9 research outputs found

    The distributed co-evolution of an on-board simulator and controller for swarm robot behaviours

    Get PDF
    We investigate the reality gap, specifically the environmental correspondence of an on-board simulator. We describe a novel distributed co-evolutionary approach to improve the transference of controllers that co-evolve with an on-board simulator. A novelty of our approach is the the potential to improve transference between simulation and reality without an explicit measurement between the two domains. We hypothesise that a variation of on-board simulator environment models across many robots can be competitively exploited by comparison of the real controller fitness of many robots. We hypothesise that the real controller fitness values across many robots can be taken as indicative of the varied fitness in environmental correspondence of on-board simulators, and used to inform the distributed evolution an on-board simulator environment model without explicit measurement of the real environment. Our results demonstrate that our approach creates an adaptive relationship between the on-board simulator environment model, the real world behaviour of the robots, and the state of the real environment. The results indicate that our approach is sensitive to whether the real behavioural performance of the robot is informative on the state real environment. © 2014 Springer-Verlag Berlin Heidelberg

    Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment

    Get PDF
    We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population

    Embodied Evolution in Collective Robotics: A Review

    Get PDF
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    Evolutionary online behaviour learning and adaptation in real robots

    Get PDF
    Online evolution of behavioural control on real robots is an open-ended approach to autonomous learning and adaptation: robots have the potential to automatically learn new tasks and to adapt to changes in environmental conditions, or to failures in sensors and/or actuators. However, studies have so far almost exclusively been carried out in simulation because evolution in real hardware has required several days or weeks to produce capable robots. In this article, we successfully evolve neural network-based controllers in real robotic hardware to solve two single-robot tasks and one collective robotics task. Controllers are evolved either from random solutions or from solutions pre-evolved in simulation. In all cases, capable solutions are found in a timely manner (1 h or less). Results show that more accurate simulations may lead to higher-performing controllers, and that completing the optimization process in real robots is meaningful, even if solutions found in simulation differ from solutions in reality. We furthermore demonstrate for the first time the adaptive capabilities of online evolution in real robotic hardware, including robots able to overcome faults injected in the motors of multiple units simultaneously, and to modify their behaviour in response to changes in the task requirements. We conclude by assessing the contribution of each algorithmic component on the performance of the underlying evolutionary algorithm.info:eu-repo/semantics/publishedVersio

    A survey of modern exogenous fault detection and diagnosis methods for swarm robotics

    Get PDF
    Swarm robotic systems are heavily inspired by observations of social insects. This often leads to robust-ness being viewed as an inherent property of them. However, this has been shown to not always be thecase. Because of this, fault detection and diagnosis in swarm robotic systems is of the utmost importancefor ensuring the continued operation and success of the swarm. This paper provides an overview of recentwork in the field of exogenous fault detection and diagnosis in swarm robotics, focusing on the four areaswhere research is concentrated: immune system, data modelling, and blockchain-based fault detectionmethods and local-sensing based fault diagnosis methods. Each of these areas have significant advan-tages and disadvantages which are explored in detail. Though the work presented here represents a sig-nificant advancement in the field, there are still large areas that require further research. Specifically,further research is required in testing these methods on real robotic swarms, fault diagnosis methods,and integrating fault detection, diagnosis and recovery methods in order to create robust swarms thatcan be used for non-trivial tasks

    A survey of modern exogenous fault detection and diagnosis methods for swarm robotics

    Get PDF
    Swarm robotic systems are heavily inspired by observations of social insects. This often leads to robust-ness being viewed as an inherent property of them. However, this has been shown to not always be thecase. Because of this, fault detection and diagnosis in swarm robotic systems is of the utmost importancefor ensuring the continued operation and success of the swarm. This paper provides an overview of recentwork in the field of exogenous fault detection and diagnosis in swarm robotics, focusing on the four areaswhere research is concentrated: immune system, data modelling, and blockchain-based fault detectionmethods and local-sensing based fault diagnosis methods. Each of these areas have significant advan-tages and disadvantages which are explored in detail. Though the work presented here represents a sig-nificant advancement in the field, there are still large areas that require further research. Specifically,further research is required in testing these methods on real robotic swarms, fault diagnosis methods,and integrating fault detection, diagnosis and recovery methods in order to create robust swarms thatcan be used for non-trivial tasks
    corecore