filter kernels for different scales and orientations. 

 

Actual discovering and localization of textures requires filters localized both in spatial and 

frequency domain. The main  approaches are  either a predefined tesselation of the frequency 

plane (figure 7.2) or a filter kernel configuration suited to a particular problem or family of 

images [Manjunath et al., 1996 ]. The first approach leads to large number of filtered images thus 

large dimensional feature space [Campbell et al., 1997]. Also, this approach may not be optimal 

 
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for specific tasks because Gabor wavelets are non-orthogonal and the filtered images can 

represent redundant information [Manjunath et al., 1996]. Many attempts have been reported 

trying to optimize the number of filters used. Another common approach to filter set selection is 

that of peak localisation in which local peaks in the frequency domain are found and filters 

centered around these are chosen.   

 

 

 

Figure 7.2. A daisy shaped filter kernel configuration is a predefined tessellation of the frequency plane, consisting of 

overlapping filters whose centre frequencies lie on concentric circles, logarithmically spaced, and centered at the origin.  

 

 

7.4.2 Wavelets 

Wavelets are wave-like oscillations that exhibits specific properties that make them useful for 

signal processing tasks. Wavelets are mathematical functions that are used to decompose a given 

function or a signal  into different self-similar components. The analysis is similar to Short Time 

Fourier Transform (STFT) analysis. The target signal is multiplied with a wavelet function just as 

it is multiplied with a window function in STFT, and then the transform is computed for each 

segment generated. However, unlike STFT, the width of the wavelet function changes with each 

spectal component. The advantage over STFT is that at high frequencies presents adequate time 

resolution and poor frequency resolution, while at low frequencies gives good frequency 

resolution and poor time resolution. In case of a continuous wavelet transform the wavelet 

functions are scaled and translated versions of a 'mother'  wavelet function. 

 

         
 

      
       

   

 
       (7.4) 
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Where  is the translation parameter that locates the wavelet function as it is shifted along a 

signal. This parameter holds the time information of the signal. The  parameter defines the scale 

of the wavelet and denotes the frequency information. Scaling expands or compress a signal. 

Large scales correspond to low frequencies and compress the signal providing detailed 

information, while small scales correspond to high frequencies and compress the signal and 

provide global information.  

 

Wavelet analysis is a promising tool and  provides an appropriate starting point for image 

representation in a way also resembling that of complex cells. Wavelets have been used for 

mining general image characteristics out of images in spatial-frequency domains.  Images can be 

analysed, containing both natural objects like trees, sea-surface, vegetation [Palamas et al., 2006], 

and artificial ones like buildings or furniture.  

 

Actual discrete wavelet analysis is performed  by applying a degradable filter bank to a signal 

(figure 7.3). These filters have different cut-off frequencies at different scales so different time-

scale representations of the signal are obtained. In the case of a 2D signal, such as images, the 

wavelet transform decomposes an image into a low resolution image and a series of detail images.  

Low resolution image is obtained by iteratively down-sampling the target image. Detail images 

contains information isolated with a hi-pass filter.  The low frequency content is the most 

important part since it is what gives the signal its identity. The high frequency content imparts 

flavour or nuance.  

 

  

 

 

  

 

 

 

 

 

 

 figure 7.3. Discrete wavelet transform with a degradable filter bank. 
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7.4.2.1 Haar wavelet 

This wavelet is one of the oldest and well known. It is also one of the simplest. Actually, Haar 

wavelet is a simple step function     taking values 1 and -1 on [0,1/2) and [½,1) respectively 

(figure 7.4). Every continuous function can be approximated with a Haar wavelet. Scales and 

translations can be described with the following formula. 

 

                         (7.5) 

 

The Haar wavelet operates on image data by calculating the sums and differences of adjacent 

elements. The Haar wavelet operates first on adjacent horizontal elements and then on adjacent 

vertical elements.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4. Haar wavelet 

 

7.5. Shape 

Shape refers to a particular region which contains important semantic information. Shapes are 

often determined with segmentation or edge detection operators. Accurate shape detection is very 

difficult to completely automate and require highly structured and controllable environments.  

 

7.6. Summary 

Image feature extraction refers to the problem of transforming the input data from a camera into a 

reduced representation.  Low level, global image  features,  based on color and texture, have been 

proved particularly descriptive for content based image retrieval procedures and are widely used. 
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Moreover, the human visual perception system can understand the meaning of an image in a 

single glance, independent of it's complexity. Behavioral evidence on fast scene perception, 

suggests that a scene can be estimated from global image features, providing a statistical 

summary of the spatial layout properties. Τhis section tries to reduce the problem of localization 

and map building to a content based image retrieval problem and to substantiate the choice of 

feature selection and extraction methods that have been used for carrying out the crucial 

experiments of this thesis.  The main motivation to use 2-D Gabor filters and Wavelet analysis for 

texture discrimination is to represent images in a way somewhat similar to complex cells in the 

virtual cortex. 
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8.  Appearance-based Map Building 

 

The following analysis carried out in order to verify the validity of the models, which have been 

analysed in the previous chapters, limiting the scope to the problem of  map building for a mobile 

robot. The first section of this chapter, encompass research results in the fields of visual feature 

selection, extraction and scene interpretation. The second section, refers to a map building 

method based on a self organizing map algorithm. The results and ideas are discussed in the 

remainder of this chapter.  

 

 

 

 

 

8.1. Experimental Procedure 

In this section, a comparison is made taking into consideration different methods to extract the 

most relevant information from a set of images, based on their global appearance. Three different 

descriptors were used, based on color histograms, Wavelet decomposition and Gabor filters. The 

desciptors were extracted directly from omnidirectional data, without un-warping the images.   

The study demonstrate how these descriptors affect the performance and the accuracy they offer, 

within a content based image retrieval context. Tests were conducted with the simulator that has 

been described in detail previously, in chapter 2.   

 

The elaboration of these experimental procedures employed two robot exploration strategies. 

First, the robot was allowed to move freely in order to explore the largest possible surface. 

Second, the robot moved along a pre-specified closed trajectory.  During both exploration 

strategies, the robot was collecting visual snapshots which then used to build a map based on the 

correlations between sensor signatures and actual robot positions. The robot receives sensor 

information only from a panoramic camera. The fundamental principle adopted was the 

following: While the robot navigates, continuously collects snapshots from the environment and 

for each snapshot color and texture descriptors are extracted. These perceptual signatures  were 

then used to build the environment representation that may also serve  as an example image 

description that it will then base its search upon.  
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A SOM algorithm was used as the main topology preservation mechanism since it is able to 

cluster high-dimensional data into a low discretized representation with, typically, two or three 

dimensions. This property make SOMs useful for exporting qualitative characteristics and for 

visualization purposes.  A graphic representation of the steps followed during the experimental 

procedure can be seen in figure 8.1.  

 

Goals 

 

 find a useful internal scene representation 

 let the robot build/learn the map itself 

 

challenges 

 

 Efficiency on handling multidimensional sensor information. 

 Implementation and computation simplicity 

 

8.2. Preprocessing 

Image preprocessing encompass all these techniques required for  enhancing data images prior to 

computational processing. In general  preprocessing operations involve background noise 

suppression, intensity normalization, color conversion etc.  The captured snapshots were in the 

RGB color space, in the  BMP format with a size of 256 x 256 pixels. 

 

8.2.1. Histogram equalization and filtering 

In order to ensure image quality a histogram equalization technique  was applied to all images to 

bring up better image detail and enhance colors. This method usually increase the global contrast 

of an image especially when an image has close contrast values. A histogram adjustment 

operation creates a better distribution of tonalities especially for low local contrast areas.  

Histogram equalization achieves this effect by expanding the most frequent intensity values of an 

image.  Αnother important advantage is the fact that textures appear more vivid and  with 

increased detail. In addition, a median filter, a nonlinear digital filtering technique that shows 

certain advantages compared to linear ones [Pitas et al., 1990], was applied to the images in order 

to suppress fine detail and preserve edge information. The resulting images were then fed to the 

feature extraction stage.  
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Figure 8.1. Steps of the bio-inspired procedure. 

 

8.3. Feature Extraction 

Sensor information coming from omnidirectional cameras is rich but extremely high dimensional. 

Thus a  feature extraction mechanism is necessary to represent scene information in a more 

compact way. Raw input data must be transformed into a compact representation of a small 

number of global features. These feature extraction techniques must be carefully chosen so as to 

extract only the relevant information, with respect to the task being performed, instead of the 

enormously sized input. An essential advantage of  omnidirectional vision sensors, when 

employed with global statistical features, is that no image de-warping from spherical to 

cylindrical coordinates (panorama) is required. 

 

8.3.1 Color features 

Images converted from the RGB color space to Lab color space and then are decomposed to  L, a 

and b components. Since luminosity component  L  only refers to perception of lightness, it was 
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excluded from the process.  The histograms were then divided into 12 bins in an effort to coarsely 

represent the content and reduce dimensionality. A feature vector was then formed by 

concatenating the two channel histograms in one vector (figure 8.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2 . Color feature extraction procedure. Images are decomposed to a* and b* channels. Both histograms 

extracted and concatenated in a single image signature.   
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8.3.2. Texture 

This step was performed twice consecutively with a Gabor filter bank and a single stage Wavelet 

decomposition.  For a comparison of different wavelet and Gabor transforms, for texture 

annotation, see [Ma et al., 1995]. The purpose of this approach is to determine whether it is 

possible to extract meaningful texture information directly from panoramic images. As stated 

before, these images presented low resolution, distorted textures. In order to apply these 

transformations it is necessary to convert the images to grayscale. 

 

8.3.2.1 Gabor filter design 

A Gabor filter samples the frequency space of an image providing information about oriented, 

band-pass, localised textures.   Usually filters are reported with frequency bandwidth in octaves 

and orientation bandwidth in 30, 45 or 60 degrees. For this experiment three directions selected 

   ,   and    as recommended in [Clausi et al., 2000] and only one frequency with the 

formula suggested in [ Zhang et al. 2002] and calculated as follows. 

 

       
      

  
 for     

 

Where Nc is the size of the image, resulting on a value of F = 0.25552.  
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Figure 8.3. Output images (c) after the convolution between  the Gabor filter kernels (b)  and the input image (a)  for 

three different orientations and one central frequency. 

 

 

This bank of Gabor filters of different orientations and one central frequency convolved with the 

whole grayscale images. From these image responses (figure 8.3) the following five statistical 

moments calculated, to represent general texture descriptor,  yielding for a feature vector with 15 

elements. These statistical  energies are commonly used to describe texture for classification and 

segmentation purposes [Howarth et al., 2006]. 

 

                                               (8.1)   Average Intensity 

                                                    (8.2)    Average Contrast 
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                 (8.4)     Uniformity      

                                     (8.5)        Entropy         

 

8.3.2.2. Wavelet texture descriptors 

For each snapshot a degradable filter bank was applied in order to  decompose the  image into a 

low resolution image and a series of detail images. For every detail image the afforementioned 

statistical attributes were calculated. It is noteworthy the fact that a wavelet decomposition 

procedure is computationally more effective compared to a Gabor filter bank implementation and 

convolution with target images.    The wavelet, that image decomposition based upon, is the well 

known Haar Wavelet (figure 8.4). Again, the  texture feature vector consist of 15 elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4. Output of the Haar wavelet image decomposition. Image A1 is the output of the low pass filter, and the H1, 

V1, D1 the Horizontal, Vertical and Diagonal detail images respectively. 
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8.4. Feature normalization 

Scaling of variables is of special importance since the self-organizing  algorithm use the 

euclidean metric to measure distances between vectors. If a variable moves between  greater 

bounds than any another, then will completely dominate on the topological arrangement because 

of the superior impact on the distances measured. Typically, one would want the variables to be 

equally important. The standard way to achieve this is to scale all variables so that their variances 

are inside a predefined range. A linear  scaling of the numerical variables were applied to all 

feature vectors, with data variance normalized to one, and values normalized between [0,1].  

                                                                                            

8.5. Feature performance 

Good visual features are more stable than raw data under a variety of conditions such as 

illumination variance or different viewing angles. As have been mentioned before, rotating an 

omnidirectional camera results to raw data rotation in the opposite direction so the number of 

pixels seen by the camera remains constant. Τhis implies the same color histogram from every 

angle. The downside of this invariance is that different images may result in similar features. 

Discriminant power may be altered by a combination of texture and color information, although, 

statistics applied globally to an image suffer from the same problem such as color histograms. A 

comparative study was carried out to evaluate the strength of the visual features, in terms of 

image retrieval performance. To test this approach these steps were followed: 

 

 The robot  placed in ten predefined  positions, manually.  

 For each test position the three feature vectors were extracted corresponding to each 

feature category, labeled and stored in a data base. 

 For each test position, a number of 100 snapshots were acquired, in random positions, 

within an area of influence determined by a maximum allowed physical distance around 

each test position.  Then associated feature vectors were extracted and stored in the data 

base.  

 A range query was specified to retrieve all images up to a distance threshold. For each 

test position the threshold corresponded to the most physically distant random point in 

the current area of influence.  The metric that was used to calculate feature vector 

distance is the standard euclidean distance and applied to all images in the data base. 
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From each image, three feature vectors were extracted and stored into three different categories. 

The first category contained the feature vectors with the color information, with a size of 24 

elements. The other two categories contained the feature vectors that consisted of both color and 

texture information extracted from Gabor filters and Haar wavelet responses respectively (figure 

8.5). The mixed feature vector had a size of 39 elements. 

 

 

 

 

 

 

figure 8.5. Image signature as a combination of color and texture features. 

 

The retrieval performance of the system can be measured in terms of it's recall and precision. 

Recall measures the ability to retrieve the correct image associated with every feature vector 

(figure 8.7). 

 

Recall = A / C   (8.6) 

 

Where A is the number of relevant retrieved images and C is the total number of images in the 

database. The precision in image retrieval can be defined as the measurement of the retrieved 

relevant images to the query of the total retrieved images (figure 8.6). 

 

Precision = A / B   (8.7) 

Where A is the number or relevant retrieved images and B is the total retrieved images. The 

precision and recall measure show the effectiveness   of image retrieval with relevancy to the 

query and database. Hence, they can be combined to a single measure that describes the accuracy 

of image retrieval (figure 8.8). 

 

                    
 

 

 
 
 

 

   (8.8) 

 

Where r is the recall ability and p the precision in retrieving relevant images. Harmonic mean 

express a compromise between precision and recall and is high when both values are high. 
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As can be seen in figure, the combination of color and texture features  provide better 

classification accuracy than color features alone. Storing both color and texture statistics is very 

common in CBIR systems [Datta et al., 2008]  This increase in performance  is in general true 

since adding channels of information can lead to perceptually distinguish between different 

positions of the environment. However, this depends on the  visual information that is present on 

every scene and the distance metric that is used.  

 

Combinations of color and texture features exhibited performance which was considered 

proximal (figure 8.8) without significant improvement from the color features alone. This may be 

attributed to the fact that the feature extraction methodologies that followed, were not optimized 

for selecting the best filters nor an adequate size of filter kernels was designed. Since overall 

performance of Gabor filter responses led to slightly better results,  all other experimental 

procedures were performed with only these texture features. 

 

 

 

Figure 8.6. Precision in retrieving relevant images for every set of feature vectors. 
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Figure 8.7.  Recall ability to retrieve the correct image associated with 

 every feature vector 

 

 

Figure 8.8. Harmonic mean express the accuracy of image retrieval with  

relevancy to the query and database. 
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8.6. Texture feature comparison 

The procedures followed for texture feature extraction were not the optimal. Both filter banks 

have a small number of filters that could not describe  with a great accuracy the textures being 

present in each image. Although,  cooperatively with the color features,  were able to minimize 

problems such as perceptual aliasing and assist on retrieval tasks. A potential problem is the low 

level of detail that omni-directional images provide. An un-warp from polar to rectangular 

coordinates may help to add discrimination robustness however requires more computational 

resources. 

 

8.7 Self-organization of visual perceptions 

In order to test the efficiency of the feature selection and extraction process, a SOM algorithm 

was trained for two sets of input data.  For each set of data a robot performed a navigation 

scenario. First, the robot was allowed to explore the environment, autonomously, having as a key 

behavior to avoid obstacles. Navigation terminated after collecting 3000 image signatures. 

Second, the robot manually operated along a closed loop path in the same environment (figure 

8.9). The dotted line in figure 8.7 exhibits the shape of the trajectory the robot manually 

traversed. At regular time intervals a new snapshot was obtained,  for a total of 500 snapshots. 

 

 

 

 

 

 

 

 

 

 

Figure 8.9. Plan of the simulated arena. The dotted line indicates the route that the robot followed during the second 

navigation scenario. 

 

After the description of scenes to only a set of few features, in this specially prepared 

environment, a SOM algorithm applied on these set of visual perceptions to adapt a mobile agent 

to the surroundings without the need to define and model the relevant aspects of the environment. 
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The size of the network grid was 12x12 nodes as depicted in figure 8.8. The other learning 

parameters for the SOM algorithm were: Initial training radius = 2 and final training radius = 0.1  

the neighborhood area of influence, and Gaussian, the neighborhood function of influence. 

Distance metric was the standard Euclidean.   

 

The system proved capable of transforming the set of image signatures into a limited number of 

discrete perceptions that cover a small area of the environment and which could then be used for 

navigation purposes. Τhe multitude of all these signatures quantize the input space in discrete 

regions with neighboring signatures mutually similar (figure 8.10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.10. SOM codebook vectors. Each element in the grid corresponds to an image  vector signature, with 

neighboring signatures mutually similar. 

 

8.8. Data Labeling 

In order to evaluate an information retrieval system, such as a SOM algorithm a labeling method 

is required to assist the user in understanding the data collection that was presented by the map.  

The SOM was labeled as follows. For each image find the best matching node. If this node is pre-
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occupied, replace with the current image if this is closer to the node than the previous one.  Then, 

for each  best matching unit, the associated image replace the code vector in the visualization 

map. Labeling was done automatically and some units in the map may thereup remain unlabeled. 

The labeled graphical representations of the training results dictated that similar images were in 

adjacent nodes on the topological map.  

 

 

Figure 8.11. SOM similarity map resulted from the autonomous exploration scenario. Snapshots in curly brackets 

correspond to different places that perceived as the same. Some nodes were not assigned to images due to the fact that 

no images found to be closer to these nodes than any other node. 

 

If best matching units are associated to each node, then SOM can be also  

seen as a similarity graph.  Some of the nodes may appear unlabeled as can be seen in figure 8.11 

due to the fact that no images found to be closer to these nodes than any other node. This could 

also be explained by the  presence of obstacles in the environment of the robot. Since SOM 

scheme is equivalent to a projection from multi-dimensional data (24 or 39 vector elements) to 

only two dimensions, information may lost in the process. Due to the nature of the global 

statistics methods that have been used, some snapshots appear in more than one location in the 
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map (figure 8.11). In these cases, the robot encountered perceptual aliasing problems, which 

means that two or more different places perceived as the same. Moreover, some snapshots do not 

correspond to the areas that have been located.  

As can be seen, in the case of the closed pathway experiment, map building appears to be 

satisfactory, but only a few nodes contributed to the procedure (figure 8.12). This can be 

attributed to the fact that the SOM rectangular lattice structure is fixed, and therefore, was a trade-

off between continuity and resolution of the mapping.  

 

   

Figure 8.12. SOM similarity map for a closed loop trajectory.  

 

 

8.9. Results 

An appearance based neurocomputational architecture that emulates hippocampal place cells 

learning has been validated on a simulated mobile robot, and the results demonstrated the ability 

to efficiently  map the surrounding environment. Three global measures of image similarity have 

been compared for use in topological mapping with a catadioptric camera as the only sensor. 

Experimental results with images acquired from a simulated scene indicated that a simulated 
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agent could map the environment  from a set of training images. The approach appeared 

satisfactory on processing spatial information without identifying special landmarks, for both 

exploration scenarios. The methodology, that make use of only visual  cues about the 

environment, was able to generate “concept patterns” where a robot could search upon to identify 

it's position. Depending on the relationship between input and output space of a SOM, some 

information of the topological arrangement may be lost in the process. Since input dimension is 

higher than the dimension of the map grid, a representation mismatch can be detected between 

input and output spaces.  
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9. Case study: Robot Navigation 

 

This chapter examines the way in which a robot might use the sub-symbolic representations of an 

environment that have emerged through self-organization. These representations are extremely 

difficult for a human to interpret, especially for multi-dimensional manifolds.  Using both 

proprioceptive and exteroceptive information, through an evolutionary strategy, it was possible 

to build a robot controller that use this map for navigation purposes. In order to reach target 

positions, the robot  move in a way that try to minimize the difference between the current 

perceived image and an image that corresponds to a goal position. 

 

 

 

 

 

 

9.1. Introduction  

With respect to vision based robot navigation, most research work is focused on four major areas: 

map building and interpretation; self-localization; path planning; and obstacle-avoidance. Of 

these four major research areas, self-localization is of key importance. The recognition of the 

initial position, the target position, and the current position occupied by the robot are all bound to 

a self-localization process. This chapter, describe a combination of a developmental method for 

autonomous map building and an evolutionary strategy to verify the results of the map 

interpretation in terms of navigation usability. 

The strategy involves two discrete phases: map building and navigation phase. In the first phase 

an agent freely explores a pre-determined simulated terrain, collecting visual signatures 

corresponding to positions in the environment. After the exploration, a self organizing algorithm 

builds a graph representation of the environment with nodes corresponding to known places and 

edges to known pathways.    

During the second phase, a population of robot controllers is evolved to evaluate map usability. 

Robots evolve to autonomously navigate from an initial position to a goal position.  In order to 

facilitate successful translation, a shortest path algorithm is employed to extract the best path for 

the robot to follow. This algorithm also reveals all those intermediate positions that the robot 
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needs to traverse in order to reach the goal position. These intermediate positions act also as sub-

goals for the evolution process.  

 

9.2. Sensing the Environment  

To be fully autonomous, a robot must rely on its own perceptions to localize. Perception of the 

world generates representation concepts, topological or geometrical, within a mental framework 

relating new concepts to pre-existing ones [Ascani et al., 2008]. The space of possible perceptions 

available to the robot for carrying out this task may be divided into two categories: Internal 

perception (proprioception) or perceptions of its own interactions with the world, associate 

changes of primitive actuator behavior like motor states; external or sensory perception 

(exteroception) is sensing things of the outside world. A robot’s exteroceptors include all kinds of 

sensors such as proximity detectors and video cameras. The  system uses only visual information 

for map building and navigation.  

9.3. Bio – Inspired Robot Navigation 

The source of inspiration for this method comes from the animal kingdom. Small animals, such as 

insects, navigate through natural environments seemingly with little effort. For example, despite 

their relatively simple nervous system (and hence limited memory capacity), bees and desert ants 

are able to retrace their movements.  Such a level of efficiency indicates flexible representations 

of the surroundings based on visual cues taken from target locations such as home and food 

sources [Collett et al., 1998]. These representations seem to have an appearance based flavor 

rather than a Cartesian arrangement of landmarks. To visit target locations after prior exploration, 

insects traverse in a way that reduce discrepancies between the stored snapshot and their current 

retinal image [Cartwright et al, 1982].   

As stated already, the main drawback of appearance-based methods is that localization is only 

possible in previously mapped areas. Like landmark based mechanisms, appearance based 

navigation systems suffer from the problem of perceptual aliasing [Siagian et al., 2009], the 

situation that different locations produce identical sensory perceptions. A possible solution could 

be the incorporation of temporal or odometry   information to resolve any conflicts. Another 

possible solution is to divide the goal into a set of sub goals of smaller tasks easier to fulfill. Such 

an approach, even if perceptual aliasing is present, is more efficient since subtasks are easier to 

manage and achieve. 
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9.4. Environment Representation  

The most natural representation of a robot's environment is a map. In addition to representing 

places in an environment, a map may include other information, such as properties of objects, 

regions that are unsafe or difficult to traverse, together with information of prior experience. An 

internal representation of space can be used by a robot to pre-plan and pre-execute tasks that may 

be performed later.  

A topological map is one which captures the connectivity of the environment and has been 

simplified so that only vital information remains and unnecessary detail has been removed. The 

simplicity of topological maps support much more efficient planning than metric maps [Butz et 

al., 2010],[Thrun, 2002]. 

The key to a topological relationship is based on an abstraction of the environment in terms of 

connectivity between discrete regions or objects, with edges connecting them. In the simplest 

form, this may involve a complete absence of metric data. A robot employing this representation 

has no real understanding of the geometric relationship between locations in the environment but 

the enclosed information is sufficient for the robot to conduct point to point motion. The use of 

graphs has been exploited in many robotic systems to represent spaces. The following example 

[10 franz, 1998] is representative.  

A graph is a kind of abstract data structure that consists of points or nodes connected by links, 

called lines or edges. Each node corresponds to one of the unique landmarks and each edge 

corresponds to known paths between them. If the environment consists of networks of corridors 

and rooms (as found in many indoor environments, such as office buildings or hospitals), it is less 

complex to specify the topology of important locations and their connection suffice.  

Such representations present some advantages difficult to ignore. First and foremost the 

computational and memory cost is relatively low. The path planning in metric maps can be 

computationally very expensive; unlike the lightweight planning nature of graph based structures. 

Second, they do not require accurate determination of robot's position and therefore are less 

sensitive to error accumulation, commonly occurring in metric mapping approaches.  Topological 

visual navigation is usually based on key-frame matching to self-localize and navigate to a 

previously visited location [ Booij et al., 2007],[ Wang et al., 2009].  
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9.5. Map-building Phase 

9.5.1. Terrain Exploration 

The proposed approach considers robots to be like insects, equipped with simple control 

mechanisms tuned to their environments. Therefore, a model of terrain exploration using a simple 

two dimensional Brownian random walk was used. Such an approach could mimic the navigation 

behavior of simple animals and microorganisms such as insects. The advantage of this approach 

is minimization of simulation artifacts such as cyclic behavior. During this step the robot collects 

panoramic snapshots at regular time intervals.  

 

9.5.2. Visual Feature Extraction 

This collection of panoramic images represents a large amount of raw data and therefore it is 

necessary to extract some specific features that describe the content of each image.  Image 

analysis based on color information is robust for robot map-building and image retrieval 

problems and, due to their statistical nature, provide a complete rotationally invariant 

representation when employed with panoramic cameras (figure 9.1). Moreover, they are also 

computationally cheap to implement.  

 

 

 

 

 

 

 

 

Figure 9.1. Omnidirectional snapshot and extracted RGB histograms.  

The set of color signatures, extracted during terrain exploration, can be manipulated as a large 

abstract image database. This is the foundational scheme of a content based image retrieval 

approach. Self localization can be based on a measure of resemblance between the currently 
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acquired image of the robot and the base of images stored as perceptual signatures representing 

familiar terrain. To measure color histogram similarity, the standard Euclidean formula have been 

used. This distance metric is a comparison between the identical bins in the respective histograms 

and all bins contribute equally to the distance [Chang et al., 1996]. The Euclidean distance 

between two color histograms h and g is given by  

                                                        
                      (9.1) 

 

9.5.3. Self-Organization of Visual Signatures 

There are many reasons to use a self organizing system for robot mapping, preferred over other 

mechanisms that have no plasticity properties [Nehmzow, 2000].  The first reason is that less 

parameters, which describes the robot operation, need to be predetermined.  Information given by 

sensors incorporate noise, leading to erroneous conclusions regarding spatial perception. 

Information may be contradictory  when sensor readings come from different sensors but 

represents the same robot position.  Data clustering addresses the problem of noise and handles 

meaningless information.  

Growing Neural Gas is a network  that can learn the topological relationships from an input set of 

vectors using a variation of the Hebbian rule. GNG dynamically add or remove nodes and can 

approximate the input space with higher accuracy compared to a network with predefined 

structure  such as the Kohonen self organizing feature map [Kohonen, 1982]. Assuming that a 

given distribution of points is represented by a container shape, the algorithm will begin to create 

freely moving particles which will try to expand uniformly to fill the input space.  After 

convergence is reached, the network nodes then represent the shape of the container. 

9.6. The Navigation Phase 

9.6.1. Path Planning 

Prior to navigation, path planning is an important issue as it directs the robot on how to get from 

an initial position to a goal position. Since the environment is stationary with no other moving 

obstacles, the process of path planning is straightforward. Topologically, this problem is 

equivalent to the shortest path problem of finding a route between two nodes in the graph. Many 

algorithms have been developed to find a path in a graph. For example, Dijkstra's algorithm 

[Dijkstra, 1959] computes the optimal path between a single source point to any other point in a 
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graph (figure 9.2). Since we compute the path once after the mapping phase, a real time algorithm 

is not necessary.  

9.6.2. Self-localisation 

The robot continuously keeps track of the current location. While the robot moves, collects 

snapshots and exports corresponding color histograms. Every newly acquired histogram is being 

compared with every stored histogram in the graph structure. The robot self-localizes when the 

closest histogram on the topological map is found. Each of the nodes in the graph represents a 

specific histogram and the closest one indicates the current position of the robot on the map.  

9.6.3. Visual Navigation 

For the robot to conduct point to point navigation, a controller is necessary that will move the 

robot through a set of intermediate points towards the final position.  The proposed robot 

behavior controller realizes an Elman neural network (Elman NN) and a genetic algorithm (GA).  

Neural network architectures are particularly well suited for complex pattern classification tasks 

and genetic algorithms are good optimization procedures because they can explore large and 

multidimensional spaces to find global solutions. Hence, they are well suited for training neural 

networks [Palamas et al., 2013].   

The neural controller is composed of a grid of input neurons whose activations are given by the 

color bins of the corresponding histograms. Two output neurons control the angular torque 

applied to the left and right wheel of the robot. A set of neurons with recurrent connections fed 

from hidden and output neuron layer, help to learn past instances and correlate them with new 

information. The input neurons of the neural network are activated by sensory data, and the 

output neurons control the motors of the robot. Within a population, each individual has a 

different genome describing a different neural network (different weight vectors), thus resulting 

in specific individual responses to sensory-motor interactions with the environment. These 

behavioral differences affect the robot’s fitness, which is defined, by the number of successive 

milestones traversed by the robot.   
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Figure. 9.2. Disjkstra's graph search algorithm output. 

 

Evolutionary strategies require that a large population of individuals be evaluated over the course 

of many generations. In the case of evolutionary robotics it has been assumed that it would take 

far too long to do all of these evaluations in the real world. The main practice is to evaluate in 

simulation, whether partial or in whole. The aim of this evolutionary strategy is to create a 

population of agents with different genomes, each defining a set of parameters of the control 

system of the robot. The genome is this set of parameters whose translation into a phenotype, the 

actual behavior of the controller, can cause the system to depict biological behaviors.  The 

artificial genome decodes the weight values associated to synaptic connections of an artificial 

neural network that determines the global visual navigation behavior.  

 

9.7. Neural Network Controller 

The neural network that is used (figure 9.3) is a typical feed-forward architecture with evolvable 

thresholds and discrete-time, fully-recurrent connections at the output layer [Floreano et al., 

2005]. This type of neural network is used to do sequence processing, especially when these 

sequences are made of indexed data [Elman, 1990]. The processing occurs in steps and it is 

assumed that neuron outputs are computed instantaneously. A set of twelve input neurons receive 

information about the color distribution from the images captured from the panoramic camera.  

Each neuron covers a band of the color variations in the image that is a bin value is assigned to 

each input. Each of the RGB color components of the image are divided into four bands.  The 

activation of each neuron is scaled in the interval [0, 1] so that activation 0.5 corresponds to zero 
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torque applied in the wheels. Activation values above and below 0.5 stands for forward and 

backward rotational speeds, respectively. The two output neurons act also as proprioceptive 

information about the speed of each wheel. A set of short term memory units stores the values of 

the output neurons at the previous sensor-motor state and sends them back to the output units 

through a set of recurrent connections [Floreano et al., 2005]. All other neurons in the hidden 

layer have recurrent connections to store previous activity.  

                                  f(x) = 1/(1 + exp(-x))                            (9.2) 

 

Neurons use the sigmoid activation function in the range [0,1], where x is the weighted sum of all 

inputs (equation 2). For each discrete time interval they encode both the sensorial information and 

the motor commands passed to the wheels.  

9.8. Evolving Controllers 

Algorithms in Evolutionary Robotics (ER) frequently operate on populations of candidate 

controllers, initially selected from some random initial population of controllers. This population 

is then repeatedly modified according to a fitness function, a particular type of objective function 

that is used to indicate the closeness of a given design solution to achieving a set of aims. 

Evolutionary Robotics builds upon several aspects of artificial evolution. The Genetics aspect is 

about what goes into the artificial chromosomes and how these chromosomes are mapped into 

individuals. Genetic encoding and genotype-phenotype mappings are the key to the evolvability 

of a system. In our case the genotype represents the architecture of a controller in a form of a 

binary string and the phenotype represents the possible solution space. The population of robot 

controllers is also referred to as genomes.  
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Figure. 9.3. Discrete-time recurrent neural network 

 

Evolutionary algorithms have been widely used to design cognitive architectures for robots with 

emergent behaviors (see [Nolfi, 2002],[Harvey et al., 2005] for an overview). The main strength 

is their ability to cope well with high complexity problems using only a high-level reward 

function. Best candidates are rewarded only for their global efficiency because of the 

impossibility of foreseeing every sub-goal the robot has to solve.  If the global objective is very 

hard then initial performance may be so poor that the evolutionary process is hard to initiate.  

Another problem is local minima in which the evolutionary process may become trapped. A 

fitness function must be simplistic yet descriptive enough for targeting specific goals. Designing a 

fitness function is essential to the successful use of a genetic algorithm.  If the fitness function is 

poorly designed, the algorithm will either converge on an inappropriate solution, or will have 

difficulties in converging at all. 

 

For a successful incremental evolution process the system requires an accurate knowledge of the 

problem to be solved so as to lead the evolutionary algorithm to perfect convergence. For graph 

based robot navigation the global task can be divided into smaller tasks. Both global task and sub-
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tasks are self-similar, i.e. the goal is to transfer the robot from one point to another.  Since in our 

case the different sub-tasks are in nature exact copies of the main task, by just dividing the path 

that the robot needs to traverse, the only requirement is to determine when to switch from one 

sub-task to another. Fitness function is an objective function used as a metric to calculate the 

distance of each individual from a set of goals. 

The success of evolutionary algorithms depends on the fitness function design. A good function 

design must guarantee that a collection of solutions exists, differentiating enough, with values 

that changes neither too rapidly nor too slowly with the given parameters of the optimization 

problem. The fitness function was designed to select robots for their ability to arrive at the goal 

zone.   The neural network has a set of evolvable connections that are individually encoded in the 

genome. A population of 100 individuals is randomly initialized and each individual genome is 

decoded into the synapses of the neural network.  The twenty percent of the population with the 

highest values are used for reproduction and the rest discarded. The new genomes have a 

crossover value of 0.1 per pair and mutation probability of 0.01.  The meaning of crossover is 

swapping a pair of genetic strings around a randomly chosen point. Mutation consists of toggling 

the value of a random bit in the genetic sequence. The best two genomes from the previous 

generation are inserted to the current generation, unaltered, to improve the stability of the process. 

This strategy is known as elitist selection.  

 

9.8.1. The Evolution Process  

The fitness function was designed to select the best robots to arrive at the goal node and is 

described as follows.   The fitness value is the percentage of the distance the robot covered 

between two adjacent nodes in the path. Every time the robot reaches a node in the node 

sequence, as extracted from the path planning phase, it is rewarded with a value of 1. Since it is 

extremely difficult for the robot to match the current perceived histogram with the target node, 

the assumption was made that 90% of the covered distance corresponds to successful goal 

reaching.   

The robot must traverse the nodes in the specific order as dictated from the outcome of the 

Dijkstra's algorithm. If the robot arrives at a goal node that is not successive in order, the robot is 

not awarded for this sub-goal. Successful individuals have to arrive at all sub-goal nodes through 

this specific order. The running fitness value for every agent in the population is the summation 
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of extra value gained for each successive step plus the current percentage of the distance between 

currently arrived at node and the next one in the sequence. 

 

 

 

 

 

 

 

 

 

Figure 9.4.  The simulated environment and the robot used in our experiments 

 

9.9.Experimental Setup 

9.9.1. The Robot 

The simulated robot can be seen in figure 9.4. The omnidirectional camera is widely used in 

visual based robot navigation and localization, which is due to the large field of view. Images are 

obtained by placing a convex mirror a short distance from a camera. The main advantage that led 

us to promote this solution is the large field of view compared to orthographic or standard 

cameras. The system provides a 360
o
 view of the robot’s environment around the vertical axis 

when it is mounted on top of the robot. Landmarks are always in the field of view except for 

occasional occlusion and therefore have increased reliability. This is advantageous when utilizing 

topological representations as the more information the image contains the more stable it is.  

Another advantage is the orientation independency when employed with statistical methods such 

as color histograms.   
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Figure 9.5. Simulated differential drive robot. The robot has four bumpers to detect collisions with walls and obstacles.   

 

 

The robot is cubical in shape with two independent drive wheels attached in the middle of the 

chassis and two trailing casters, front and rear. This is a typical differential drive setup and the 

robot can change its direction by varying only the relative rotation speed of its wheels and hence 

does not require an additional steering mechanism. The robot is equipped with two, one bit, 

horizontal axis bumper bars. The purpose of the tactile sensors, when a reaction to a collision 

occurs, is to reposition the next individual to initial conditions and start a new simulation trial. 

 

9.9.2. The Environment  

For the experiments a simple 3D world is used, a closed rectangular arena with colored obstacles, 

dark gray walls and no ceiling (figure 9.5). This environment is not as visually complex as a 

typical real life environment. The primary goal was to demonstrate the plausibility of evolving 

agents that could use cognitive maps and behaviors based on visual information which otherwise 

would be very difficult if not impossible to employ.     

9.9.3. Experimental Procedure  

Initially a robot is allowed to freely navigate in the environment in order to build a collection of 

500 panoramic snapshots of the environment from different perspective views.  A GNG 

algorithm, performing off-line, formed a grid with topological relations between these visual 

cues. The grid starts with only two nodes and grows until the criterion of 20 nodes is met.  Based 
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on this grid, a shortest path is extracted to indicate optimal route from a starting position to a 

global target position in the arena.  A genetic algorithm evolved a neuro-controller to allow a 

robot to successively follow the six nodes the optimal path consists of. Each individual robot 

tested for a period of time lasting for 10 seconds or 1000 simulation cycles. Trials were truncated 

earlier if collisions detected from the bumpers. 

 

 

 

 

 

 

 

 

 

 

Figure 9.6.   Best individual fitness value from each generation. 

 

9.10. Results 

This section shows experimental results of the proposed method. Several sets of experiments 

were performed with varying parameters relating with the GNG algorithm, the neural network 

architecture and the genetic algorithm. Something worth mentioning is the fact that the dark 

shades of the environment gave better results than other colorations. This is simple to explain 

since black color interprets as absence of color and does not interfere with the three other 

landmarks, the discrete nature of which is being enhanced.   

Figure 9.6 depicts a record of the best individual score for each generation to evaluate the 

solution domain. As can be seen, a navigation controller evolved after 66 generations. The robot 

that used this controller, managed to pass through all the intermediate points until the final 
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objective. The path followed by the robot is shown in Figure 9.7. The gray and red points 

correspond to intermediate sub-goals and final goal respectively. The optimal path planning 

computed with Dijkstra's algorithm between an initial and final position in the graph that was 

generated by the GNG algorithm.  

 

 

 

 

 

 

 

 

 

Figure 9.7. The robot successfully followed the sequence of nodes. The small gray dots are the positions that the robot 

encountered the threshold of 90% of the distance covered between two adjacent nodes. (A successful controller is 

always awarded with a fitness value of 5).  The difference between the actual position and the robot position is due to 

the error in the calculation of the best matching unit and the 90% accuracy threshold. 

 

9.11. Summary 

This chapter explores the advantages of evolutionary sub-goal robot navigation with a cognitive 

map architecture.  All methods used have been tested using a simulated environment. The GNG 

algorithm has been previously shown to be effective in forming topological maps through an 

appearance based framework. Evolutionary strategies have also been applied successfully in 

solving complex problems such as visual navigation. However these algorithms may take some 

time to converge to an optimal solution. Feature selection is a particularly important step for 

building robust learning models. The method based on global only image properties and may 

suffer from the problem of perceptual   aliasing [Angeli etal.,2008], the fact that different physical 

locations correspond to similar sensory perceptions.  
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However the purpose of this study was to demonstrate the efficiency of simple algorithms to 

solve complex systems.  After verification of  the aforementioned algorithms using simulations, 

these need to be evaluated on  actual  robots and modify as necessary to ensure acceptable real 

life robot navigation.
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10. Online Topology Preservation  

 

Τhis chapter aims to explore a rehearsal  mechanism as a countermeasure to prevent 

catastrophic forgetting in unsupervised learning connectionist networks. A comparative study 

have been carried out to evaluate the effectiveness of applying the learning procedure  to the 

three well known algorithms, SOM, NG and GNG.  Both advantages and disadvantages are 

highlighted in terms of performance and reliability. 

 

 

 

 

 

10.1. Semantic-Temporal Memory Representation 

Unsupervised learning networks are attractive for topology mapping tasks  since they are able to 

discover hidden structure in unlabeled data. In practice, as dictated from experimentation work on 

chapter 8, successful application of  topology preservation to a particular problem requires the 

presence of the whole data set. Implausible forgetting have been identified as one of the main 

problems on neural networks. Temporal sequence learning is arguably more important than static 

pattern learning in real world problems. Training a network incrementally from just one or a 

small set of input data is highly desirable for online robot mapping. As have been stated before 

[Dayoub et al., 2008],  due to the dynamic nature of real world environments, a robot need to 

continuously update it's internal representation.  In their work presented a method for creating an 

adaptive map for appearance-based localization using  long-term and short-term memory 

concepts. 

 

As have been proposed by [Ans et al., 2000]  the basic principle, in order to avoid catastrophic 

forgetting, is to learn new external patterns interleaved with internally generated 'pseudo-

patterns'. The basis of a self  refreshing mechanism can be analyzed as follows. Initially a 

network learns a given distribution. After learning is complete, a short-term memory stores the 

weight vectors as the codebook of the input data. The  short-term memory represents what the 

network has learned so far. Finally, the short-term memory elements are being concatenated, with 

a new input distribution, into a new training set. The system then learns both input distributions 
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[Rousset et al., 2004], although the previous one may be represented more sparsely than before 

(figure 10.1).  

 

Figure 10.1. Rehearsal learning procedure. During phase 1 a network is trained with a distribution A. During phase 2, 

the sparsely learned representation of distribution A is being merged with distribution B. During phase 3, both 

distributions are being learned. The procedure could be viewed as a neurobiologically plausible model for long term 

memory consolidation [Ans et  al., 2004].  

 

In the remainder of this chapter, the aim  is to provide an understanding of the properties of a 

single network with a self-refreshing mechanism which learns sequentially the content of a 

memory buffer. This simple buffer acts as a sort term memory which stores an episode that 

consists of  a small sequence of  t events. Then the content of this  knowledge buffer is transferred 

to the target network by means of pseudo-patterns.  

 

10.2. Pseudo-rehearsal architecture  

The proposed architecture consisted of a short and a long term memory structures. Applying a 

pseudo-rehearsal technique to a self organizing network is straightforward since weight vectors 
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and connections are always accessible. Apart from memory requirements for the aforementioned 

algorithms a new buffer was necessary to temporarily store all previous weight vectors. This 

buffer, which updates on every learning cycle, reflects the abstract history of events learned so 

far. When the network needs to learn a new pattern, the network would be trained on the new 

pattern and the set of previously stored weight vectors that reflect the history of events so far. 

That way, new patterns are interleaved with patterns that, even though they were not the 

originally learned patterns, nonetheless reflected the original function learned. An algorithmic 

schematic of the technique can be seen in figure 10.2. 

 

 

Figure 10.2. Self-refreshing mechanism with event buffer. 

 

 

10.3.  Online Learning Experiments 

A set of experiments have been conducted in order to explore the performance for different input 

distributions and event buffer sizes. First, a SOM used to learn a 2D random distribution with 

different sizes for the event buffer. The results of the learning procedure  can be viewed in figure 

10.3. As can be seen, when the buffer size increased from one event to five events, topology and 
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density preservations  were more accurate. The experiment has been repeated with a NG 

algorithm and the results were slighty better, in terms of expandability.  For comparison purposes, 

a standard NG algorithm trained with the same distribution (figure 10.4).  In that case, the only 

learned point was the last input where all nodes have been focused (figure 10.4).   

 

A notable problem with pseudo-rehearsal SOM was the challenging search for the optimal 

learning parameters,  size and structure of the grid. The parameters of the self refreshing NG for 

the 2D random distribution defined as: n =64 the number of neurons, epochs = 1000 for the 

number of training epochs or the training steps, α0 = 0.5 initial step size and λ0  = n/2 the initial 

decay constant. Learning  parameters for the SOM network defined as follows: Two dimensional 

rectangle shaped lattice of size 8x8, initial training radius = 2,  final training radius = 0.1 were the 

neighborhood   areas of influence, and  Gaussian was the neighborhood function of influence. For 

all experiments, training continued until adaptation parameters,  which decreased according to 

fixed schedules, reached the predefined values.  

 

 

Figure 10.3. Pseudo-Rehearsal SOM results for two different sizes of  

short-term memory buffers 
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Figure 10.4.  pseudo-rehearsal NG versus standard NG. Image (a) shows learning results with a buffer size = 5. Image 

(b) shows learning results with buffer size = 1. Image (c) the standard NG only learned the last input vector. 

 

10.3.1 Learning a ring shaped distribution 

To better understand the properties of the  self-refreshing mechanism, a series of experiments 

were performed with a two dimensional  ring shaped distribution that contained 1000 points.  As 

can be seen in (figure 10.5) the performance of an one dimensional SOM proved to be quite 

satisfactory. Temporal information recorded well and  the spatial representation was accurate. As 

it was expected, nearby neurons appeared adjust in time and space. This is true since an one 

dimensional  SOM has the freedom to rearrange their nodes to catch the input space with higher 

topographic precision than an equivalent two dimensional (figure sinus).   

 



Chapter 10 – Online Topology Preservation 

104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.5. Episodic learning for self-refreshing SOM with buffer size = 10.  the results show good spatial 

representation. 

 

The procedure repeated for the NG algorithm, for the same ring shaped distribution, and the 

online learning capabilities of the scheme were reflected in figure 10.6. As can be seen, the 

performance of self-refreshing NG on capturing the input space was not as effective as the SOM 

counterpart. The nodes progressively moved off the trajectory, defined by the distribution, with a 

tendency towards the center of this. This was ascribed to the fact that, whenever a new input 

vector was applied, the algorithm adapted all nodes towards this specific input, unlike SOM 

where only the nodes between a neighbor area from the best matching unit, are being affected for 

each time step. For common reference, the same parameters have been applied to both SOM and 

NG, as in the previous series of experiments, except that the number of neurons was set to 25 for 

NG while the structure of the SOM network was one dimensional with a  size 1x25. The buffer 

size determined to be 10 element wide. 
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Figure 10.6. Episodic learning for self-refreshing NG with buffer size = 10.  The nodes progressively moved off the 

track defined by the distribution. 

Another variation of the last series of experiments have been conducted for only the one 

dimensional SOM, with the ring shaped distribution convoluted with noise, and the results 

showed good accuracy on learning the average trajectory and filtering out noisy fluctuations  

(figure 10.7).  It is worth noting that in order to achieve good convergence rate and stable models, 

both networks, especially the SOM, may require fine tuning of the learning parameters. 
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Figure 10.7. One dimensional  self-refreshing SOM learning  a ring shaped distribution  convoluted with noise. 

 

Considering optimal dimensions of a SOM network, and particularly in the case of a two 

dimensional SOM, satisfactory results have been obtained only for convex shaped distributions 

without holes. Learning a trajectory as depicted in (figure 10.8) may lead the network to learn 

both the trajectory and the enclosed area. Although, the quantization error indicated good results, 

many nodes were located outside of the distribution.  
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Figure 10.8. A 2D SOM learning a sinus like  wave signal. The network captured both the signal and the enclosed 

surface defined by the signal line. It also appeared warped with irrelevant nearby nodes. 

10.4. Learning a robot trajectory 

With an aim to study the performance of the self-refreshing method  applied to a robot mapping 

process,  a set of experiments were conducted with a simulated robot that followed a pathway 

within an unknown environment. The robot, equipped with an omnidirectional camera, allowed to 

follow the pathway, during which images obtained at regular space intervals using relative 

odometry. All the images have a size of 256x256 pixels. In order to extract  comparative results, 

the robot built the data-base offline and the same content used for all environment mapping  

scenarios. For image content representation,  color visual descriptors have been extracted in the 

form of color histograms. The images were transformed from RGB to Lab color space and the 

histograms determined to span along 12 bins for each color component  a* and b*.  A feature 

vector was then formed by concatenating the two channel histograms into one vector with a size 

of 24 values. All values normalized by dividing each  bin value by the total number of pixels in 

the image. 

Three systems designed to simulate sequential learning, one for every neural network. Because 

SOM grid dimensions must be pre-assigned, the self-refreshing learning model applied to only 
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one dimensional SOM grid since this outperformed every other grid structure on learning a curve. 

For both the NG and GNG algorithms, it is not a prerequisite to determine the grid dimensions 

since NG does not form a grid and GNG dynamically change it's grid formation during training. 

To compare the performance of every algorithm, the equivalent  standard algorithms  have also 

been trained with the same data distribution. For commencing sequential learning of SOM while 

adaptation, it is necessary to use small neighbouring area of influence combined with an adequate 

number of nodes. Training takes place in episodes which consists of five events each (buffer 

size).  Training of GNG continues until the predefined number of 25 nodes is reached.  

10.5. Results 

The performance of self-refreshing SOM and NG , proved to be effective  for online topology 

preservation when applied to the given input distribution. However, a potential problem in 

practical applications may be to determine a priori the number of nodes that are required for an 

effective application. Depending on the complexity of the distribution to be modeled, different 

node numbers may be appropriate. Both SOM and NG algorithms, requires this number to be 

known in advance. The GNG algorithm successively add new nodes, starting from a network with 

only two nodes, by evaluating local statistical measures extracted during previous learning steps. 

However, for comparison purposes, the maximum number of GNG nodes considered to be 25. 

Since, for both feature and codebook vectors  is difficult to visualize their multidimensional data 

directly, only the first element of each color component and the corresponding codebook vector 

elements have been used to depict graphical representations of results. The simulation results 

demonstrated the general behavior of the three models.  

10.5.1 Self-Refreshing Self Organizing Map 

The self-refreshing SOM adapted sequentially to input space for the given scenario (figure 10.9), 

although, some forgetting of the first signals was obvious.  Gradual forgetting is not a totally 

undesirable effect. Forgetting can be interpreted as making space for new knowledge. In the case 

of a robot moving in a dynamic environment, where allocation of objects takes place and may 

interrupt free space, unlearning parts of the map is highly desirable in order to allocate nodes into 

new unexplored areas. Learning  parameters for the SOM network defined as follows: One 

dimensional  with size 1x8, initial training radius = 2,  final training radius = 0.1  the 

neighborhood area of influence, and  Gaussian the neighborhood function of influence.     
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figure 10.9. Training an one-dimensional  self-refreshing SOM on a robot trajectory.  

 

10.5.2. Self-Refreshing Neural Gas 

The NG algorithm also performed well but some node shifting out of the  pathway was obvious 

(figure 10.10). The reason for this is explained by the global influence of each input signal on all 

the nodes. It appears that some forgetting took place, although the effectiveness of the model 

could be rated as similar to that of the self-refreshing SOM model.  The parameters of the self 

refreshing NG defined as follows: n =25, the number of neurons, epochs = 1000 the number of 

training epochs , α0 = 0.5 the initial step size and λ0  = n/2 the initial decay constant. 
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Figure 10.10. Tracking of the sequential learning process of NG. 

 

10.5.3. Self-Refreshing Growing Neural Gas 

In the case of GNG  many discontinuities have been noted on the network (figure 10.11). Since 

the algorithm tries to model the input space, unaffected nodes from input signals cause them  to 

delete their edges. Although, it is able to build a topology without discontinuities [Palamas et al., 

2006]. this could be possible only by setting extreme values  to the age variables of each edge. 

The parameters that used were: lambda = 100 which determines how often to add a new vertex, 

max-edge-age = 400, alpha = 0.05,  beta = 0.0005 and maximum number of nodes = 25. 
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Figure 10.11. Tracking of the sequential learning process for GNG. 

 

 

10.5.4. A Closer look on Self-Refreshing Model 

A closer look on the results, for the case of a self-refreshing SOM, reveals the potential to model 

the average trajectory and filter out occasional fluctuations (figure 10.12). In real mobile robot 

situations, fluctuations that may be caused by faulty perceptions are common, caused by 

electronic or sensor noise, or artefacts such as reflections and illuminations when vision sensors 

are employed. During learning of a new location a faulty perception would lead to a ‘ghost’ place 

in memory, i.e., a node in the graph with no corresponding place in reality. When online learning 

is employed, occasional perceptions are being correlated with ‘history’ of events which may lead 

to memory systems  less prone to 'ghost' perceptions.   
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Figure 10.12. Closer look of the learning procedure.  

 

10.5.5. Standard Algorithm Performance 

In the case of standard SOM, NG and GNG algorithms, as it was expected, newly  learned information 

completely destroyed previous learned information (figure 10.13). Since every algorithm has to learn 

only an input vector at a time, all corresponding nodes are being focused on the current input 

vector. 
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Figure 10.13. The original algorithms  suffer from catastrophic forgetting. All nodes were being concentrated on 

every current input signal. 

 

 

10.5.6. performance evaluation 

The issue of SOM topographic quality is a complicated one. Depending on the relationship 

between input and output space, some information of the topological arrangement may be lost in 

the process. If the dimensions of the data set is higher than the dimensions of the map grid, a 

representation mismatch may be detected between input and output spaces. The topology 

preservation error then is additively accumulated in the sequential learning process. On the other 

hand, it is well known that NG and GNG adapts almost perfect to input manifolds. All three 

variants of self-refreshing learning appeared capable of overcoming the so called plasticity–

elasticity dilemma. The effectiveness of the density matching property of the model can be seen 
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on all results. A related question is, how topology-preserving can be measured from the input data 

space onto the network structure.  

 

Several quantitative metrics have been proposed to evaluate topology preservation quality and 

error, like the topographic product [Bauer & Pawelzik, 1992] or the topographic function 

[Villmann & Martinetz, 1994]. However these measures cannot distinguish between folding of 

the map along nonlinearities in the data manifold and folding within a data manifold. Thus, at this 

stage, a visual inspection of  the map to detect neighbourhood violations is at least trustworthy. A 

particular metric may serve as an optimization factor to improve overall  performance but since 

they only return one value, is difficult to attribute quantitative accuracy.  

 

 

10.6. Conclusions 

A biologically plausible solution have been explored, to abolish the undesirable effect known as 

‘catastrophic forgetting’ and these ideas  extended to well known unsupervised learning neural 

networks. All of the aforementioned algorithms in the literature review, related with self 

organization, processes only static or offline data. The proposed memory model exhibited on-line 

knowledge retention and abstraction, that attenuates with time.  A series of experiments 

demonstrated that SOM and NG were able to map the input space quite satisfactory, for different 

kind of data distributions. Temporal information recorded well and  the spatial representation was 

accurate. As it was expected, nearby neurons appeared adjust in time and space. Furthermore, a 

simulated robot mapping situation have been modeled with self-refreshing variants of  SOM, NG 

and GNG as the main learning algorithms. The results dictated that all three scenarios were able 

of online map building where both map building and localization run continuously and in parallel. 

All the algorithms faced some gradual forgetting of older data  as new data were acquired. 

Gradually forgetting previous experience is not a totally undesirable effect because it enables the 

online or sequential learning of information in artificial neural networks. This attribute suggests a 

framework for analysis and modelling of lifelong learning and developmental effects in cognitive 

systems. Memory usage was limited and predefined, independent of spatial coverage dimensions 

or time of exploration.  
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11. Conclusions – Future Work 

 

This chapter presents the primary contribution to knowledge and recommendations for further 

work. 

 

 

 

 

 

11.1 Contribution to Knowledge 

 

11.1.1 Appearance based map building 

An appearance based neurocomputational architecture that emulates hippocampal place cells 

learning has been validated on a simulated mobile robot, and the results demonstrated the ability 

to efficiently  map the surrounding environment. Low level, global image  features,  based on 

color and various texture features, have been proved particularly descriptive, in the context of a 

CBIR process. The proposed methodology was able to process position information, in order to 

build a topological map, without identifying special landmarks. This method, make use of visual 

only cues about the environment which  were able to generate “concept patterns” where a robot 

can search upon to identify it's position.  A series of experiments demonstrated that SOM and NG 

algorithms were able to map the input space quite satisfactory, for different kind of data 

distributions. Temporal information recorded well and  the spatial representation was accurate. 

Further research might explore alternative visual scene interpretation methods.  

 

11.1.2 Robot Navigation 

A less explored area is the application of evolutionary methods to design developmental robots. 

This practice involves evolutionary processes to optimize parameters of developmental core 

algorithms, usually belonging to the field of self-organization. Both evolutionary and 

developmental adaptation are mutually constraint. Developmental processes referred to as 

evolutionary artefacts [Harvey et al., 2005] because each individual plasticity entails costs which 

must be offset by a higher level regularity in developmental outcome. Similarly, evolution 
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exploits adaptation advantages but is always constraint by what is developmentally possible. By 

isolating adaptation in stages, focusing on the application for which each stage have been proved 

to be most appropriate, and have been shown that this strategy could be useful for capturing both 

dynamics of interaction between robots and their environment while exhibiting higher level 

cognitive behavior. In this thesis, an evolutionary cognitive architecture have been proposed to 

enable a mobile robot to cope with the task of visual navigation. Initially a graph based world 

representation is used to build a map, prior to navigation, through an appearance based scheme 

using only features associated with color information. During the next step, a genetic algorithm 

evolves a navigation controller that the robot uses for visual servoing, driving through a set of 

nodes on the topological map.  Experiments in simulation show that an evolved robot, adapted to 

both exteroceptive and proprioceptive data, is able to successfully drive through a list of sub-

goals minimizing the problem of local minima in which evolutionary process can sometimes get 

trapped. This approach was proven to be more expressive for defining a simplistic fitness formula 

yet descriptive enough for targeting specific goals.  

 

11.1.3 Pseudo-Rehearsal Learning  

A connectionist model, designed to avoid catastrophic interference, applied on popular 

unsupervised topology preservation networks. Experiments demonstrated that an unsupervised 

neural network can be benefited from the self-refreshing learning procedure in order to avoid the 

catastrophic forgetting phenomenon. Episodic mapping was feasible, and past memories decayed 

more naturally. All algorithms, under consideration, demonstrated sequential learning 

capabilities. This novel approach also applied to address the problems of  continuous robot 

mapping in an artificial environment. The self-refreshing model proved to be an astonishing 

simple technique which can credit memory models  with the ability of life long learning 

whenever required.  

 

11.2 Future Work 

The relationship between emotion and memory is complex, but generally, emotion tends to 

increase the likelihood that an event will be remembered later and that it will be remembered 

vividly. Some biologists believe that stressful incidents causes the formation of long lasting 

memories by the brain. An expansion to the episodic learning mechanism with emotional 
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modulation, by replicating specific more vivid information, may help to simulate  enhancement 

effect on memory through capturing of attention. That way, considering a topological framework 

only,  a mobile robot  may be capable of building an environment representation online, in which 

the nodes correspond to salient scenes with high emotional weight, and arcs correspond to known 

pathways.  

 

Evolutionary adaptation need to be evaluated for different scenarios and for higher complexity 

environments while incorporating better visual  descriptors extracted from views of the 

environment. Rehearsal learning may also been applied  as the core developmental process 

instead of the off-line variations that have been used so far. After verification of the 

aforementioned algorithms using simulations, these need to be evaluated on actual robots and 

modify as necessary to ensure acceptable real life robot navigation. 
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