70,564 research outputs found

    A K-Chart based implementation framework to attain lean & agile manufacturing

    Full text link
    [EN] Lean manufacturing has always ensured production optimization by eliminating wastes, and its implementation has helped in improving the operational performance of the organization since it eliminates the bottlenecks from the processes, thus making them efficient. In lean scenarios, the focus is on “waste” elimination, but in agile manufacturing, the focus is on the ability of comprehension of changing market dynamics and the resilience. One of the major factors in the combined implementation of lean and agile approaches is inadequate planning, monitoring and lack of awareness regarding changing market trends, and this can be countered by utilizing the effective tool of K-Chart. Through a systematic literature review, the authors establish the requirement of effective planning and monitoring in the implementation of integrated lean and agile approach, concluding that K-Chart is a handy tool to adopt for their effective implementation. The result provides a new vision of lean implementation through K-Chart, whereas it provides clarity to practitioners by presenting a K-chart based implementation framework for achieving favourable results. Being a literature review the research work can be validated through a case study approach in future through a comparative analysis between various implementation techniques and K-Chart.Zaheer, S.; Amjad, M.; Rafique, M.; Khan, M. (2020). A K-Chart based implementation framework to attain lean & agile manufacturing. International Journal of Production Management and Engineering. 8(2):123-135. https://doi.org/10.4995/ijpme.2020.12935OJS12313582Abdullah, M. K., Mohd Suradi, N., Jamaluddin, N., Mokhtar, A. S., Abu Talib, A., & Zainuddin, M. F. (2006). K-chart: a tool for research planning and monitoring. J. of Quality Management And Analysis, 2(1), 123-130.Abdullah, M. K., Suradi, N. R. M., Jamaluddin, N., Mokhtar, S., Talib, A. R. A., & Zainuddin, M. F. K-chart: a tool for research planning and monitoring, 7.Abdulmalek, F. A., & Rajgopal, J. (2007). Analyzing the benefits of lean manufacturing and value stream mapping via simulation: A process sector case study. International Journal of Production Economics, 107(1), 223-236. https://doi.org/10.1016/j.ijpe.2006.09.009Abu, F., Gholami, H., Saman, M. Z. M., Zakuan, N., & Streimikiene, D. (2019). The implementation of lean manufacturing in the furniture industry: A review and analysis on the motives, barriers, challenges, and the applications. Journal of Cleaner Production, 234, 660-680. https://doi.org/10.1016/j.jclepro.2019.06.279Alfaris, M., Edikuncoro, G., Savitri, A., Yogiari, D., & Sulistio, J. (2019). A Literature Review of Sustain Enterprise Resource Planning. Paper presented at the IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/598/1/012128Anand, G., & Kodali, R. (2010). Development of a framework for implementation of lean manufacturing systems. International Journal of Management Practice, 4(1), 95. https://doi.org/10.1504/IJMP.2010.029705Anvari, A., Ismail, Y., & Hojjati, S. M. H. (2011). A Study on Total Quality Management and Lean Manufacturing: Through Lean Thinking Approach. World applied sciences journal, 12(9), 1585-1596.Baker, P. (2006). Designing distribution centres for agile supply chains. International Journal of Logistics Research and Applications, 9(3), 207-221. https://doi.org/10.1080/13675560600859136Baramichai, M., Zimmers, E. W., & Marangos, C. A. (2007). Agile supply chain transformation matrix: an integrated tool for creating an agile enterprise. Supply Chain Management: An International Journal, 12(5), 334-348. https://doi.org/10.1108/13598540710776917Bhamu, J., & Singh Sangwan, K. (2014). Lean manufacturing: literature review and research issues. International Journal of Operations & Production Management, 34(7), 876-940. https://doi.org/10.1108/IJOPM-08-2012-0315Bhasin, S., & Burcher, P. (2006). Lean viewed as a philosophy. Journal of Manufacturing Technology Management, 17(1), 56-72. https://doi.org/10.1108/17410380610639506Botti, L., Mora, C., & Regattieri, A. (2017). Integrating ergonomics and lean manufacturing principles in a hybrid assembly line. Computers & Industrial Engineering, 111, 481-491. https://doi.org/10.1016/j.cie.2017.05.011Carvalho, H., Azevedo, S. G., & Cruz-Machado, V. (2012). Agile and resilient approaches to supply chain management: influence on performance and competitiveness. Logistics Research, 4(1-2), 49-62. https://doi.org/10.1007/s12159-012-0064-2Chen, J. C., Li, Y., & Shady, B. D. (2010). From value stream mapping toward a lean/sigma continuous improvement process: an industrial case study. International Journal of Production Research, 48(4), 1069-1086. https://doi.org/10.1080/00207540802484911Christian, P.H., Zimmers Jr, E.W. (1999). Age of agile manufacturing puts quality to the test. Quality Progress, 32(5), 45.Chun Wu, Y. (2003). Lean manufacturing: a perspective of lean suppliers. International Journal of Operations & Production Management, 23(11), 1349-1376. https://doi.org/10.1108/01443570310501880Constantinescu, C., Matarazzo, D., Dienes, D., Francalanza, E., & Bayer, M. (2014). Modeling of system knowledge for efficient agile manufacturing: Tool evaluation, selection and implementation scenario in SMEs. Procedia CIRP, 25, 246-252. https://doi.org/10.1016/j.procir.2014.10.035Costantino, N., Dotoli, M., Falagario, M., Fanti, M. P., & Mangini, A. M. (2012). A model for supply management of agile manufacturing supply chains. International Journal of Production Economics, 135(1), 451-457. https://doi.org/10.1016/j.ijpe.2011.08.021Duguay, C. R., Landry, S., & Pasin, F. (1997). From mass production to flexible/agile production. International Journal of Operations & Production Management, 17(12), 1183-1195. https://doi.org/10.1108/01443579710182936Elkins, D. A., Huang, N., & Alden, J. M. (2004). Agile manufacturing systems in the automotive industry. International Journal of Production Economics, 91(3), 201-214. https://doi.org/10.1016/j.ijpe.2003.07.006Elnadi, M. (2015). An innovative framework for implementing lean principles in product-service system.Fagerholm, F., Ikonen, M., Kettunen, P., MĂŒnch, J., Roto, V., & Abrahamsson, P. (2015). Performance Alignment Work: How software developers experience the continuous adaptation of team performance in Lean and Agile environments. Information and Software Technology, 64, 132-147. https://doi.org/10.1016/j.infsof.2015.01.010Gani, W., & Limam, M. (2013). On the use of the K-chart for phase II monitoring of simple linear profiles. Journal of Quality and Reliability Engineering, 2013. https://doi.org/10.1155/2013/705450Ghobadian, A., Talavera, I., Bhattacharya, A., Kumar, V., Garza-Reyes, J. A., & O'Regan, N. (2020). Examining legitimatisation of additive manufacturing in the interplay between innovation, lean manufacturing and sustainability. International Journal of Production Economics. 219, 457-468. https://doi.org/10.1016/j.ijpe.2018.06.001Ghobakhloo, M., & Azar, A. (2018). Business excellence via advanced manufacturing technology and lean-agile manufacturing. Journal of Manufacturing Technology Management, 29(1), 2-24. https://doi.org/10.1108/JMTM-03-2017-0049Goldsby, T. J., Griffis, S. E., & Roath, A. S. (2006). MODELING LEAN, AGILE, AND LEAGILE SUPPLY CHAIN STRATEGIES. Journal of Business Logistics, 27(1), 57-80. https://doi.org/10.1002/j.2158-1592.2006.tb00241.xGrewal, C. (2008). An initiative to implement lean manufacturing using value stream mapping in a small company. International Journal of Manufacturing Technology and Management, 15(3-4), 404-417. https://doi.org/10.1504/IJMTM.2008.020176Gunasekaran, A. (1998). Agile manufacturing: Enablers and an implementation framework. International Journal of Production Research, 36(5), 1223-1247. https://doi.org/10.1080/002075498193291Gunasekaran, A. (1999). Agile manufacturing: A framework for research and development. International Journal of Production Economics, 62(1-2), 87-105. https://doi.org/10.1016/S0925-5273(98)00222-9Gunasekaran, A., Lai, K., & Edwincheng, T. (2008). Responsive supply chain: A competitive strategy in a networked economy. Omega, 36(4), 549-564. https://doi.org/10.1016/j.omega.2006.12.002Gunasekaran, A., Yusuf, Y. Y., Adeleye, E. O., & Papadopoulos, T. (2018). Agile manufacturing practices: the role of big data and business analytics with multiple case studies. International Journal of Production Research, 56(1-2), 385-397. https://doi.org/10.1080/00207543.2017.1395488Gunasekaran, A., Yusuf, Y. Y., Adeleye, E. O., Papadopoulos, T., Kovvuri, D., & Geyi, D. A. G. (2019). Agile manufacturing: an evolutionary review of practices. International Journal of Production Research, 57(15-16), 5154-5174. https://doi.org/10.1080/00207543.2018.1530478Hines, P., & Rich, N. (1997). The seven value stream mapping tools. International journal of operations & production management, 17(1), 46-64. https://doi.org/10.1108/01443579710157989Immawan, T., Arkeman, Y., & Maulana, A. (2015). Sustainable supply chain management for Make To Stock-Make To Order production typology case study: batik industry in Solo Indonesia. Supply Chain Management (SSCM), 7(11).Inman, R. A., Sale, R. S., Green, K. W., & Whitten, D. (2011). Agile manufacturing: Relation to JIT, operational performance and firm performance. Journal of Operations Management, 29(4), 343-355. https://doi.org/10.1016/j.jom.2010.06.001Iskanius, P., Haapasalo, H., & Page, T. (2006). Requirements for change in a traditional industry to be competitive: transformation towards an agile supply chain. International Journal of Agile Systems and Management, 1(3), 258. https://doi.org/10.1504/IJASM.2006.010942Ismail, H. S., & Sharifi, H. (2006). A balanced approach to building agile supply chains. International Journal of Physical Distribution & Logistics Management, 36(6), 431-444. https://doi.org/10.1108/09600030610677384Jasiulewicz-Kaczmarek, M. (2013). Sustainability: Orientation in Maintenance Management: Case Study. In P. Golinska (Ed.), EcoProduction and Logistics (pp. 135-154). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23553-5_9Jin‐Hai, L., Anderson, A. R., & Harrison, R. T. (2003). The evolution of agile manufacturing. Business Process Management Journal, 9(2), 170-189. https://doi.org/10.1108/14637150310468380Keyte, B., & Locher, D. A. (2004). The complete lean enterprise: Value stream mapping for administrative and office processes: Productivity Press. https://doi.org/10.1201/b16650Khalfallah, M., & Lakhal, L. (2020). The impact of lean manufacturing practices on operational and financial performance: the mediating role of agile manufacturing. International Journal of Quality & Reliability Management. https://doi.org/10.1108/IJQRM-07-2019-0244Khodeir, L. M., & Othman, R. (2016). Examining the interaction between lean and sustainability principles in the management process of AEC industry. Ain Shams Engineering Journal.Konecka, S. (2010). Lean and agile supply chain management concept in the aspect of risk management. LogForum, 6(4), 23-31.Koskela, L. (1992). Application of the new production philosophy to construction (72). Stanford: Stanford University. Retrieved from http://www.leanconstruction.org.uk/media/docs/Koskela-TR72.pdfKumar, S., Choudhary, A., Kumar, M., Shankar, R., & Tiwari, M. (2006). Kernel distance-based robust support vector methods and its application in developing a robust K-chart. International Journal of Production Research, 44(1), 77-96. https://doi.org/10.1080/00207540500216037Leite, M., & Braz, V. (2016). Agile manufacturing practices for new product development: industrial case studies. Journal of Manufacturing Technology Management, 27(4), 560-576. https://doi.org/10.1108/JMTM-09-2015-0073Lian, Y.-H., & Van Landeghem, H. (2007). Analysing the effects of Lean manufacturing using a value stream mapping-based simulation generator. International Journal of Production Research, 45(13), 3037-3058. https://doi.org/10.1080/00207540600791590Losonci, D., Demeter, K., & Jenei, I. (2011). Factors influencing employee perceptions in lean transformations. International Journal of Production Economics, 131(1), 30-43. https://doi.org/10.1016/j.ijpe.2010.12.022Mamat, R.C., Md Deros, B., Ab Rahman, M.N., Khalil Omar, M., Abdullah, S. (2015). Soft Lean Practices for Successful Lean Production System Implementation in Malaysia Automotive Smes: A Proposed Framework. Jurnal Teknologi, 77(27). https://doi.org/10.11113/jt.v77.6910Maqbool, Y., Rafique, M. Z., Hussain, A., Ali, H., Javed, S., Amjad, M. S., . . . Atif, M. (2019). An Implementation Framework to Attain 6R-Based Sustainable Lean Implementation-A Case Study. IEEE Access, 7, 117561-117579. https://doi.org/10.1109/ACCESS.2019.2936056Marodin, G., Frank, A. G., Tortorella, G. L., & Netland, T. (2018). Lean product development and lean manufacturing: Testing moderation effects. International Journal of Production Economics, 203, 301-310. https://doi.org/10.1016/j.ijpe.2018.07.009Martin, C., & Towill, D. R. (2000). Supply chain migration from lean and functional to agile and customised. Supply Chain Management: An International Journal, 5(4), 206-213. https://doi.org/10.1108/13598540010347334MartĂ­nez SĂĄnchez, A., & PĂ©rez PĂ©rez, M. (2001). Lean indicators and manufacturing strategies. International Journal of Operations & Production Management, 21(11), 1433-1452. https://doi.org/10.1108/01443570110407436Matt, D. T., & Rauch, E. (2013). Implementation of Lean Production in Small Sized Enterprises. Procedia CIRP, 12, 420-425. https://doi.org/10.1016/j.procir.2013.09.072McCullen, P., & Towill, D. (2001). Achieving lean supply through agile manufacturing. Integrated Manufacturing Systems, 12(7), 524-533. https://doi.org/10.1108/EUM0000000006232Mejabi, O. O. (2003). Framework for a lean manufacturing planning system. International Journal of Manufacturing Technology and Management, 5(5/6), 563. https://doi.org/10.1504/IJMTM.2003.003710Metternich, J., Bechtloff, S., & Seifermann, S. (2013). Efficiency and Economic Evaluation of Cellular Manufacturing to Enable Lean Machining. Procedia CIRP, 7, 592-597. https://doi.org/10.1016/j.procir.2013.06.038Moyano‐Fuentes, J., SacristĂĄn‐DĂ­az, M., & JosĂ© MartĂ­nez‐Jurado, P. (2012). Cooperation in the supply chain and lean production adoption: Evidence from the Spanish automotive industry. International Journal of Operations & Production Management, 32(9), 1075-1096. https://doi.org/10.1108/01443571211265701NĂ€slund, D. (2008). Lean, six sigma and lean sigma: fads or real process improvement methods?. Business process management journal, 14(3), 269-287. https://doi.org/10.1108/14637150810876634Nawanir, G., Kong Teong, L., & Norezam Othman, S. (2013). Impact of lean practices on operations performance and business performance: Some evidence from Indonesian manufacturing companies. Journal of Manufacturing Technology Management, 24(7), 1019-1050. https://doi.org/10.1108/JMTM-03-2012-0027Nesensohn, C. (2014). An innovative framework for assessing lean construction maturity. Liverpool John Moores University.Nordin, N., Deros, B.M., Wahab, D.A. (2010). A survey on lean manufacturing implementation in Malaysian automotive industry. International Journal of Innovation, Management and Technology, 1(4), 374.Nordin, N., Deros, B. M., Wahab, D. A., & Rahman, M. N. A. (2012). A framework for organisational change management in lean manufacturing implementation. Int. J. Services and Operations Management, 12(1), 101-117. https://doi.org/10.1504/IJSOM.2012.046676Pawlowski, K., & Pawlowski, E. (2015). Modern manufacturing practices and agile enterprise. Anticipated scope of implementation and empirical results from Polish enterprises. Procedia Manufacturing, 3, 464-471. https://doi.org/10.1016/j.promfg.2015.07.209Rafique, M. Z., Ab Rahman, M. N., Saibani, N., & Arsad, N. (2017). A systematic review of lean implementation approaches: a proposed technology combined lean implementation framework. Total Quality Management & Business Excellence, 30(3-4), 386-421. https://doi.org/10.1080/14783363.2017.1308818Rafique, M. Z., Ab Rahman, M. N., Saibani, N., Arsad, N., & Saadat, W. (2016). RFID impacts on barriers affecting lean manufacturing. Industrial Management & Data Systems, 116(8), 1585-1616. https://doi.org/10.1108/imds-10-2015-0427Rahani, A., & Al-Ashraf, M. (2012). Production flow analysis through value stream mapping: a lean manufacturing process case study. Procedia Engineering, 41, 1727-1734. https://doi.org/10.1016/j.proeng.2012.07.375Rahman, N. A. A., Sharif, S. M., & Esa, M. M. (2013). Lean Manufacturing Case Study with Kanban System Implementation. Procedia Economics and Finance, 7, 174-180. https://doi.org/10.1016/S2212-5671(13)00232-3Rahman, S., Laosirihongthong, T., & Sohal, A. S. (2010). Impact of lean strategy on operational performance: a study of Thai manufacturing companies. Journal of Manufacturing Technology Management, 21(7), 839-852. https://doi.org/10.1108/17410381011077946Rehman, A. U., Alkhatani, M., & Umer, U. (2018). Multi Criteria Approach to Measure Leanness of a Manufacturing Organization. IEEE Access, 6, 20987-20994. https://doi.org/10.1109/ACCESS.2018.2825344Robson, C., & McCartan, K. (2016). Real world research: John Wiley & Sons.Rohani, J. M., & Zahraee, S. M. (2015). Production line analysis via value stream mapping: a lean manufacturing process of color industry. Procedia Manufacturing, 2, 6-10. https://doi.org/10.1016/j.promfg.2015.07.002Rother, M., & Shook, J. (2003). Learning to see: value stream mapping to add value and eliminate muda: Lean Enterprise Institute.Sabbagh, O., Ab Rahman, M. N., Ismail, W. R., & Wan Hussain, W. M. H. (2016). Methodology implications in automotive product-service systems: a systematic literature review. Total Quality Management & Business Excellence, 28(13-14), 1632-1668. https://doi.org/10.1080/14783363.2016.1150169Sahwan, M. A., Rahman, M. N. A., & Deros, B. M. (2012). Barriers to Implement Lean Manufacturing in Malaysian Automotive Industry. Jurnal Teknologi, 59, 107-110. https://doi.org/10.11113/jt.v59.2571Salonitis, K., & Tsinopoulos, C. (2016). Drivers and barriers of lean implementation in the Greek manufacturing sector. Procedia CIRP, 57, 189-194. https://doi.org/10.1016/j.procir.2016.11.033Sartal, A., Llach, J., VĂĄzquez, X. H., & de Castro, R. (2017). How much does Lean Manufacturing need environmental and information technologies? Journal of Manufacturing Systems, 45, 260-272. https://doi.org/10.1016/j.jmsy.2017.10.005Saunders, M., Lewis, P., & Thornhill, A. (2009). Understanding research philosophies and approaches. Research methods for business students, 4, 106-135.Saunders, M. N. (2011). Research methods for business students, 5/e: Pearson Education India.Serrano Lasa, I., Ochoa Laburu, C., & de Castro Vila, R. (2008). An evaluation of the value stream mapping tool. Business process management journal, 14(1), 39-52. https://doi.org/10.1108/14637150810849391Seth, D., & Gupta, V. (2005). Application of value stream mapping for lean operations and cycle time reduction: an Indian case study. Production Planning & Control, 16(1), 44-59. https://doi.org/10.1080/09537280512331325281Sharifi, H., & Zhang, Z. (2001). Agile manufacturing in practice ‐ Application of a methodology. International Journal of Operations & Production Management, 21(5/6), 772-794. https://doi.org/10.1108/01443570110390462Sindhwani, R., & Malhotra, V. (2017). A framework to enhance agile manufacturing system. Benchmarking: An International Journal. https://doi.org/10.1108/BIJ-09-2015-0092Singh, B., Garg, S. K., & Sharma, S. K. (2011). Value stream mapping: literature review and implications for Indian industry. The International Journal of Advanced Manufacturing Technology, 53(5-8), 799-809. https://doi.org/10.1007/s00170-010-2860-7Srichuachom, U. (2015). The impact of lean approaches to support quality developments in Thailand: an investigation of a claim of universality of lean thinking. University of Southampton.Sriparavastu, L., & Gupta, T. (1997). An empirical study of just‐in‐time and total quality management principles implementation in manufacturing firms in the USA. International Journal of Operations & Production Management, 17(12), 1215-1232. https://doi.org/10.1108/01443579710182954Sundar, R., Balaji, A. N., & Kumar, R. M. S. (2014). A Review on Lean Manufacturing Implementation Techniques. Procedia Engineering, 97, 1875-1885. https://doi.org/10.1016/j.proeng.2014.12.341Swank, C. K. (2003). The Lean Service Machine. Harvard Business Review, 9.Tao, F., & Zhang, M. (2017). Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. IEEE Access, 5, 20418-20427. https://doi.org/10.1109/ACCESS.2017.2756069TER JI-XI, J. (2013). Object Locator for People With Dementia (DEMICATOR). Universiti Teknikal Malaysia Melaka.Vonderembse, M. A., Uppal, M., Huang, S. H., & Dismukes, J. P. (2006). Designing supply chains: Towards theory development. International Journal of Production Economics, 100(2), 223-238. https://doi.org/10.1016/j.ijpe.2004.11.014Waters, C. D. J. (2007). Supply chain risk management: vulnerability and resilience in logistics. London ; Philadelphia: Kogan Page.Womack, J. P., & Jones, D. T. (1996). Beyond Toyota: How to Root Out Waste and Pursue Perfection. 13.Womack, J. P., Jones, D. T., & Roos, D. (1990). The Machine That Changed The World. New York, NY: Rawson Associates.Yadav, G., Luthra, S., Huisingh, D., Mangla, S. K., Narkhede, B. E., & Liu, Y. (2020). Development of a lean manufacturing framework to enhance its adoption within manufacturing companies in developing economies. Journal of Cleaner Production, 245, 118726. https://doi.org/10.1016/j.jclepro.2019.118726Yahaya, S.M.B. (201

    Approach of the Two-way Influence Between Lean and Green Manufacturing and its Connection to Related Organisational Areas

    Get PDF
    [EN] Initiatives toward Lean and Green Manufacturing are given mainly due to organisational response to current market’s economic and environmental pressures. This paper, therefore, aims to present a brief discussion based on a literature review of the potential two-way influence between Lean and Green Manufacturing and its role on the main organisational areas with a closer relationship to such approaches, which were observed to be more extensively discussed in the literature. Naturally lean practises seem more likely to deploy into green outcomes, though the other way around can also occur. There is some blur on the factual integration of both themes, as some authors suggest. Notwhithstanding, they certainly present certain synergy. Thereupon, further research is needed to unveil the real ties, overlaps and gaps between these approaches.Salvador, R.; Piekarski, CM.; Francisco, ACD. (2017). Approach of the Two-way Influence Between Lean and Green Manufacturing and its Connection to Related Organisational Areas. International Journal of Production Management and Engineering. 5(2):73-83. doi:10.4995/ijpme.2017.7013SWORD738352Anand, G., & Kodali, R. (2008). Development of a Conceptual Framework for Lean New Product Development Process. International Journal of Product Development, 6(2), 190. doi:10.1504/ijpd.2008.019240Bocken, N. M. P., Allwood, J. M., Willey, A. R., & King, J. M. H. (2012). Development of a tool for rapidly assessing the implementation difficulty and emissions benefits of innovations. Technovation, 32(1), 19-31. doi:10.1016/j.technovation.2011.09.005Carvalho, H., Azevedo, S., & Cruz-Machado, V. (2013). Trade-offs among Lean, Agile, Resilient and Green Paradigms in Supply Chain Management: A Case Study Approach. Proceedings of the Seventh International Conference on Management Science and Engineering Management, 953-968. doi:10.1007/978-3-642-40081-0_81Carvalho, H., Azevedo, S. G., & Machado, V. C. (2010). Supply chain performance management: lean and green paradigms. International Journal of Business Performance and Supply Chain Modelling, 2(3/4), 304. doi:10.1504/ijbpscm.2010.036204Carvalho, H., Duarte, S., & Cruz Machado, V. (2011). Lean, agile, resilient and green: divergencies and synergies. International Journal of Lean Six Sigma, 2(2), 151-179. doi:10.1108/20401461111135037Carvalho, H., Govindan, K., Azevedo, S. G., & Cruz-Machado, V. (2017). Modelling green and lean supply chains: An eco-efficiency perspective. Resources, Conservation and Recycling, 120, 75-87. doi:10.1016/j.resconrec.2016.09.025Chugani, N., Kumar, V., Garza-Reyes, J. A., Rocha-Lona, L., & Upadhyay, A. (2017). Investigating the green impact of Lean, Six Sigma and Lean Six Sigma. International Journal of Lean Six Sigma, 8(1), 7-32. doi:10.1108/ijlss-11-2015-0043Diaz-Elsayed, N., Jondral, A., Greinacher, S., Dornfeld, D., & Lanza, G. (2013). Assessment of lean and green strategies by simulation of manufacturing systems in discrete production environments. CIRP Annals, 62(1), 475-478. doi:10.1016/j.cirp.2013.03.066Duarte, S., & Cruz Machado, V. (2017). Green and lean implementation: an assessment in the automotive industry. International Journal of Lean Six Sigma, 8(1), 65-88. doi:10.1108/ijlss-11-2015-0041DĂŒes, C. M., Tan, K. H., & Lim, M. (2013). Green as the new Lean: how to use Lean practices as a catalyst to greening your supply chain. Journal of Cleaner Production, 40, 93-100. doi:10.1016/j.jclepro.2011.12.023Esmemr, S., Ceti, I. B., & Tuna, O. (2010). A Simulation for Optimum Terminal Truck Number in a Turkish Port Based on Lean and Green Concept. The Asian Journal of Shipping and Logistics, 26(2), 277-296. doi:10.1016/s2092-5212(10)80006-9Environmental Protection Agency (EPA) (2006). Lean and Environment Training Module 2 – Lean and Environment Toolkit. Environmental Protection Agency, Washington, DC.Espadinha-Cruz, P., Grilo, A., Puga-Leal, R. et al. (2011). A model for evaluating lean, agile, resilient and green practices interoperability in supply chains. In: Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 1: 1209-1213. https://doi.org/10.1109/ieem.2011.6118107Fercoq, A., Lamouri, S., & Carbone, V. (2016). Lean/Green integration focused on waste reduction techniques. Journal of Cleaner Production, 137, 567-578. doi:10.1016/j.jclepro.2016.07.107Folinas, D., Aidonis, D., Triantafillou, D., & Malindretos, G. (2013). Exploring the Greening of the Food Supply Chain with Lean Thinking Techniques. Procedia Technology, 8, 416-424. doi:10.1016/j.protcy.2013.11.054Galeazzo, A., Furlan, A., & Vinelli, A. (2014). Lean and green in action: interdependencies and performance of pollution prevention projects. Journal of Cleaner Production, 85, 191-200. doi:10.1016/j.jclepro.2013.10.015Garza-Reyes, J. A. (2015). Green lean and the need for Six Sigma. International Journal of Lean Six Sigma, 6(3), 226-248. doi:10.1108/ijlss-04-2014-0010Greinacher, S., Moser, E., Hermann, H., & Lanza, G. (2015). Simulation Based Assessment of Lean and Green Strategies in Manufacturing Systems. Procedia CIRP, 29, 86-91. doi:10.1016/j.procir.2015.02.053Hajmohammad, S., Vachon, S., Klassen, R. D., & Gavronski, I. (2013). Lean management and supply management: their role in green practices and performance. Journal of Cleaner Production, 39, 312-320. doi:10.1016/j.jclepro.2012.07.028Hallam, C., & Contreras, C. (2016). Integrating lean and green management. Management Decision, 54(9), 2157-2187. doi:10.1108/md-04-2016-0259Hart, S.L. (1995). A natural-resource-based view of the firm. Academy of Management Review, 20(4): 986-1014.Jabbour, A. B. L. de S., Jabbour, C. J. C., Freitas, W. R. de S., & Teixeira, A. A. (2013). Lean and green?: evidĂȘncias empĂ­ricas do setor automotivo brasileiro. GestĂŁo & Produção, 20(3), 653-665. doi:10.1590/s0104-530x2013000300011Johansson, G., & Sundin, E. (2014). Lean and green product development: two sides of the same coin? Journal of Cleaner Production, 85, 104-121. doi:10.1016/j.jclepro.2014.04.005Kainuma, Y., & Tawara, N. (2006). A multiple attribute utility theory approach to lean and green supply chain management. International Journal of Production Economics, 101(1), 99-108. doi:10.1016/j.ijpe.2005.05.010Kleindorfer, P. R., Singhal, K., & Wassenhove, L. N. (2009). Sustainable Operations Management. Production and Operations Management, 14(4), 482-492. doi:10.1111/j.1937-5956.2005.tb00235.xKurdve, M., Zackrisson, M., Wiktorsson, M., & Harlin, U. (2014). Lean and green integration into production system models – experiences from Swedish industry. Journal of Cleaner Production, 85, 180-190. doi:10.1016/j.jclepro.2014.04.013MartĂ­nez LeĂłn, H. C., & Calvo-Amodio, J. (2017). Towards lean for sustainability: Understanding the interrelationships between lean and sustainability from a systems thinking perspective. Journal of Cleaner Production, 142, 4384-4402. doi:10.1016/j.jclepro.2016.11.132MartĂ­nez-Jurado, P. J., & Moyano-Fuentes, J. (2014). Lean Management, Supply Chain Management and Sustainability: A Literature Review. Journal of Cleaner Production, 85, 134-150. doi:10.1016/j.jclepro.2013.09.042Mittal, V. K., Sindhwani, R., Kalsariya, V., Salroo, F., Sangwan, K. S., & Singh, P. L. (2017). Adoption of Integrated Lean-Green-Agile Strategies for Modern Manufacturing Systems. Procedia CIRP, 61, 463-468. doi:10.1016/j.procir.2016.11.189Ng, R., Low, J. S. C., & Song, B. (2015). Integrating and implementing Lean and Green practices based on proposition of Carbon-Value Efficiency metric. Journal of Cleaner Production, 95, 242-255. doi:10.1016/j.jclepro.2015.02.043Ohno, T. (1988). Toyota production system: beyond large scale production. Cambrigde: Productivity PressPampanelli, A. B., Found, P., & Bernardes, A. M. (2014). A Lean & Green Model for a production cell. Journal of Cleaner Production, 85, 19-30. doi:10.1016/j.jclepro.2013.06.014Paul, I. D., Bhole, G. P., & Chaudhari, J. R. (2014). A Review on Green Manufacturing: It’s Important, Methodology and its Application. Procedia Materials Science, 6, 1644-1649. doi:10.1016/j.mspro.2014.07.149Piekarski, C. M., de Francisco, A. C., da Luz, L. M., Kovaleski, J. L., & Silva, D. A. L. (2017). Life cycle assessment of medium-density fiberboard (MDF) manufacturing process in Brazil. Science of The Total Environment, 575, 103-111. doi:10.1016/j.scitotenv.2016.10.007Moro Piekarski, C., Mendes da Luz, L., Zocche, L., & de Francisco, A. C. (2013). Life Cycle Assessment as Entrepreneurial Tool for Business Management and Green Innovations. Journal of technology management & innovation, 8(1), 44-53. doi:10.4067/s0718-27242013000100005Rohani, J. M., & Zahraee, S. M. (2015). Production Line Analysis via Value Stream Mapping: A Lean Manufacturing Process of Color Industry. Procedia Manufacturing, 2, 6-10. doi:10.1016/j.promfg.2015.07.002Roosen, T. J., & Pons, D. J. (2013). Environmentally Lean Production: The Development and Incorporation of an Environmental Impact Index into Value Stream Mapping. Journal of Industrial Engineering, 2013, 1-17. doi:10.1155/2013/298103Rusinko, C. (2007). Green Manufacturing: An Evaluation of Environmentally Sustainable Manufacturing Practices and Their Impact on Competitive Outcomes. IEEE Transactions on Engineering Management, 54(3), 445-454. doi:10.1109/tem.2007.900806Salleh, N. A. M., Kasolang, S., & Jaffar, A. (2012). Green Lean Total Quality Information Management in Malaysian Automotive Companies. Procedia Engineering, 41, 1708-1713. doi:10.1016/j.proeng.2012.07.372Silva, D.A.L., Silva, E.J., Ometto, A.R. (2015). Green manufacturing: uma anĂĄlise da produção cientĂ­fica e de tendĂȘncias para o future. Production, 26(3). https://doi.org/10.1590/0103-6513.032513Simons, D., Mason, R. (2003). Lean and Green: Doing More with Less. ECR Journal, 3(1): 84-91.Salvador, R., Francisco, A. C., Piekarski, C. M., & Luz, L. M. (2014). LIFE CYCLE ASSESSMENT (LCA) AS A TOOL FOR BUSINESS STRATEGY. Independent Journal of Management & Production, 5(3). doi:10.14807/ijmp.v5i3.186Shah, R., & Ward, P. T. (2002). Lean manufacturing: context, practice bundles, and performance. Journal of Operations Management, 21(2), 129-149. doi:10.1016/s0272-6963(02)00108-0Sundar, R., Balaji, A. N., & Kumar, R. M. S. (2014). A Review on Lean Manufacturing Implementation Techniques. Procedia Engineering, 97, 1875-1885. doi:10.1016/j.proeng.2014.12.341Upadhye, N., Deshmukh, S.G., Garg, S. (2010). Lean manufacturing for sustainable development. Global Business and Management Research: An International Journal, 2(1): 125.Verrier, B., Rose, B., Caillaud, E., & Remita, H. (2014). Combining organizational performance with sustainable development issues: the Lean and Green project benchmarking repository. Journal of Cleaner Production, 85, 83-93. doi:10.1016/j.jclepro.2013.12.023Womack, J.P., Jones, D.T. (1996). Lean Thinking - Banish Waste and Create Wealth in your Corporation, New York: Free PressWomack, J.P., Jones, D.T., Roos, D. (1990). The machine that changed the world. New York: Rawson Associates, 1990.Yang, C.-L., Lin, S.-P., Chan, Y., & Sheu, C. (2010). Mediated effect of environmental management on manufacturing competitiveness: An empirical study. International Journal of Production Economics, 123(1), 210-220. doi:10.1016/j.ijpe.2009.08.017Yang, M. G. (Mark), Hong, P., & Modi, S. B. (2011). Impact of lean manufacturing and environmental management on business performance: An empirical study of manufacturing firms. International Journal of Production Economics, 129(2), 251-261. doi:10.1016/j.ijpe.2010.10.01

    The prevalent theory of construction is a hindrance for innovation

    Get PDF
    It is argued that construction innovation is significantly hindered by the prevalent theory of construction, which is implicit and deficient. There are three main mechanisms through which this hindrance is being caused. Firstly, because production theories in general, as well as construction theories specifically, have been implicit, it has not been possible to transfer such radical managerial innovation as mass production or lean production from manufacturing to construction. Direct application of these production templates in construction has been limited due to different context in construction in correspondence to manufacturing. On the other hand, without explicit theories, it has not been possible to access core ideas of concepts and methods of these templates, and to recreate them in construction environment. In consequence, theory and practice of construction has not progressed as in manufacturing. Secondly, it is argued that the underlying, even if implicit, theoretical model of construction is the transformation model of production. There are two first principles in the transformation model. First, the total transformation can be achieved only by realising all parts of it. Thus, we decompose the total transformation into parts, finally into tasks, ensure that all inputs are available and assign these tasks to operatives or workstations. Second, minimising the cost of each task, i.e. each decomposed transformation, minimises the cost of production. It is argued that these principles, in which uncertainty and time are abstracted away, are counterproductive, and lead to myopic control and inflated variability. Practical examples show that these deficiencies and related practical constraints hinder the top-down implementation of innovations. Thirdly, empirical research shows that also bottom-up innovation - systematic learning and problem solving - is hindered by this deficient theory. Thus, the advancement of construction innovation requires that a new, explicit and valid theory of construction is created, and business models and control methods based on it are developed

    Lean and green – a systematic review of the state of the art literature

    Get PDF
    The move towards greener operations and products has forced companies to seek alternatives to balance efficiency gains and environmental friendliness in their operations and products. The exploration of the sequential or simultaneous deployment of lean and green initiatives is the results of this balancing action. However, the lean-green topic is relatively new, and it lacks of a clear and structured research definition. Thus, this paper’s main contribution is the offering of a systematic review of the existing literature on lean and green, aimed at providing guidance on the topic, uncovering gaps and inconsistencies in the literature, and finding new paths for research. The paper identifies and structures, through a concept map, six main research streams that comprise both conceptual and empirical research conducted within the context of various organisational functions and industrial sectors. Important issues for future research are then suggested in the form of research questions. The paper’s aim is to also contribute by stimulating scholars to further study this area in depth, which will lead to a better understanding of the compatibility and impact on organisational performance of lean and green initiatives. It also holds important implications for industrialists, who can develop a deeper and richer knowledge on lean and green to help them formulate more effective strategies for their deployment

    Intelligent Products: Shifting the Production Control Logic in Construction (With Lean and BIM)

    Get PDF
    Production management and control in construction has not been addressed/updated ever since the introduction of Critical Path Method and the Last PlannerÂź system. The predominant outside-in control logic and a fragmented and deep supply chain in construction significantly affect the efficiency over a lifecycle. In a construction project, a large number of organisations interact with the product throughout the process, requiring a significant amount of information handling and synchronisation between these organisations. However, due to the deep supply chains and problems with lack of information integration, the information flow down across the lifecycle poses a significant challenge. This research proposes a product centric system, where the control logic of the production process is embedded within the individual components from the design phase. The solution is enabled by a number of technologies and tools such as Building Information Modelling, Internet of Things, Messaging Systems and within the conceptual process framework of Lean Construction. The vision encompasses the lifecycle of projects from design to construction and maintenance, where the products can interact with the environment and its actors through various stages supporting a variety of actions. The vision and the tools and technologies required to support it are described in this pape

    Enablers and Constraints in Implementing Lean Manufacturing: evidence from Brazilian SMEs

    Get PDF
    Lean Manufacturing has revolutionized the global manufacturing environment at an unprecedented rate. In scholarly and managerial literature, many works have reported that Lean Manufacturing is a very efficient approach and a straightforward way towards process improvements, in terms of productivity and value adding activities ratio. However, many studies on Lean Manufacturing have highlighted many problems in its implementation. The analysis carried out within the research project is aimed to the factors enabling or constraining the Lean Transformation of a firm’s production system, along with the most relevant tools or practices to be applied. The research methodology used is the so-called “Normative Delphi” with a panel formed by 32 experts coming from 16 Brazilian SMEs. Our results are partially consistent with what has already been discussed in the literature and we found that the most relevant tools/practices are: value stream mapping, 5S methodology, and Kaizen (Gemba walks); the top three enabling factors are: knowledge and sponsorship of senior management, focus on continuous improvement, and employee development fostered by the company; finally, the main critical constraints are: little support from the top management, resistance to change by middle management, and poor or non-qualified Lean training activities

    Towards a lean model for production management of refurbishment projects, VTT Technology: 94

    Get PDF
    This is the Stage 3 Report for the ApRemodel project, which aims at improving processes for multi-occupancy retrofit by generating a lean model for project delivery. In this respect, a process-driven approach has been adopted to investigate what can be done to improve the way that retrofits projects are delivered. An initial literature review, focused on the management of refurbishment works, revealed that the research on this matter is scarce. There are plenty of studies related to the broad refurbishment area, however only a small number refer to the way that those construction projects are delivered. According to the literature, construction organisations have predominantly used traditional methods for managing the production of refurbishment projects. The problem is that those tools and techniques are not often appropriate to cope with the complex characteristics inherent to construction projects, especially in the case of refurbishments. Moreover, they have often not been based on a clear theoretical foundation. As a result, numerous types of waste have been identified in refurbishment projects such as waiting time, disruptions in performing tasks on site, rework, among others. This has led to unsatisfactory project performance in terms of low productivity, project delays, and cost overrun. The first step towards better production management in refurbishment projects is recognising the complexity of the sector in order to adopt the correct approach to cope with this specific scenario. In this respect, lean construction is identified as an appropriate way to deal with the complexity and uncertainty inherent in refurbishment projects, given that this management philosophy fully integrates the conversion, flow, and value views. This document builds on the findings from the literature review as well as evidence from case studies. Managerial practices based on lean construction principles have presented successful results in the management of complex projects. Case studies available in the literature report the feasibility and usefulness of this theoretical foundation. Moreover, the evidence from these studies show considerable potential for improving the management of refurbishment works. A list of methods, tools, and techniques are identified. This report may be used by construction refurbishment organisations and housing associations as a starting point for improving the efficiency in managing production of refurbishment projects. To this end, partnerships between industry and academia are strongly recommended. 4 Although the usefulness of lean principles in complex projects is already proved, further work is needed to check what practices are best for the respective refurbishment context, as well as identifying enablers and barriers for practical adoption. Furthermore, additional studies would be also necessary to better understand the extent to which the implementation of lean philosophy might influence performance of refurbishment projects. This report should be seen as work in progress with much more to learn, as detailed research work around the sustainable retrofit process in a lean way is further developed

    Applications of lean thinking: a briefing document

    Get PDF
    This report has been put together by the Health and Care Infrastructure Research and Innovation Centre (HaCIRIC) at the University of Salford for the Department of Health. The need for the report grew out of two main simple questions, o Is Lean applicable in sectors other than manufacturing? o Can the service delivery sector learn from the success of lean in manufacturing and realise the benefits of its implementation?The aim of the report is to list together examples of lean thinking as it is evidenced in the public and private service sector. Following a review of various sources a catalogue of evidence is put together in an organised manner which demonstrates that Lean principles and techniques, when applied rigorously and throughout an entire organization/unit, they can have a positive impact on productivity, cost, quality, and timely delivery of services

    Do we need one science of production in healthcare?

    Get PDF
    The question addressed is: Is there need, in health care, for one consolidated science of production? For responding to this question, the classical science of production is reviewed and the current approaches to production and service in healthcare are analysed as for their evolution and current status. It is found that these current movements are not self-aware of the restrictions deriving from their backgrounds, and of the resultant partiality in their approaches. It is concluded that improvement of healthcare is slowed down by the fragmentation of the related disciplines; thus one consolidated science of production (of healthcare) is needed
    • 

    corecore