

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Jones, Simon W

Title:
Onboard Evolution of Human-Understandable Behaviour Trees for Robot Swarms

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

Onboard Evolution of Human-Understandable
Behaviour Trees for Robot Swarms

Simon William Jones

A dissertation submitted to the University of Bristol in accordance with the
requirements for award of the degree of Doctor of Philosophy in the Faculty

of Engineering.

March 16, 2020

Word count : 58497

Abstract

Swarm robotics, inspired by swarms in nature, has great potential. The resilience,
scalability, robustness and redundancy of having many robots collectively perform
tasks such as mapping, disaster recovery, pollution control, and cleaning make for a
compelling vision. To achieve this, we need to design swarm robot systems to have
a desired collective behaviour, but the design of controllers for the individual robots
of a swarm such that this behaviour emerges from the interaction of the individual
robots is difficult. Current solutions often use off-line automatic discovery by artificial
evolution of robot controllers, which are then transferred into the swarm. This is
problematic for two important reasons. Firstly, since there is the need for additional
supporting infrastructure, both to evolve the new controllers and to communicate
them to the swarm, the swarm is not self-sufficient. Secondly, the evolved controllers
are often opaque and hard to understand, an important consideration for safety and
explainability reasons.

In this work we tackle both of these issues. We build a swarm of robots with very
high computing performance using recently available mobile computation devices.
This high performance allows us to move the evolutionary process, dependent on
processing power for simulation, into the swarm. Because the computational power of
the swarm grows with the size of the swarm, it is both autonomous and scalable. We
use behaviour trees as the individual robot controller architecture. They are modular,
hierarchical and human readable. By developing automatic tools to simplify large
evolved trees, we can understand, explain, and even improve the evolved controllers.

By moving the evolutionary process into the swarm, and by using understandable
controllers, we make the swarm autonomous, scalable, and understandable, necessary
steps towards their real-world deployment.

3

Author’s Declaration

I declare that the work in this dissertation was carried out in accordance with the
requirements of the University’s Regulations and Code of Practice for Research De-
gree Programmes and that it has not been submitted for any other academic award.
Except where indicated by specific reference in the text, the work is the candidate’s
own work. Work done in collaboration with, or with the assistance of, others, is
indicated as such. Any views expressed in the dissertation are those of the author.

SIGNED: ... DATE:..........................

5

Dedication

For Lucy

"I never am really satisfied that I understand anything; because, understand it well
as I may, my comprehension can only be an infinitesimal fraction of all I want to

understand about the many connections and relations which occur to me."

Ada Lovelace

7

Acknowledgments

I would like to think my supervisors Dr. Matthew Studley, Dr. Sabine Hauert, and
Prof. Alan Winfield for their support and assistance throughout my journey from
being an engineer towards being a scientist.

I would also like to thank my wonderful wife Lucy, without whom this could never
have happened. Her inspiration, example, belief, boundless positivity and love have
changed my life for the better.

Finally, I’d like to thank my dad, who inspired me to become an engineer and started
me on the path to this point.

9

Contents

Contents 10

Acronyms 15

List of Figures 17

List of Tables 20

List of Equations 22

1 Introduction and motivation 25
1.1 Overview . 25
1.2 Motivation . 25
1.3 Hypotheses . 27
1.4 Structure . 28
1.5 Contributions to swarm robotics . 29

2 Background and related work 31
2.1 Swarm robotics . 31
2.2 Controllers for evolutionary swarm robotics 35

2.2.1 Neural Networks . 36
2.2.2 Finite State Machines . 38

2.3 Behaviour trees as understandable controllers 39
2.4 Robot design . 43
2.5 Reality gap . 45

3 Behaviour trees 49
3.1 Behaviour tree theory . 49

3.1.1 Composition nodes . 51
3.1.2 Leaf nodes . 54
3.1.3 Blackboard . 54
3.1.4 Behaviour tree semantics . 54
3.1.5 Complete algorithm for behaviour tree evaluation 56
3.1.6 Memory nodes as syntactic sugar 61
3.1.7 Manipulation . 63

10

3.1.8 Equivalence of BT and FSM 64
3.1.9 Turing completeness of a BT 67
3.1.10 Subsumption robot controller architecture 68
3.1.11 Classes of behaviour tree . 69

3.2 Applying evolutionary methods to behaviour trees 70
3.2.1 Grammatical generation . 71
3.2.2 Genetic Programming . 73
3.2.3 Conclusion on BT representation 75

3.3 Conclusion . 76

4 Evolving behaviour trees for swarm robotics 77
4.1 Kilobots . 77
4.2 Materials and methods . 78
4.3 Controller . 80

4.3.1 Evolutionary algorithm and simulator 85
4.4 Results and discussion . 87
4.5 Conclusions . 90

5 Xpuck design 93
5.1 Xpuck electronics design . 94

5.1.1 Survey of available platforms 95
5.1.2 High performance computing 95
5.1.3 Operating point tuning . 97
5.1.4 Interface board . 98
5.1.5 Physical design . 105

5.2 Software and infrastructure . 105
5.2.1 Real time kernel . 106
5.2.2 Resilient filesystem . 108
5.2.3 Arena integration . 108

5.3 GPGPU robot simulator . 110
5.3.1 Simulation model . 112
5.3.2 Implementation of simulator on GPU 115
5.3.3 Implementation of behaviour tree interpreter on GPU 116
5.3.4 Results: Performance of simulator 118

5.4 Image processing demonstration: ArUco tag detection 119
5.4.1 Results: Performance of image processing task 120

5.5 In-swarm evolution demonstration 122
5.5.1 Implementation of island model 122
5.5.2 Results: Performance of island model evolution 124

5.6 Experimental procedure . 124
5.7 Conclusion . 126

11

6 Designing a behaviour tree architecture 129
6.1 Robot reference model . 129
6.2 Constituent behaviours and conditions 132

6.2.1 Constituent behaviours . 134
6.2.2 Constituent conditions . 135

6.3 Blackboard and action nodes . 136
6.3.1 Goal velocity, physically linked registers 138
6.3.2 Steering . 140
6.3.3 Sensors . 146
6.3.4 Zero and scratchpad . 148

6.4 Action (leaf) nodes . 148
6.5 Behaviours and conditions expressed as subtrees 152

6.5.1 Behaviour stop . 153
6.5.2 Behaviours upfield and downfield 154
6.5.3 Conditions red, green, and blue 155
6.5.4 Conditions neighbour and invneighbour 156
6.5.5 Condition fixedprob . 156

6.6 Conclusion . 156

7 Controller transferability 159
7.1 Benchmark task . 160
7.2 Simulator physics calibration . 161

7.2.1 Simulator physical parameters 162
7.2.2 Choosing appropriate parameter values 165
7.2.3 Observations and mitigation 166

7.3 Sensor calibration . 167
7.3.1 IR proximity sensors . 168
7.3.2 Camera . 169
7.3.3 Virtual Senses . 171

7.4 Testing controller transferability . 172
7.4.1 Detailed task . 172
7.4.2 Behaviour tree nodes and allowed parameters 173
7.4.3 Evolutionary algorithm . 175
7.4.4 Transfer to reality . 176
7.4.5 Conclusion . 178

8 In-swarm evolution 181
8.1 Benchmark task . 182
8.2 Evolution with a noisy objective function 182

8.2.1 Comparison . 183
8.2.2 Modified evolutionary algorithm 183

12

8.3 In-swarm evolution . 185
8.3.1 Island Model evolutionary algorithm 186
8.3.2 Fitness function . 188
8.3.3 Behaviour tree architecture 189
8.3.4 Experimental protocol . 190

8.4 Data analysis . 192
8.4.1 Island model . 193
8.4.2 Real life behaviour . 194

8.5 Behavioural analysis . 195
8.6 Analysis of trees . 198

8.6.1 Automatic tree reduction . 199
8.6.2 Run 16 overview . 201
8.6.3 Analysis of Run 16 tree 806768 201
8.6.4 Analysis of Run 16 tree 906737 210
8.6.5 Effect of heterogeneity . 213
8.6.6 Analysis of Run 7 . 213
8.6.7 Engineering higher performance 217

8.7 Explaining the difference between simulated and real fitness 218
8.7.1 Effect of sampling . 218
8.7.2 Effect of controller heterogeneity in real swarm 219
8.7.3 Effect of unrelated controller heterogeneity 221

8.8 Conclusions . 222

9 Conclusions 223
9.1 Overview . 223

9.1.1 Behaviour trees . 223
9.1.2 Xpuck design . 225
9.1.3 Controller transferability . 225
9.1.4 In-swarm evolution . 227

9.2 Conclusions and future work . 228
9.2.1 Adaptivity . 228
9.2.2 Reality gap and the effect of architecture 229
9.2.3 Moving into three dimensions 229

A Additional Material 231
A.1 Xpuck Open Source . 231
A.2 Videos . 232

References 233

13

14

Acronyms

ADF Automatically Defined Function
AI Artificial Intelligence
API Application Programming Interface
BLAS Basic Linear Algebra Subprograms
BNF Backus-Naur Form
BT Behaviour tree
CD Compact Disc
CHDS Controlled Hybrid Dynamical Systems
CMOS Complementary Metal Oxide Semiconductor
CPU Central Processing Unit
DLP Digital Light Processor
DMA Direct Memory Access
DNN Deep Neural Network
EA Evolutionary Algorithm
ES Evolution Strategies
FLOPS Floating Point Operations per Second
FOV field of view
FPGA Field Programmable Gate Array
FSM Finite State Machine
GA Genetic Algorithm
GP Genetic Programming
GPGPU General Purpose computing on Graphics Pro-

cessing Units
GPIO General Purpose IO
GPU Graphics Processing Unit
HMP Heterogeneous MultiProcessing
HPC High Performance Computing
I2C Inter-Integrated Circuit
IMU Inertial Measurement Unit
IR Infra-red
ISA Instruction Set Architecture

15

JTAG Joint Test Action Group
LEB Linux Extension Board
LED Light Emitting Diode
MIPS Million Instructions Per Second
NEAT NeuroEvolution of Augmenting Topologies
NN Neural Network
NPC Non-Player Character
PCB Printed Circuit Board
PFSM Probabilistic Finite State Machine
RAID Redundant Array of Inexpensive Disks
RAM Random Access Memory
RASP Random Access Stored Program
ROS Robot Operating System
RTOS Real-time Operating System
SBC Single Board Computer
SGEMM Single precision floating point General Matrix

Multiply
SoC System-on-Chip
SOM Self Organising Map
SPI Serial Peripheral Interface
USB Universal Serial Bus
UVC USB Video Class
VGA Video Graphics Array

16

List of Figures

2.1 Feed-forward neural network and finite state machine 36
2.2 Sigmoid function tanh, commonly used as the neuron transfer function 37
2.3 A simple behaviour tree for robot collision avoidance 42

3.1 The sequence node . 51
3.2 The selection node . 52
3.3 The sequence with memory node . 52
3.4 The selection with memory node . 53
3.5 Decorator nodes . 53
3.6 Combining sequence and sequence with memory 55
3.7 State diagram for nodes with memory 61
3.8 Enclosing tree for replacing seqm with memoryless forms 62
3.9 Replacement memoryless subtree for seqm 62
3.10 Mapping a finite state machine to a behaviour tree 65
3.11 Transition sequence extended to support PFSM 65
3.12 State diagram for a single BT node 66
3.13 State machine fragment for a two child sequence node 66
3.14 State machine fragment for a two child selection node 66
3.15 Behaviour tree to implement the RASP Turing Machine 68
3.16 Subsumption architecture behaviour tree 69
3.17 Tree crossover genetic operator . 74
3.18 Tree mutation operators . 75

4.1 Kilobot arena and starting configuration 79
4.2 DLP projector waveforms . 80
4.3 Calculation of distance metrics . 82
4.4 Result of evolutionary runs . 87
4.5 Kilobot trails from simulation of the fittest controller in first and last

generation . 88
4.6 Fittest behaviour tree . 90

5.1 Several Xpucks in the arena . 94
5.2 Performance, power consumption, and efficiency of the CPUs and GPU 99
5.3 Block diagram showing the functionality of the interface board . . . 99

17

5.4 Battery voltage and power consumption 103
5.5 Interface board PCB . 106
5.6 Xpuck swarm and construction . 107
5.7 The Xpuck arena . 109
5.8 Behaviour tree interpreter data structures 119
5.9 Probability of marker detection under different conditions 121
5.10 Single node vs six node island model performance 125
5.11 Time per generation of single node evolution 126

6.1 Illustration of some of the robot reference model parameters 133
6.2 A behaviour tree to move in a polygon 138
6.3 Comparison of default to zero and keep last value 140
6.4 Steering law for robot . 143
6.5 Robot pose angle step response with different gains 144
6.6 Move in an approximate square, taking 5 seconds per side 145
6.7 Simulation showing the pose of a robot while running the "square"

behaviour tree . 145
6.8 Camera system vectors . 147
6.9 A selection node that always succeeds, even if all children fail. 150
6.10 ifprob curve family . 150
6.11 Subtree for behaviour explore . 153
6.12 Subtrees for behaviours upfield and downfield 154
6.13 Subtree for attraction and repulsion 154
6.14 Subtree for red (similar for green and blue) 155
6.15 Subtree for neighbour and invneighbour 156
6.16 Subtree for fixedprob . 156

7.1 Diagrammatic overview of the benchmark foraging task 161
7.2 Example parameter sweep of a collision between Xpuck and frisbee . 166
7.3 Implementing collision avoidance subsumption architecture 167
7.4 IR proximity sensor data . 168
7.5 Camera frisbee detection reality gap at different angular velocities . . 170
7.6 Commanded velocity time delay . 171
7.7 Evolutionary trajectory over ten runs 178
7.8 Fitness in simulation and reality . 179

8.1 Old vs new evolutionary algorithm 186
8.2 Illustration of the island model algorithm 187
8.3 bsearch subtree . 190
8.4 Mean fitness of the island model evolutionary algoruthm 195
8.5 Real fitness of the swarm over time across all runs 196
8.6 Self Organised Map of different swarm behaviours 197

18

8.7 Tree 806768 shown in the original and automatically reduced form. . 202
8.8 Visualisation of the path of a single Xpuck following behaviour B2

then B1 . 205
8.9 Visualisation of the path of a single Xpuck following behaviour B1 in

two scenarios . 206
8.10 Visualisation of path of single Xpuck ending in stable orbit 207
8.11 Visualisation of the path of two Xpucks with a starting position close

to the right of the frisbee . 208
8.12 Visualisations of the path of two Xpucks 209
8.13 Distribution of fitness of two robots over 100000 runs of each of two

trees against mean starting distance from frisbee 210
8.14 Scalability of swarm performance with increasing swarm size 211
8.15 Tree 906737 scalability of swarm performance with increasing swarm

size. Each point measured with 60 s simulated time over 1000 simula-
tions with different starting conditions. 213

8.16 Effect on fitness of a variable mixture of trees 806768 and 906737 . . 214
8.17 Visualisation of tree 905166 in the presence of one and two neighbours 216
8.18 Scalability of swarm performance with increasing swarm size 218
8.19 Effect of heterogeneity within runs on performance 220
8.20 Effect of heterogeneity with unrelated trees on performance 221

19

List of Tables

3.1 Composition nodes . 54
3.2 Mapping of nodes to behaviours . 56
3.3 Basic node types symbolically expressed as functions 63
3.4 Tree manipulations . 64
3.5 RASP instruction set . 68

4.1 Behaviour tree blackboard . 81
4.2 Behaviour tree nodes . 84
4.3 Parameters for a single evolutionary run 86
4.4 Kilobot performance in rotational and forward motion 86
4.5 Individuals usage of the blackboard and behaviour tree constructs . . 89

5.1 Current and potential swarm platforms 96
5.2 Hardkernel Odroid XU4 specifications 97
5.3 Speed of simulator with various functionalities enabled 118
5.4 Processing time for ArUco tag image recognition task under different

conditions . 120

6.1 Robot reference model for the Xpucks 132
6.2 Behaviours, conditions, and their parameters 136
6.3 Blackboard registers . 139
6.4 Camera system vectors . 147
6.5 Action nodes . 151

7.1 Simulator parameters . 163
7.2 Measurement of coefficient of friction 164
7.3 Colour regions within HSV colourspace used to classify pixels 169
7.4 Action nodes and subtrees used for transferability experiment 174
7.5 The allowed ranges for parameters within the evolutionary algorithm 175
7.6 Evolutionary algorithm parameters 176
7.7 Results of ten evolutionary runs . 176
7.8 Results from runs on real robots . 180

8.1 Evolutionary algorithm comparison parameters 185
8.2 Behaviour tree architecture subset 191

20

8.3 Summary of all in-swarm evolutionary runs 193
8.4 The 20 good runs . 194
8.5 Cell map, showing which segments are present in each cell 198
8.6 All behaviour tree unique IDs in the final segment of each run 199
8.7 Node types and side effects . 200
8.8 Run 16 tree characteristics . 201
8.9 Run 7 tree characteristics . 214
8.10 Variations on common structure . 215
8.11 Hand tuned parameters for tree 806768 217
8.12 Independent two sample T-test on each run between simulated het-

erogeneous fitness over 100 simulations and the real measured fitness 219

21

List of Equations

2.1 Neural network transfer function . 37
2.2 Number of weights in a simple neural network 37
3.7 Formal description of behaviour tree semantics 57
4.1 Theoretical maximum food items . 78
4.2 Fitness function . 79
4.3 Raw local density of neighbouring kilobots per m2 82
4.4 Memory and stack Behaviour Tree resource usage 85
5.1 Ideal battery lifetime . 101
5.2 Required battery capacity . 101
5.3 Simulator performance requirement for evolutionary algorithm 110
5.4 Simulator performance metric . 111
5.5 Required simulator performance related to swarm size 111
5.6 Required simulator performance with distributed evolutionary algorithm 111
5.7 Equations of motion for physics simulation 113
5.8 Reduction in friction at low velocity . 114
5.9 Simulator noise model . 114
5.10 Migration rate . 123
5.11 Fitness function . 123
6.1 Two wheel differential drive kinematics 131
6.2 Proximity vector . 134
6.3 Upfield movement with obstacle avoidance 135
6.4 Downfield movement with obstacle avoidance 135
6.5 Attraction and repulsion with obstacle avoidance 135
6.6 Probabilistic neighbour count . 136
6.9 Transformation of goal vector to wheel velocities 141
6.13 Relation polar form goal vector to wheel velocities 142
6.15 Relation of polar form goal vector to linear and angular velocities . . . 142
6.18 Steering law including latency . 143
6.21 Equations of motion for basic steering simulation 143
6.22 Simple forward movement with collision avoidance 153
6.23 Upfield goal vector . 154
6.24 Attraction/Repulsion goal vector in the presence of neighbours 155
7.2 Simulator noise model . 164

22

7.3 IR sensor curve fitting . 169
7.4 Measure of camera blob detection reality gap 170
7.5 Benchmark task raw fitness . 172
7.6 Modified benchmark fitness for evolutionary algorithm 173
8.1 Fitness modification for low number of evaluations 184
8.2 Migration rate for island model . 188
8.3 Benchmark fitness for collective transport with relocation 189
8.4 Island model evolutionary algorithm scaling coefficient 194
8.5 Tree 806768 behaviour . 204
8.6 Tree 906737 behaviour . 212
8.7 Tree 906737 simplified behaviour . 212

23

24

Chapter 1

Introduction and motivation

1.1 Overview

Swarm robotics [Şahin, 2005] takes inspiration from collective phenomena in nature,
where global behaviours emerge from the local interactions of the agents of the
swarm with each other and with the environment. Such natural phenomena as
flocking birds, schooling fish, ant trail formation, bee foraging and decision-making
all exhibit properties that are desirable from a robotics perspective.

Swarms have redundancy and resilience, no single agent is necessary for the swarm
to function. They are distributed and decentralised, there is no central controlling
agent, the swarm self-organises, and there is no single point of failure. They are
scalable, since they depend on local interactions rather than global, adding more
agents is not exponentially costly. Swarm robotics aims to construct artificial swarms
that exhibit these desirable properties in order to both solve problems and to better
understand how natural swarms work.

Classic problems that are seen as amenable to solution using swarm robotics are
mapping, search-and-rescue, emergency communications for disaster recovery, pollu-
tion monitoring and control. In all these cases, being able to deploy many relatively
cheap robots that self-organise, and construct a communications network, or monitor
an area, or locate pollutants may be better than using a few more capable but much
more expensive robots.

1.2 Motivation

The central problem of swarm robotics is the design of individual robot controllers
that, when instantiated in a swarm of real robots, results in the swarm as a whole
behaving in the way we want. In other words, the emergence of a desired collective
behaviour from the individual interactions of the robots with each other and the

25

environment. This process is hard, because it is not obvious how individual local
interactions in complex systems will combine, a fundamental question in many fields.

One of the common ways in which swarm robotics approaches the problem of de-
signing controllers is to use artificial evolution. Potential controller solutions are
instantiated in simulated swarms of robots and the swarm is evaluated against some
criteria, often an objective or fitness function. Controllers that perform well are
preferentially kept for combination or alteration to produce new controllers. This
evolutionary process results in better controllers being discovered over time. Like
other bio-inspired approaches, artificial evolution is attractive because of the poten-
tial for novel solutions outside the thoughts of the designer. The cost of this approach
is the need to run many simulations, a computationally expensive process. In most
cases, this means that the evolutionary algorithms are run off-line, on powerful com-
puters, before the controllers are transferred into robots. This off-line process cannot
be made adaptive and relies on outside resources. It would be possible to use external
resources within an adaptive process by having communications links between the
external resources and the swarm, but this is unreliable and difficult to scale, since
the required bandwidth increases with swarm size.

We have referred several times to scalability. In the context of swarm robotics we
mean by this that there should be no inherent limit to the number of robots within
the swarm. This implies that the interactions between the robots, and between the
robots and the environment, should be local. A swarm reliant on a central resource,
for example for computation, would not be very scalable since it would require non-
local communication, a bandwidth limited resource. Distributed systems relying only
on local communication and computation add aggregate communication bandwidth
and performance by adding more robots and occupying more physical space. Scaling
may not be perfect, imposing some actual limit on swarm size, but this limitation is
far less severe than those imposed by centralised architectures.

The type of controller used in this evolutionary process is important. There are
many possible controller architectures, neural networks being very widely used for
the reason that they provide solutions to non-linear problems and fit well within the
evolutionary algorithm paradigm. One major drawback, however, is the opacity of
the resulting controllers. It is not generally possible to say what a neural network
controller will do beyond very simple examples without actually running it. Be-
haviour trees (BTs), on the other hand, are human readable, and can be analysed,
explained and understood. There are two important reasons why we might want
to be able to understand and analyse a controller, firstly for safety. In a real-world
situation, we need to be able to perform a safety analysis and say what a robot
might do in any given situation. Secondly, for understanding and insight. A swarm
running an evolved controller may perform well, being able to analyse that controller

26

can teach us new things, and possibly assist in closing the gap in our understanding
of the connection between the individual and emergent collective behaviours. For
these reasons, we argue that behaviour trees are a good controller architecture for
use in robot swarms.

We tackle these two issues in this work. Firstly by giving the swarm sufficient pro-
cessing power to be able to run evolutionary algorithms. The exponential progress
in computing means that low-cost single-board computers are now available to build
such a swarm. We enhance the widely used e-puck robots to create a swarm with a
collective processing power of two Teraflops. We write a fast simulator capable of run-
ning on the robots and use this to build a distributed evolutionary algorithm running
on the swarm in a scalable way; as the swarm size increases, so does the process-
ing power and the evolutionary algorithm performance. Secondly, we use behaviour
trees as our controller architecture. Originating in the computer games industry to
control non-player characters, they are modular, hierarchical and extendible, and
human readable. The hierarchical nature means they can be decomposed into sub-
trees for understanding. They are a natural fit for the evolutionary techniques of
Genetic Programming (GP), and amenable to simplification by automatic tools. We
demonstrate the practicality of evolving behaviour trees for swarm robotics, then
go on to design a behaviour tree architecture for our Teraflop swarm. We show the
swarm is capable of evolving fit solutions entirely in-swarm within a period of only 15
minutes, and that we can analyse, understand, and engineer improvements to these
evolved behaviour tree controllers.

1.3 Hypotheses

We make two hypotheses in this work:

Hypothesis 1 It is possible to automatically generate understandable Behaviour
Trees to control a swarm of robots in the performance of a collective task.

Hypothesis 2 It is possible to perform automatic generation of robot swarm con-
trollers entirely within the swarm.

These hypotheses motivate various research questions. To demonstrate Hypothesis
1, we need to answer: How do we design a behaviour tree to control a robot? How
do we represent a behaviour tree for the purpose of automatic generation? What
methods of automatic generation should we use? How can we analyse and understand
the resultant trees? These questions are considered in Chapters 3, 4, 6, and 8. To
demonstrate Hypothesis 2, we need to answer: What computational performance is
required for automatic generation of controllers? What computational platforms can
we use? How do we build such a robot swarm? How do we best use the available

27

computational capabilities? How can we make performance scalable with swarm size?
How do we manage the reality gap? These questions are considered in Chapters 5,
6, 7, and 8.

1.4 Structure

This thesis is organised in the following way. Chapter 2 discusses the background
and related work in the various areas that we cover, situating this work.

Chapter 3 looks at behaviour trees, their origins, theory and semantics, ways they can
be manipulated, and their relationship with other controller architectures. We then
look at ways of applying evolutionary algorithms to behaviour trees, demonstrating
the practicality of this approach in Chapter 4, using a swarm of Kilobot robots.

In Chapter 5 we cover the design of the Xpuck, the robot that forms the Teraflop
swarm. We briefly survey progress in cheap computational power that has resulted
in Graphics Processing Units (GPUs) supporting General Purpose computing on
Graphics Processing Units (GPGPU) becoming available with low enough power
consumption to make possible their application in swarm robotics. We detail the
physical and electronic design, and operating point tuning. The design of a fast
physics simulator is described and we demonstrate the performance of the swarm
with an in-swarm evolutionary algorithm and a image processing task.

Having shown that evolving behaviour trees as swarm controllers is viable, and ex-
plored the design of the Xpuck, in Chapter 6 we take a more formal approach to
the design of a behaviour tree architecture suitable for use in our Teraflop swarm,
balancing expressiveness and conciseness. This is informed by awareness of how too
much expressiveness in the controller can lead to reality gap problems.

Chapter 7 covers the issue of ensuring that controllers evolved in simulation can
successfully be transferred to real robots, the reality gap issue. We define a bench-
mark collective movement task that is used as the target for our experiments. The
behaviour of the real robots is measured and used to calibrate and align the simula-
tor. Where simulator fidelity is low, such as collisions, we mitigate the problem at
the behavioural level, and we apply masking noise to the simulated robots. These
mitigating measures are tested by evolving a controller in simulation to perform the
benchmark task, then measuring the performance of the swarm of real robot. This
shows that there is no significant difference in performance between the simulated
and the real swarm.

In Chapter 8 we move the evolutionary algorithm into the swarm. We introduce a
modified evolutionary algorithm that takes into account our noisy fitness function and
makes better use of the simulation budget. We extend this to become a distributed

28

island model evolutionary algorithm, running across the whole swarm in a scalable
manner. The particular behaviour tree architecture that we use for the experiments
is detailed, as is the experimental protocol. The experimental runs show the swarm is
able to evolve fit controllers within 15 minutes. We select data to analyse by using a
Self Organising Map (SOM) to cluster controllers of similar behavioural characteris-
tics, then using automatic simplification methods and further human manipulations
to describe in detail the functioning of several different evolved controller trees. The
effect of heterogeneity on the performance of the swarms in simulation and real-life
is investigated. Finally, using the understanding gained, we engineer a performance
improvement in one behaviour tree.

In Chapter 9 we summarise the work of the previous chapters, looking at the achieve-
ments. We outline possible future work, particularly in the direction of making the
swarm adaptive to changes in the environment. Finally, we talk about some issues,
lessons learned, and recommendations for experimental swarm robotics.

1.5 Contributions to swarm robotics

Although this thesis is written in the first person plural, I am the primary origi-
nator of the work contained herein. I designed, built, tuned and programmed the
Xpuck robots. I developed the use of behaviour trees as a controller architecture
for evolutionary swarm robotics. I designed the system infrastructure and all the
programming necessary to run experiments. I developed the fast GPU simulator,
behaviour tree interpreter and distributed evolutionary algorithms. I designed and
performed all of the experiments, analysed all of the data, and wrote this thesis.

This work makes the following contributions to the field of swarm robotics:

• A clear description of the semantics of behaviour trees, resolving ambiguities
and describing a complete algorithm for evaluation

• A set of rules that allow the automatic manipulation and simplification of
behaviour trees for further analysis

• Demonstrated the possibility of automatically evolving behaviour trees for a
swarm robotics task

• Designed and built a robot swarm with a collective processing power of two
teraflops

• Developed a fast simulator capable of running entirely hosted within the swarm

• Developed a distributed evolutionary algorithm, using the fast simulator, and
running entirely hosted within the swarm, that shows performance scalability
with the size of the swarm

29

• Demonstrated via a combination of approaches a methodology for minimising
the reality gap when transferring automatically generated controllers to real
robots

• Developed an improved evolutionary algorithm that makes better use of the
simulation budget for our noisy fitness function

• Developed an island model parallelisation of the evolutionary algorithm, show-
ing good scaling of performance

• Demonstrated in-swarm evolution of effective swarm robot controllers within
15 minutes

• Developed and used tools to analyse, explain, and improve automatically gen-
erated controllers

Chapter 4 contains work that was published as Evolving behaviour trees for swarm
robotics in Proceedings of DARS 2016 - International Symposium on Distributed
Autonomous Robotic Systems [Jones et al. , 2016].

Chapter 5 contains work that was published as A Two Teraflop Swarm in Frontiers
of Robotics and AI [Jones et al. , 2018].

The design of the simulator described in Chapter 5 was informed by work published
as Mobile GPGPU Acceleration of Embodied Robot Simulation in Proceedings of
Artificial Life and Intelligent Agents: First International Symposium (ALIA 2014)
[Jones et al. , 2015].

Chapter 8 contains work that was published as Onboard Evolution of Understandable
Swarm Behaviors in Advanced Intelligent Systems [Jones et al. , 2019].

We have made the hardware design files for the Xpuck robot, and the OpenCL
accelerated simulation software available under a permissive open source license, see
Appendix A.1.

30

Chapter 2

Background and related work

In this chapter, we give a broad overview of the state of the art. More in-depth
coverage of relevant aspects of the state of the art can be found in later chapters.

2.1 Swarm robotics

Swarm robotics [Şahin, 2005] takes inspiration from collective phenomena in nature,
where global behaviours emerge from the local interactions of the agents of the swarm
with each other, and with the environment. Swarms have many desirable properties
that make them interesting from a robotics perspective. They are decentralised,
resilient, and robust, relying on no central controller or authority, and no individual
agent is necessary for the fulfilment of a task. Because interactions are local, swarms
are scalable without exponential increases in complexity. They have the potential to
be cheaper than conventional approaches, since each agent can be mass-produced.

In general, from Şahin [2005] again, to be regarded as a swarm robotics system, there
should be a relatively large number of real, physically embodied robots (perhaps 10 to
20, at least more than 5), each robot should be autonomous and capable of sensing
and interacting with the world, and the robots should generally be homogeneous,
both in their capabilities and controllers. The individual capability of the robots
will not be high compared to the task, it is the collective capability of the swarm
that performs the task. Perhaps most importantly in judging what makes a system a
swarm system is that the robots are only capable of local sensing and communication.
Any reliance on global capabilities are likely to severely restrict the scalability of a
swarm.

None of these qualifications are absolute, for example Dorigo et al. [2013] breaks
with homogeneneity, explicitly exploring heterogeneous swarms comprising three dif-
ferent robot types to fill different roles, capable of moving on flat surfaces, climbing,
for flying and attaching themselves to the ceiling. There is however a strong assump-

31

tion in the literature, eg Brambilla et al. [2013]; Trianni et al. [2014], that limited
individual robot capability means limited computational capability. This seems to
stem from the success of Brooks’ [1991] reactive architectures, views of social insects
as extremely simple individual agents [Deneubourg & Goss, 1989], and the fact that
complex behaviours can emerge from the interaction of very simple rules [Reynolds,
1987]. But even the simplest of insects have many thousands of neurons; the para-
sitic wasp Megaphragma mymaripenne has 7400, an ant has 2.5× 105 , and a honey
bee has a million [Menzel & Giurfa, 2001; Polilov, 2012]. We argue that limiting
the computational abilities of each individual agent of the swarm is an unneces-
sary restriction, even the Xpuck robots in this work with their on-board GPU are
only computationally equivalent to a few thousand biologically plausible neurons,
Minkovich et al. [2014], orders of magnitude less processing power than possessed
by honey bees.

Emergence A fundamental concept of swarm robotics is that of emergence, indi-
vidual agents interact with each other and with the environment according to sets
of rules they each follow, and from these local interactions a global swarm behaviour
emerges. The global behaviour is different from, and is not obvious from, the local
rules of behaviour [Bedau, 1997]. A related concept is self-organisation, whereby a
system maintains some form of structure, spatially, or temporally, without external
control. Emergence and self-organisation can exist individually in a system, but
for interesting behaviours of the type we wish to engineer in robot swarms, both
characteristics will tend to exist together [De Wolf & Holvoet, 2004]. That is, we
want self-organised collective behaviours to emerge from the local interactions of the
individual agents following their rules.

Manual rule design A central problem in swarm robotics is the design of the lo-
cal rules for the individual agents such that the desired collective behaviour emerges.
This is a hard problem for which there exist no analytical solutions. There do exist,
however, many techniques for engineering these rules. Bioinspiration was an early
and important method; observations of natural swarms leading to inference of possi-
ble rules. Reynolds [1987] was interested in designing better, more natural looking,
computer animations of large collections of agents, for example birds. Methods at
the time were essentially individually scripted movements for each agent. He ob-
served that flocks of birds seemed to follow three rules: 1) Avoid collisions, 2) Align
with neighbours, and 3) Move towards centre of neighbours. When combined with a
simple perceptual model of limited range and a basic physical model in computer sim-
ulation, these rules gave rise to many convincing flocking and schooling behaviours,
depending on the parameters of the rules. The Reynolds model inspired much theo-
retical work, e.g Olfati-Saber [2006] and application to real robots, e.g Hauert et al.
[2011].

32

Hand design of the rules is a common method often, as with Reynolds, combined with
bioinspiration. Mataric [1993] divides observed swarm behaviours into a number of
primitives, including collision avoidance, following, dispersion, and aggregation, and
by an iterative process designs rules for twenty individual robots that cause the swarm
to show the desired emergent behaviour. This use of primitive swarm behaviours,
which can then be combined into more complex ones (the paper describes flocking
in terms of the above four) is widely used [Brambilla et al. , 2013].

Because there currently exist no analytical methods for rule design, these manual
methods rely on the designers intuition and experience, combined with multiple
iterative trials, often both in simulation and on real robots.

Automatic rule design Automatic rule design treats the problem as one of opti-
misation, representing the control rules in some way that can be easily manipulated,
and expressing the performance at some task of a swarm of robots executing the
rules as an objective or fitness function. The automatic process modifies the rules
and measures their performance, usually in simulation, using the objective function.
The measured performance guides the process in the exploration of the design space
represented by all possible rules. The process generates new sets of rules that per-
form better. This process continues until some desired level of performance at the
task has been reached [Francesca & Birattari, 2016].

The main automatic approach used is various forms of evolutionary algorithm, usu-
ally termed evolutionary robotics [Nolfi et al. , 2000; Vargas et al. , 2014]. Commonly
in evolutionary robotics, the evolutionary algorithm is used to modify the weights of
a neural network which accepts sensor inputs and produces actuator outputs. Some-
times the structure is also modified [Stanley & Miikkulainen, 2002]. Classically,
evolutionary robotics was applied to single robots [Bongard, 2013], the application
to swarms is known as evolutionary swarm robotics [Trianni, 2008]. Other approaches
than neural networks and evolutionary algorithms are used, for example, Francesca
et al. [2014a] use a Probabilistic Finite State Machine (PFSM) as the controller,
with parameters optimised using the F-Race algorithm [Birattari et al. , 2002]. In
all cases, the controller and its parameters encapsulate the rules governing the in-
teraction between agents of the swarm, and the optimisation algorithm explores the
rule space to find rules that cause the desired emergent collective swarm behaviour.

Evolutionary algorithms Evolutionary algorithms are a very interesting exam-
ple of bio-inspiration, due to the possibilities of generating novel solutions beyond
those conceived of by a designer. Since evolutionary swarm robotics is well estab-
lished as a viable technique, we chose this path for the generation of the required
rules. It is worth looking briefly at the literature regarding evolutionary algorithms,
which is extensive, with regard to applicability to swarm robotics. Evolutionary al-

33

gorithms, inspired by the process of natural selection, can be broadly divided into
three families [Bäck, 1996]. These are Evolution Strategies (ES), Genetic Algorithms
(GAs), and Genetic Programming (GP). All share some similarities; they maintain a
population of potential solutions which are tested against a fitness or objective func-
tion. The measured fitness of the population is used to select individuals, which are
then combined and mutated to form a new population, and this process is repeated
until some termination criteria is reached, commonly a particular level of fitness or
a certain number of iterations. Whitley [2001] gives a good overview of the separate
origins and the similarities and differences.

Evolution Strategies [Schwefel, 1993; Beyer & Schwefel, 2002] has its origins in the
1960s in Germany, where it was devised to optimise real parameters of aerodynamic
bodies to reduce drag. Each individual solution consists of a set of real valued param-
eters to be optimised, and usually a corresponding set of mutation strengths known
as the strategy. Selection is deterministic based on fitness rank, combination ran-
domly chooses parents from the selected set and either uses some form of averaging
between parameters of the parents, or randomly chooses individual parameters from
one or other parent. The mutation step applies random changes of Gaussian distri-
bution to the parameters, with the characteristics of the distribution controlled by
the associated strategy variable, which is itself updated first, using a special strategy
mutation operator. The strategy mutator results in adaptive mutation rates, with
smaller mutations as solutions near maxima.

Genetic Algorithms, introduced by Holland et al. [1975] have a population that
consists of individual genomes, usually a fixed length bit string, that encode a solution
in some way, for example by allocating a fixed number of bits to each parameter.
Selection is stochastic, usually based on the fitness rank. A common method is
the tournament selector, which randomly picks n individuals from the population
and returns the fittest of those n. The value of n is the tournament size, varying
this controls the degree of selection pressure, higher numbers leading to a greater
tendency to chose higher ranking individuals. A typical tournament size is n = 3.
Combination usually takes two parent genome bit strings, randomly picks a crossover
point, and creates two children by swapping the bit strings at the crossover point.
Mutation randomly alters every bit in the resultant bit strings with some probability.
A common feature is the use of elitism, where the fittest nelite individuals are always
transferred to the new population unaltered [Bäck et al. , 2000; Davis, 1991; Whitley,
1994].

Genetic Programming, by Koza [1992, 1994], maintains a population of programs.
These are not written in a general purpose language but a domain-specific set of
functions, variables, and constants. The programs are usually represented as a tree,
with functions as inner nodes and the variables and constants, terminals, the leaves of

34

the tree. Each program, when run, is a potential solution that is measured for fitness.
Selection is stochastic and similar to GA. Also, like GAs, elitism is often used [Poli
et al. , 2008]. Combination works on tree structures, for example, randomly selecting
a node in each of two parents, then creating two new individuals by swapping the
subtrees underneath the nodes. Mutation has many variants, altering constants,
replacing nodes, or replacing whole subtrees. An additional complexity of GP is the
requirement that the tree is type-consistent, that only a function node that returns
the correct type is placed as a child of another node requiring that type. This affects
both combination and mutation operators. Another characteristic particular to GP
is the phenomenon of bloat, the uncontrolled growth in size of the individuals of the
population, possible because of the tree representation. This is analysed by Langdon
[2000] and Luke & Panait [2006] examine methods to control bloat.

In reality, many practical uses of evolutionary algorithms make use of features from
the three families outlined above as appropriate to the problem domain [Whitley,
2001].

We wish to run evolutionary algorithms within the swarm of robots, which implies
the use of parallel or distributed forms. One simple method is the fine-grained ap-
proach of executing the expensive fitness evaluation step on each individual in the
population in parallel. The behaviour of such an approach is identical to a serial
implementation, but relies on a central controller dispatching evaluation sub-tasks,
receiving fitness results, then performing the selection, combination, and mutation
steps centrally. The algorithm relies on tight coupling and high levels of communica-
tion between processes, more suitable to multiprocessor systems. Another approach
to parallelism is the Island Model, originally coined in Wright [1943] to refer to a
theoretical evolutionary biology model of subdivided populations with some amount
of migration between them. As first applied to GAs in Whitley & Starkweather
[1990], multiple sub-populations of individuals are maintained with a certain level of
migration of the fittest individuals between the islands. The loose coupling between
sub-populations requires only limited amounts of communication and is well suited
to a swarm robotics system with each robot hosting a sub-population. Further work
showed that can be more effective than a single panmictic population due to the
promotion of niching and maintenance of diversity, and examine effects of topology
and migration rates [Gorges-Schleuter, 1990; Whitley et al. , 1997; Cantú-Paz, 1998;
Whitley et al. , 1999; Konfrst, 2004].

2.2 Controllers for evolutionary swarm robotics

When using evolutionary methods to discover the rules governing the interactions of
the robots in a swarm with each other and the environment that give rise to a desired
collective behaviour, it is necessary to encapsulate these rules in a form suitable for

35

the evolutionary algorithm and for controlling the robots. We refer to this as the
controller architecture.

Various different controller architectures are used. These include neural networks,
probabilistic finite state machines, behaviour trees, and hybrid combinations, [Bal-
dassarre et al. , 2003; Francesca et al. , 2015; Jones et al. , 2016; Duarte et al. , 2016].
See Francesca & Birattari [2016] for a recent review.

For swarm robotics systems, there are two very commonly used controller archi-
tectures, Neural Networks (NNs) and Finite State Machines (FSMs), illustrated in
Figure 2.1. We will briefly describe these architectures, considering the design is-
sues that occur when using them, before moving on to behaviour trees as a possible
alternative.

Inputs Hidden layer Output layer

State 2

State 1

State 4

State 3

Cond 1
Cond 2

Cond 3

Cond 4

Cond 5
Cond 6

Figure 2.1: On the left, a simple feed-forward neural network. The four inputs are con-
nected to all of the five neurons in the hidden layer, which are in turn connected to the three
neurons of the output layer. The hidden and output layer neurons have weights for each
input and often a sigmoid transfer function. Inputs would typically be connected to sensors
and outputs to actuators. On the right, a simple finite state machine with four states. The
FSM can be in only one state at any one time. Transitions between states occur when
certain conditions are met, denoted ’Cond i’. Typically, the conditions will be associated
with sensor inputs and actuator outputs will depend on the current state.

2.2.1 Neural Networks

Neural Networks consist of a directed graph of nodes, called neurons, which have
at least one input and one output. Each neuron has a transfer function relating
the input values to the output value. The inputs may come from external inputs,
in the case of a robot this would be sensors, or from the outputs of other neurons.
The outputs may connect to external outputs, actuators in the case of a robot, or
other neurons. Neural networks can be divided into feed-forward, where the network
is a directed acyclic graph, and recurrent, where cycles exists in the network. The
function of the network is completely described by the transfer functions of the
neurons and the topology of the network [Haykin, 1994].

36

The classical target of evolutionary robotics is a fixed topology completely connected
feed-forward network with a two layers of neurons, one connected to the inputs, called
the hidden layer, and one taking the outputs from the neurons of the hidden layer
and producing the final outputs. Each neuron has a sigmoid transfer function, tanh
or the logistic function, Figure 2.2, operating on the weighted sum of the inputs. For
inputs Ii, hidden layer neurons Hj , and outputs Ok with numbers of each given by
ninputs, nhidden, noutputs, the transfer function is given by:

Hj = tanh
(ninputs∑

i=0

wjiIi
)

Ok = tanh
(nhidden∑

j=0

wkjHj

)
(2.1)

The behaviour is defined by the weights w of which there are:

nweights = ninputsnhidden + nhiddennoutputs (2.2)

Typically, one of the inputs to the hidden layer is connected to a fixed value of 1 to
provide a bias input. Sometimes an additional bias input is provided to the output
layer, although the same effect can be achieved with a hidden layer neuron having
all its weights at zero except for the weight of the bias input.

4 3 2 1 0 1 2 3 4

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Sigmoid function tanh(x)

Figure 2.2: Sigmoid function tanh, commonly used as the neuron transfer function

The task for an evolutionary algorithm is to discover weights such that the instan-
tiated NN produces the desired behaviour, as defined by the objective function the
evolutionary algorithm seeks to maximise.

Even with this simple example, there are a number of design issues which need to
be answered. How are the real sensor inputs conditioned into neuron inputs? How

37

are the outputs converted into real actuator controls? How many neurons should
there be in the hidden layer? How should the weights be represented within the
evolutionary algorithm? Floreano et al. [2008] survey some of these questions.

Possible answers to these questions are: inputs can in theory be mapped to any
real number, since each input is weighted, but since the tanh function is essentially
saturated outside input values around −4..4, the Evolutionary Algorithm (EA) will
need to use the weights to bring the inputs input this range for them to have mean-
ingful effect. This then affects the consideration of ways of representing the weights
within the EA. With an ES approach [Beyer & Schwefel, 2002], where genes within
the genome are real numbers, perturbed by Gaussian noise in a mutation step, they
might just be represented as standard floating point numbers, although allowing the
full range of a floating point number results in a vast search space that is uninterest-
ing since it results in a saturated neuron. If we use a classic GA where the genome is
a series of bits, we may want to interpret chunks of the bits as a fixed-point format,
for example 8 bit chunks interpreted as signed 3.5, capable of representing numbers
from -4.0 to +3.96875 in steps of 0.03125. If we use this approach, the more limited
dynamic range of the weights necessitates conditioning the inputs to be within that
range. Mapping of outputs to actuators is usually done quite directly, for example
with a two-wheeled robot, there might be two output neurons whose minimum and
maximum output values of −1 and 1 are mapped directly to the maximum reverse
and forward wheel velocities respectively. The number of neurons to use within the
hidden layer is not obvious, Wang [1994] suggest 2n/3 where n is the number of
input neurons, Fletcher & Goss [1993] suggest between 2

√
n + m and 2n + 1 when

m is the number of output neurons.

The classical NN target described above has a fixed topology, and one important is-
sue with that is the designers decision on the number of neurons imposes a maximum
complexity on the controller. Variable topology approaches such as NeuroEvolution
of Augmenting Topologies (NEAT) [Stanley & Miikkulainen, 2002] describe an evo-
lutionary algorithm that allows new neurons and edges to be added to the graph.
This means the EA has greater freedom to discover solutions outside those possible
with a fixed topology.

NNs are probably the commonest target control architecture within evolutionary
robotics. It is well understood how to use them to achieve good results, although
their black-box nature makes it hard to explain why they produce particular actions
for given stimulii [Nelson et al. , 2009].

2.2.2 Finite State Machines

An FSM is a system which may be in one of a number of discrete states. It can
be represented by a directed graph where the nodes represent states and the edges

38

represent transitions between states. Each state defines what the outputs of the
state machine should be. Each transition defines the input conditions, known as
guard conditions, that are necessary for the transition between states to take place.
A common variant in evolutionary swarm robotics is the PFSM which adds proba-
bilities to the transition guard conditions. If the condition is met, then the transition
will take place with a certain probability. Similarly with behaviour trees, FSMs and
PFSMs are human readable and transparent, and can be used to construct a system
of ordinary differential equations representing the swarm [Liu et al. , 2007; Winfield
et al. , 2008]. One of the main limitations of conventional FSMs is the issue of state
and transition explosion with increasing complexity of controller. Each possible com-
bination of outputs is represented by a separate state. Transitions which are common
events need to be replicated across many states. There are software formalisms for
describing hierarchical state machines that address some of these issues.

As with NNs, we have to make design decisions when using an FSM within an
evolutionary robotics context. What are the inputs and outputs? What are the
valid combinations of outputs for which we need states? How do we represent these
in an EA? A common approach is to define a limited number of states that represent
behaviours at a higher level than are typically used for a NN controller. So, rather
than direct motor control, we might have states specifying go-toward-light, random-
walk, etc. Inputs are often treated with thresholds or comparisons and combined
to form boolean conditions, again having some higher level meaning than is typical
with a NN. The EA representation might then consider a fully connected graph of
all states, with each possible transition represented by one of the defined conditions
(with an associated probability for a PFSM). The numbers of states used is generally
low because of the previously mentioned state explosion; the number of transitions
in a fully connected graph increasing as N(N − 1).

FSMs are sometimes used as a higher level structure for combining lower level be-
haviours implemented in some other architecture, e.g. Duarte et al. [2014] evolve
NNs for the lower level behaviours, then evolve the state transitions to achieve useful
swarm level behaviours.

2.3 Behaviour trees as understandable controllers

A behaviour tree is a hierarchical tree structured graph of nodes, with leaf nodes
interacting with the world and inner nodes combining leaf nodes and subtrees in
various conditional and sequential ways. They can accept sensor input and produce
actuator output, acting as an agent controller. Behaviour trees have a number of
desirable properties; they are modular - any subtree of a BT is itself a complete BT,
and any complete BT can be used as a subtree, so they can be used to encapsulate
and reuse useful behaviours. They are extensible, there is no combinatorial explosion

39

from increasing the number of nodes, as there is for state machines. They are human
readable, at least in principle, and so aid analysis and reverse engineering of evolved
BTs. The tree structure can be evolved using the techniques of Genetic Programming.
Ogren [2012] shows that FSMs can be represented by a BT, provided there are both
sequence and selection type operators. With the addition of a source of randomness,
PFSMs can also be represented. Compared to an FSM or PFSM, the state transitions
are implicit in the tree structure, and modular1 structure is explicit; all subtrees are
legal behaviour trees.

One way to think about BTs as compared to FSMs is to make an analogy to pro-
gramming languages [Colledanchise & Ogren, 2014]. In an FSM, changes of state,
the transitions, are encoded in the states themselves; once a transition has happened,
knowledge of the state transitioned from is lost. This is analogous to the use of GO-
TOs in early programming languages. By contrast, evaluation of a BT traverses and
returns from sub-trees, in a way more analogous to function calls than GOTOs. As
with more modern programming languages, this promotes modularity and eases the
construction and understanding of more complex systems.

The goal of explainability is important for automatically generated robot controllers,
and machine learning more generally. Being able to verify that a controller will never
produce dangerous outputs, or learning from effective controllers are desirable prop-
erties [Samek et al. , 2017]. As noted above, there are many possible controller
architectures that can be used as the target of automatic design methods. The most
widely used, neural networks, are the least explainable, with to date no adequate
tools to predict behaviour apart from direct testing [Nelson et al. , 2009]. Recent
success in Deep Neural Networks (DNNs) has made explainability and trust more
important, Došilović et al. [2018] survey work in this area. Forms of FSMs and
behaviour trees are human readable and the hierarchical structure of behaviour trees
makes them amenable to automatic analysis. In Chapter 3 we set out a formal
approach to simplifying automatically generated trees to aid analysis, and in Chap-
ter 8 we demonstrate these methods to explain and understand several examples.
The hierarchical structure of BTs means that a divide-and-rule approach is possi-
ble, unlike with FSMs; simpler sub-behaviours closer to the leaves of the tree can
be analysed and understood, then larger behaviours composed of the sub-behaviours
themselves explained and understood. However, as Došilović et al. [2018] note, there
is a performance-transparency trade-off going from NNs to tree or rule-based models;
we may have greater trust in explainable and understandable controllers but never
reach the same levels of performance that are possible with NNs, although the shape
of the trade-off in the domain of swarm robotics is unclear.

Behaviour trees in approximately the form outlined above appeared at around 2002

1Perhaps mirroring a fundamental property of nature [Clune et al. , 2013].

40

as a software engineering tool, a method of constructing believable Artificial Intel-
ligence (AI) characters in games, and a way of controlling robots. There are earlier
references to ‘behaviour trees’ in the literature, but these refer to ways of organising
the understanding of the behaviours of a system, rather than the current meaning,
e.g. Clancy & Kuipers [1993]. They were introduced as a way of specifying soft-
ware requirements in a formal and hierarchically composable way to ease the path to
actual design [Dromey, 2003; Gonzalez-Perez et al. , 2005]. Mateas & Stern [2002]
describe a behaviour control language for game agents that has similarities to current
behaviour trees, although lacking some features. Various authors describe tree-like
control architectures for robotics, with advantages of modularity and encapsulation,
but with rather different semantics [Fujita et al. , 2003; Hoshino et al. , 2004; Wang
et al. , 2005].

The search by the games industry for methods of describing the decision processes
and actions of Non-Player Characters (NPCs) resulted in recognisably the first de-
scriptions of what we now think of as behaviour trees. Isla [2005] discusses the
problems faced by games designers in handling increasing complexity, and the use
of behaviour trees to solve these issues. Champandard [2007] in a talk first intro-
duces the standard graphical notation and starts to formalise them, and Dyckhoff
& Bungie LLC [2008] describe the use of behaviour trees for NPC control. It is not
clear when decorators, single child inner nodes that modify the result of a subtree,
were introduced but Lim et al. [2010] describes them explicitly. Because this early
work was in commercial industry, there is little in the literature until a few years
later but even by this point there had been no formal treatment of the semantics
[Cutumisu & Szafron, 2009; Weber et al. , 2010; Perez et al. , 2011; Dill & Lockheed
Martin, 2011; Shoulson et al. , 2011].

The control of autonomous agents within games has clear similarities to the con-
trol of robots, in both cases, the agent must process sensory input and produce
actuator controlling outputs that effect change within the environment. This led
to greater consideration of BTs within the robotics community with Bagnell et al.
[2012] demonstrating early use as a robot arm controller, and other practical applica-
tions are shown [Abiyev et al. , 2013; Scheper et al. , 2016]. Ogren [2012] formalised
some of the concepts and showed that all FSMs, and with available randomness,
all PFSMs can be synthesised from BTs. They only use memoryless versions of
compositional nodes. Klöckner [2013a] make a modification to introduce transient
behaviours. Colledanchise & Ogren [2014] showed that robustness and safety analy-
sis is aided by the inherent modularity of BTs. In Marzinotto et al. [2014] a more
consistent formalism is developed, motivating extensions of the available composition
node types to include memory forms and demonstrating equivalence between BTs
and Controlled Hybrid Dynamical Systems (CHDS). Other work covers performance
analysis [Colledanchise & Ogren, 2014], verification [Klöckner, 2013b], application of

41

GP to behaviour trees [Colledanchise et al. , 2015; Jones et al. , 2016].

One very important motivation for using behaviour trees as a controller architecture
comes from the arguments of Francesca et al. [2014a]. They argue that the reality
gap is a particular problem when the representational power of a controller is too
high. That is, it is an example of the bias-variance tradeoff in machine learning. A
neural network controller, for example, might have very low bias. It has no or few2

assumptions about the solution. The consequence of this is that it has high variance
and is prone during the learning algorithm to overfitting to the training set, and
thereby not generalising well. In the specifics of automatically discovering controllers
in simulation for swarm robotics, this means that the controller is overfitted to the
simulation environment, with its inevitable infidelities to the real world, and thus
transfers badly to the real world. Francesca et al. argue that by reducing the
representational power of the controller, defining some fixed constituent behaviours
that are building blocks for the controller, we can move towards the bias end of
the tradeoff, avoiding overfitting to the simulator environment and thus transferring
more successfully to the real world. They successfully demonstrate this approach
with a swarm of e-pucks. Behaviour trees are a natural fit for this approach, since
we can easily control the expressivity, encapsulating the constituent behaviours we
desire within subtrees.

We wish to apply evolutionary methods to behaviour trees in order to discover con-
trollers such that, when instantiated within a swarm of robots, a desired collective
behaviour emerges as a result of the individual robot actions and the interactions
between them and the environment. In order to do this, we need a complete descrip-
tion of the semantics of behaviour trees, such that we can implement interpreters
that perform correctly. This is discussed in detail in Chapter 3, where we formally
describe the semantics we use, resolving ambiguities in the existing work, specifying
a complete algorithm for tree evaluation, and discuss analysis methods. We also
cover the application of GP techniques to BTs.

Here we give a less formal description of the execution of BTs using an example.
Figure 2.3 shows a simple behaviour tree for performing collision avoidance. The
tree is read in a depth-first left-to-right manner starting at the root of the tree at
the top, and this one can be described in english as ‘if there is an obstacle in front
then turn left otherwise move forward’.

A BT controller is evaluated in the following way; at regular intervals, generally
corresponding to the control timestep of the robot although this is not necessary,
a tick event is sent into the node at the root of the tree. The node performs its
function and responds one of only three ways - success, failure, or running. All nodes

2Conditioning the inputs and outputs of the NN constitute implicit assumptions about the
solution space.

42

?

If
obstacle
in front

Turn left

Move
forward

Figure 2.3: A simple behaviour tree for robot collision avoidance

have this interface. The inner, or compositional nodes of a BT are of several types
and relatively generic to all BTs. We may choose to use a subset of these, but a
minimum set would be the use of sequence and selection nodes. A sequence node,
on receiving a tick, will send a tick event to each of its children from left to right
in turn until any return running or failure, or they have all returned success, itself
returning that, respectively. A selection node, on receiving a tick, will send a tick
event to each of its children in turn until any return running or success, or they have
all returned failure again returning that, respectively.

Leaf nodes, on receiving a tick, interact with the environment within which they
are embedded. Within this work, we formalise the environment as a set of variables
termed the blackboard3 which constitutes the interface between the BT and the real
world. It consists of a set of variables that reflect the value of sensors, control
actuators, or act as memory. Leaf nodes can be conceptually divided into query and
action nodes. A query node purely returns a result based on the blackboard with
no side effect. An action node may result in alterations to the blackboard, that is,
perform an action on the environment.

Returning to the example in Figure 2.3, the node at the top is a selection node, and
will activate with a tick the left hand child tree first, and only if this returns failure
will it activate the right hand child node, an action node that causes the robot to
mode forward. The left hand subtree is a sequence node. This node will activate
its left hand child first, and only if it returns success will it activate the right hand

3This is terminology from the games industry

43

node. causing the robot to turn left.

2.4 Robot design

We want a robot design that has sufficient computing power on-board that a swarm
of them can host evolutionary algorithms. This must also be cheap to build. This
work is focussed on robots working on a 2D surface, mainly because of the prior
knowledge of the author and the availability suitable infrastructure. There is no
reason that the principles cannot be also applied to any suitably performant 3D
swarm platform.

Moore’s Law [Mack, 2011] is the observation made in 1965, six years after the in-
vention of the planar transistor, that the number of minimum cost components on a
silicon chip doubles every year. Amazingly, 50 years later, this exponential growth
is still broadly true, though now generally stated as the number of transistors per
chip doubling every 18 months. This scaling comes from the continual reduction of
the size of the transistors, the economical maximum size of a chip remaining roughly
constant. Closely related is Dennard’s Law [Dennard et al. , 1974; Bohr, 2007] which
states that as transistors shrink in size, they get faster and consume less power in
proportion. Together, this means that computational performance per Watt tracks
the exponential increase in transistor counts.

In the late 90s and early 2000s, the increasing transistor budget was used to increase
the performance of serial Central Processing Units (CPUs) with larger caches, deeper
pipelines allowing faster clock speeds, superscalar designs that preserved the illusion
of a serial stream of instructions, while extracting parallelism behind the scenes. But
the limits to this approach lead to a plateauing of clock speed and then multicore
CPUs to consume the available transistors. Alongside this, the games industry was
a major driver in improving the performance of 3D graphics rendering hardware,
initially with fixed function pipelines, but in 2001 the first programmable floating
point graphics pipelines were introduced, and the raw processing power started to
outstrip that available on the CPU. Because the problem domain was limited to
graphics rendering, an inherently parallel operation, there were no legacy constraints
on architecture and the programming models were explicitly parallel. The availability
of large amounts of processing power on commodity graphics cards, albeit difficult
to use, made them attractive to the scientific community. By 2004, a typical GPU
such as the Nvidia 6800 Ultra had a peak performance of 40 GFLOPS and a power
consumption of 110 W, 0.35 GFLOPS/W [Manocha, 2005]. More convenient APIs to
use this processing power like Nvidia’s CUDA [Nvidia, 2007] and Khronos’ OpenCL
standard [Khronos OpenCL Working Group et al. , 2010] became available, enabling
general purpose computation on graphics processing units (GPGPU). See Keckler
et al. [2011] for more discussion of these trends.

44

As with the desktop space, so we see the same trends with mobile devices. Because
they are hand-held and passively cooled, the power envelope of a mobile device is of
the order of a few watts, otherwise the casing becomes uncomfortably hot to hold.
By the scaling laws above, after ten years we should expect to see roughly the same
processing performance at one hundredth of the power consumption, and indeed we
do. The Samsung Exynos 5422 mobile phone SoC has a peak performance of around
120 GFLOPS at a power consumption of 5 W, or 24 GFLOPS/W. Grasso et al.
[2014] looks at at High Performance Computing (HPC) applications of mobile SoCs
and shows much higher performance with lower power consumption than desktop
equivalents.

This increase in the available computational power in mobile devices has not been
reflected in available robotics platforms. A number of different platforms have been
used for swarm robotics research. The e-puck by Mondada et al. [2009] is widely
used for experiments with numbers in the tens. Rubenstein et al. [2012] introduced
the Kilobot, which enables swarm experiments involving over 1000 low-cost robots.
Both platforms work on a 2D surface. Other platforms include Swarmbots [Dorigo
et al. , 2004], R-one [McLurkin et al. , 2013], and Pheeno [Wilson et al. , 2016].
Swarm platforms working in 3D are also described, Hauert et al. [2009] demonstrate
Reynolds flocking [Reynolds, 1987] with small fixed-wing drones, see also Kushleyev
et al. [2013]; Vásárhelyi et al. [2014]. Most described platforms are homogeneous,
but heterogeneous examples exist such as the Swarmanoid [Dorigo et al. , 2013]. It
is only with the very recent platforms of the Pi-puck and Pheeno (unavailable at the
time of design of Xpuck) that the processing power exceeds 1.2 GFLOPS.

We designed our robot, the Xpuck, explicitly with the e-puck in mind, because, like
many labs, we already have a reasonably large number of them. The e-puck is very
successful, with in excess of 3500 shipped units, perhaps due to its simple reliable
design and extendability. Expansion connectors allow additional boards that add
capabilities. Three such are relevant here because they extend the processing power
of the e-puck. The Linux Extension Board [Liu & Winfield, 2011] adds a 200 MHz

Atmel ARM processor running embedded Linux, with wifi communication. The e-
puck extension for Gumstix Overo COM is a board from GCTronic that interfaces a
small Linux single board computer, the Gumstic Overo Earthstorm4, to the e-puck.
A recent addition is the Pi-puck [Millard et al. , 2017] which provides a means of
using the popular Raspberry Pi single board computers to control an e-puck. The
extension board connects the Pi to the various interfaces of the e-puck and provides
full access to all sensors and actuators except the camera. The design described here
has more computational power than any of the above.

4https://store.gumstix.com/coms/overo-coms/overo-earthstorm-com.html

45

https://store.gumstix.com/coms/overo-coms/overo-earthstorm-com.html

2.5 Reality gap

When using evolution or other methods of automatic design within a simulated
environment, the problem of the transferability of the controller from simulation to
real robots arises, the so-called reality gap, or sim-to-real problem. There are various
approaches to alleviating this. This issue arises due to the differences between the
simulated environment and the real world. It is generally the case that there is
a direct trade-off between higher simulation fidelity and slower simulation speed
[Vaughan, 2008]. Given that we have finite computational resources available, how
do we best spend them? Evolutionary algorithms and other automatic methods rely
on many simulations, so we wish these to be as fast as possible, but low fidelity
simulations result in solutions fitted to something different than the real world, how
do we ensure they transfer well to control real robots?

Firstly, there are methods that are aimed at making the automatically discovered
controllers resistant to the differences between simulation and reality, such as noise
injection within a minimal simulation [Jakobi et al. , 1995; Jakobi, 1998], making
transferability a goal within the evolutionary algorithm [Koos et al. , 2013; Mouret
& Chatzilygeroudis, 2017], and varying the simulator parameters [Peng et al. , 2018;
Tobin et al. , 2017] Reducing the representational power of the controller [Francesca
et al. , 2014a, 2015; Birattari et al. , 2016] seems to be a powerful technique and is a
strong motivator in our use of BTs, which allow for easy encapsulation and tuning of
the granularity of individual behaviours exposed to the EA. Birattari et al. propose
a manifesto of good practice for automatic off-line controller design [Birattari et al.
, 2019].

Other approaches use reality sampling to alter the simulated environment to better
match true fitnesses, [Zagal et al. , 2004; O’Dowd et al. , 2014]. This requires either
off-board processing with communication links to the robot, or sufficient processing
power on the robot to run simulations. Related is the concept of surrogate fitness
functions [Jin, 2011] with cheap but inaccurate fitness measures made in simulation
and expensive but accurate measures made in reality. Some works use simulation for
the initial automatic controller generation, followed by a short period on training on
a real robot [Rusu et al. , 2016].

Embodied evolution directly tests candidate controllers in reality. This sidesteps
the reality gap entirely by not having simulation at all. When applied to swarms
[Watson et al. , 2002] the evolutionary algorithm is distributed over the robots [Usui
& Arita, 2003; Bredeche et al. , 2012; Doncieux et al. , 2015]. The time taken to
evolve solutions can be days or weeks, and badly adapted controllers pose a risk to
the robots. Hybrid approaches, using some simulation and some evolution or other
learning in reality exist, but much embodied evolution work with collective robotics
never actually uses real robots because of the cost and time implications [Bredeche

46

et al. , 2018].

Related is the idea of using internal simulation models as a way of detecting differ-
ences between those models and reality. This can be means of detecting malfunction
and adapting [Bongard et al. , 2006], or asking what-if questions, so as to evaluate
the consequences of possible actions in simulation [Marques & Holland, 2009]. This
is applied to the fields of both robot safety and machine ethics [Winfield et al. , 2014;
Winfield, 2015; Vanderelst & Winfield, 2018; Blum et al. , 2018]. Any robot relying
on simulation for its ethical or safe behaviour must either embody that simulation or
use extremely reliable communications links, which are difficult to achieve. Swarms
are usually assumed to be robust to failure, but Bjerknes & Winfield [2013] show
that this is not always the case. By using internal models and observing other agents
within the swarm, agents not behaving as predicted can be identified [Millard et al.
, 2013, 2014]. The system we describe is well-suited to these types of study.

The approach we take in this work to tackling the reality gap combines several of
the techniques detailed above. Firstly, we take inspiration from Francesca et al.
[2014b] and use the modularity of BTs to design useful sub-behaviours of a granular-
ity we hope will decrease the representational power of the controller architecture,
increasing resistance to reality gap effects, while maintaining sufficient expressivity
for the EA to find effective solutions. Secondly, we pay careful attention to tuning
the simulator to minimise measured differences with reality and we inject noise to
mask the some of the remaining differences between simulator and reality [Jakobi
et al. , 1995]. Finally, we modify the allowed behaviours of the controllers to avoid
particularly problematic areas of simulation fidelity, such as collisions.

Having described the background of the work, in the next chapter we move on to
look in detail at behaviour trees, making explicit the semantics we use, and detailing
all of the inner node types used, describing ways the BTs can be transformed into
different representations, and can be automatically manipulated for the purpose of
analysis.

47

48

Chapter 3

Behaviour trees

When using evolutionary methods to discover controllers for producing a desired
collective behaviour when instantiated within a swarm, the question arises of what
controller architecture to use? There are a number of aspects by which this question
may be examined. Do there exist techniques for representing a description of the
controller in a suitable way to undergo evolution within an evolutionary algorithm?
How easy is it to examine an evolved controller in order to reverse engineer it and
perhaps learn new swarm control techniques? Is the architecture capable of rep-
resenting controllers of varying complexity in a flexible way? Can we abstract and
compose sub-behaviours in a modular way? In this chapter, we argue that behaviour
trees are a controller architecture with a number of desirable properties, and then
discuss in depth the theory and design of BTs for use in evolutionary swarm robotics.

3.1 Behaviour tree theory

A behaviour tree is a hierarchical tree structured graph of nodes, with leaf nodes
interacting with the world and inner nodes combining leaf nodes and subtrees in
various conditional and sequential ways. Behaviour trees are widely used in the
games industry to control the decision and action processes of non-player characters,
where they have mostly supplanted previous use of FSMs. The control of autonomous
agents within games has clear similarities to the control of robots, in both cases, the
agent must process sensory input and produce actuator controlling outputs that
effect change within the environment. This has led to greater consideration of BTs
within the robotics community and the formal treatment of them in various works,
detailed in Chapter 2.

Behaviour trees have a number of desirable properties; they are modular - any subtree
of a BT is itself a complete BT, and any complete BT can be used as a subtree, so
they can be used to encapsulate and reuse useful behaviours. They are extensible,

49

there is no combinatorial explosion from increasing the number of nodes, as there
is for state machines. They are human readable, at least in principle, and so aid
analysis and reverse engineering of evolved BTs. The tree structure can be evolved
using the techniques of Genetic Programming.

Behaviour trees are evaluated at regular intervals, generally corresponding to the
controller update rate of the robot although this is not necessary. At each update,
a tick event is sent into the node at the root of the tree, which responds with either
success, failure, or running, depending on the evaluation of that node. All nodes have
this interface. The process of evaluating the node may involve further ticks being
sent to child nodes according to the node type. Eventually ticks will reach leaf nodes,
that interact with the blackboard, which is a table of variables. The blackboard is the
architectural representation of the environment, that is, the sensors and actuators
that the robot possesses. When referring to a BT tick, it is important to note that a
single tick at the root node can produce a cascade of ticks lower down the tree. All
these ticks occur within the same controller update cycle, they are ordered but take
zero physical time in theory. This is similar to the delta cycle concept in event driven
simulators. In practice, the evaluation of a behaviour tree takes a certain amount
of processing, and there must be sufficient processing power for this to occur within
the robot controller update period. Sometimes within this work we refer to events
happening in the same tick, by this, we mean within the same tick at the root node,
or same controller update cycle.

The design process for a BT architecture consists of deciding; the representations
of the sensors that will be available in the blackboard variables, the way that the
blackboard variables will connect to the actuators, and the design of the leaf or
action nodes that will connect the BT and the blackboard. We also need to decide
the representation of the BT within the evolutionary algorithm. Here there are two
main possibilities. Firstly to use the standard approaches of Genetic Programming,
whereby a computer program is represented as a tree of nodes of function calls.
This approach translates very easily to behaviour trees. In fact, since each node has
an identical interface, there are no complications with ensuring that only nodes of
compatible type are used. The second approach is generative, to use a binary string,
for example, as the genome in the evolutionary algorithm, then use that string as
the input into a grammar to generate the tree.

Behaviour trees are often represented graphically, with the root node at the top
and leaf nodes at the bottom, a left-to-right priority for sequence and selection
nodes. There are some symbols for node types that are relatively standard across the
literature, which we will use. In addition, we will sometimes use exactly equivalent
indented textual representation obtained from a depth-first left-to-right traversal of
a tree. Finally, for larger trees it is sometimes clearer with a graphical representation

50

to show the root node on the left and the leaf nodes to the right, with top-to-bottom
ordering.

We now look in detail at the various aspects of behaviour trees, starting with the
nodes used to construct them, then semantics of behaviour tree evaluation and the
necessary algorithms to accomplish this, and various ways in which they can be
manipulated and simplified. Apart from the sequence and selection nodes, which are
as specified in Marzinotto et al. [2014] but stated here for completeness, all other
nodes have either incompletely described semantics or differ in some aspect from
previous work, or are completely original to this work.

3.1.1 Composition nodes

Here we cover the inner, or composition, node types. These types are relatively
universal across different works. The notation used, of question marks for selection,
arrows for sequence, and diamonds for decorator nodes seems to have first been
used in the literature by Ogren [2012], with the dotted form representing nodes with
memory introduced by Marzinotto et al. [2014]. In text form, Marzinotto et al.
[2014] refer to the memory forms as sequence* and selection*. We use the m suffix,
thus seqm and selm.

Sequence seq A sequence node has n children C1, ...Cn, n > 1. When it receives
a tick event, it sends ticks to each of its children in succession, starting from C1

and checking each return result for success before sending the next tick. If a child
returns running or failure, the node returns running or failure respectively and ceases
sending ticks to further children, otherwise it keeps sending ticks until it reaches child
Cn. If all children return success, the node returns success.

The standard symbol for a sequence node is a box with a rightward pointing arrow
within it, to denote the left to right evaluation of the children.

→

C1 C2

Figure 3.1: The sequence node

Selection sel A selection node has n children C1, ...Cn, n > 1. When it receives
a tick event, it sends ticks to each of its children in succession, starting from C1

and checking each return result for failure before sending the next tick. If a child
returns running or success, the node returns running or success respectively and

51

ceases sending ticks to further children, otherwise it keeps sending ticks until it
reaches child Cn. If all children return failure, the node returns failure.

A selection node is represented graphically with a box and a question mark.

C2C1

?

Figure 3.2: The selection node

Sequence with memory seqm A sequence node with memory behaves similarly
to a node without memory, except that the node has a single item of state pointing to
the starting child node, which starts pointing to the left-most child. When the node
receives a tick it sends a tick to this child and all following children in succession.
If a child Ci returns running, the node remembers this child in the item of state
and returns to it at the next tick. Whenever the node returns a terminal condition,
that is success, due to all children returning success, or failure, due to any children
returning failure, the state is reset to point to child C1. If a child node returns
running, the node returns running likewise.

A sequence with memory node is represented with a box and rightward arrow, as
with sequence, but with the addition of a dot above the arrow to denote memory.

.→

C2C1

Figure 3.3: The sequence with memory node

Selection with memory selm A selection with memory node behaves similarly
to a selection node without memory, except that the node has a single item of state
pointing to the starting child node, which starts pointing to the left-most child.
When the node receives a tick it sends a tick to this child and all following children
in succession. If a child Ci returns running, the node remembers this child in the
item of state and returns to it at the next tick. Whenever the node returns a terminal
condition, that is success, due to any children returning success, or failure, due to
all children returning failure, the state is reset to point to child C1. If a child node
returns running, the node returns running likewise.

52

A selection node with memory is represented graphically with a box containing a
question mark with a dot above it.

.
?

C1 C2

Figure 3.4: The selection with memory node

Parallel We do not use the parallel node in the rest of this work but describe it
here for completeness. The parallel node sends the tick event to all of its children at
the same time. If any children return running, the node returns running, otherwise it
returns success if the number of child nodes returning success is above some threshold
value, and failure if it is below the threshold. The threshold value is specified as a
parameter of the node.

Decorators successd, failured, invert, repeati, repeatr A decorator node
is an inner node with a single child that modifies the child tree in some way. In all
cases, if the child node returns running, the decorator returns running. In this work,
we specify invert, which changes success to failure and vice versa, successd which
always returns success, and failured which always returns failure. In addition, we
specify two repeat decorators, repeati and repeatr, which return running until it
has seen n occurrences of success at which point it returns success, or failure on any
occurrence of failure. The number n is either specified as a parameter of the node,
or chosen randomly from a range specified as a parameter of the node.

A decorator is shown with a diamond shape with the symbols X for successd, × for
failured, ! for invert, n for repeati, and ≤ n for repeatr.

C

X

C

×

C

!

C

10 ≤ 10

C

Figure 3.5: Decorator nodes. From left to right: successd, failured, invert, repeati,
repeatr.

The basic node types are summarised in Table 3.1.

53

Table 3.1: Composition nodes used in this work. If a child returns running, the compo-
sition node will also return running, otherwise the return will depend on the rules of the
individual node. Nodes with memory remember the child tree visited in the last tick if
it returned running and resume with that child. Nodes without memory always evaluate
children starting from the left, regardless of previous behaviour.

Name Parameters Description
seq {C1, C2, ..., Cn} Tick child trees in order until failure, no memory
sel {C1, C2, ..., Cn} Tick child trees in order until success, no memory
seqm {C1, C2, ..., Cn} Tick child trees in order until failure, memory
selm {C1, C2, ..., Cn} Tick child trees in order until success, memory
success C Always return success, regardless of result of tree
failure C Always return failure, regardless of result of tree
invert C Invert the result of the child tree
repeati C, i Repeat child tree C i times
repeatr C, i Repeat child tree C rand(i) times

3.1.2 Leaf nodes

Unlike the composition nodes, the leaf nodes of a behaviour tree are domain-specific.
The leaf nodes provide the interface between the BT and the environment it acts
within, formalised as the blackboard. As with all nodes, they receive a tick event
from their parent, and respond in one and only one of three ways; success, failure,
and running. Conceptually, they may be divided into query nodes, that evaluate
the environment but make no change to it, and action nodes, that may alter the
environment in some way. Strictly, the set of all query nodes Q is a subset of the
set of all action nodes A such that the blackboard B representing the environment
is always unchanged after evaluation {∀Q ∈ A : Bt+1 = Bt}.

3.1.3 Blackboard

The blackboard represents the environment, or, more formally, part of the state of
the system. The entire state of the system is given by S = B ∪ Ns where B is the
blackboard and Ns is the state of all nodes with memory seqm and selm.

3.1.4 Behaviour tree semantics

In order to use behaviour trees as a controller architecture, we must completely de-
scribe their semantics, such that we can write a correct execution engine for evaluat-
ing them. In this section we resolve a particular ambiguity produced when combining
nodes with and without memory.

The semantics of behaviour trees has in general been quite poorly defined until re-
cently. The descriptions of the composition nodes given above show how an individual
node will behave, but do not completely describe the semantics of tree evaluation,

54

and so with these descriptions we cannot fully reason about behaviour trees, nor
turn the node descriptions into tree evaluation code.

?

if2if1 A1

→

A2

.→

Figure 3.6: Combining sequence and sequence with memory. Each subtree is a guarded
sequence where the if controls whether the second node of the subtree will be ticked. The
first subtree has no memory, so will always check the guard condition. The second has
memory, so if the node A2 was running previously, it will not check the condition.

Consider the following example, shown in Figure 3.6. A selection node with two
subtrees consisting of a guarded1 sequence and a guarded sequence with memory.
Because the root sel and the first sequence seq are memoryless, the if1 query will
be evaluated every tick, and if it is true, child action node A1 will receive ticks,
otherwise the sequence with memory seqm subtree will receive ticks. Consider the
case that A1 and A2 are long-running tasks, requiring more than n ticks, and that
the condition has always evaluated as false for some number of ticks < n, such that
A2 is in the running state, and therefore the seqm node is returning running with
its internal index pointing to A2. What should happen if the if1 query evaluates for
true for one tick, then false again for many ticks < n? At that true evaluation, a
tick will be sent to A1, which will then move into a running state, and no tick will
be sent to A2. What should happen to the state of A2? It was running, should it
remain running but in some sort of suspended state, or should it return to some sort
of baseline state? Likewise, what should happen to the seqm?

These are not difficult questions to answer, but the answers imply certain things.
One motivation for the use of memoryless composition nodes is the idea of reactivity,
that the tree-as-a-controller should be able to describe situations where higher pri-
ority tasks can interrupt or take precedence over lower priority tasks. For example,
consider a very simple gardening robot, which will start cutting the grass if it is
not raining and will continue until finished, even if it starts raining, but must pay
attention to its battery level. Cutting the grass takes 10 minutes, and this is not long
enough for the grass to get too wet if it starts raining during that time. Charging
the battery takes an hour but is a priority. We can map this to the behaviour tree
in Figure 3.6 with the conditions and actions shown in Table 3.2.

1A guarded sequence is a sequence that starts with a conditional. Unless the conditional, the
‘guard’, evaluates to success, the remaining children of the sequence will not be evaluated.

55

Table 3.2: Mapping of nodes to behaviours

Node Behaviour
if1 ’Is battery level low?’
A1 ’Charge battery’
if2 ’Is it not raining?’
A2 ’Cut grass’

The question as posed then becomes; if we were cutting the grass and have to stop
to recharge the battery, should we resume cutting the grass, even if it is now raining?
Clearly, it might now have been raining for an hour and the grass is far too wet to
cut so the answer should be no. The more general argument is that if a running
subtree is not ticked when it was previously receiving ticks, it is because conditions
have changed, so on subsequent future ticks arriving, the whole subtree should be
reevaluated. A running node should become inactive on not receiving ticks, and the
indices of compositional nodes with memory should be reset.

Behaviour tree evaluation We thus evaluate a behaviour tree in the following
way:

1. All nodes with memory Ni have a state si ∈ {idle, active, running} and all
nodes start in state si = idle

2. Upon each tick event at the root of the tree, a two-phase process takes place:

(a) The reset phase, where all nodes that are in state active are moved to
state idle, and running nodes are moved to state active.

(b) The update phase, where the tree is traversed in a depth-first left-to-right
manner, according to the rules of each node type.

(c) During the update phase, we know that any node types with memory that
are idle were not running at the last tick, so their indices and counters
should be started from the reset state.

Simplification when using only memory nodes If we support only the memory
forms of the sequence and selector nodes, the evaluation of the tree becomes simpler.
There is no need for a two-phase evaluation process, since a running node can never
be orphaned by the re-evaluation of a higher priority subtree. Evaluation then is
simply the recursive descent of the tree according to the rules of each node.

3.1.5 Complete algorithm for behaviour tree evaluation

We can now describe the complete algorithm for evaluating a behaviour tree. We
consider only the inner compositional nodes here. The leaf nodes will have domain-

56

specific functionality.

A behaviour tree is a set of nodes T constructed from the set of all possible nodes
N . One and only one node within the set is called root, and is the only node which
is not a child of another node, Eqn 3.1.

A node n ∈ N is a tuple (t, s, p, c) of kind k, state s, parameters p, and children c,
Eqn 3.2. A node may have q ∈ N parameters and r ∈ N children, though different
node kinds have specific numbers of parameters and children, the seq node can have
an arbitrary number of children but zero parameters, the decorator node repeat

has exactly one parameter and one child. The evaluation of a node returns only
success ≡ S, failure ≡ F ,running ≡ R, Eqn 3.7. The notation nk, ns, np, nc refers
to the kind, state, parameters, and children respectively of the node n.

T = {ni ∈ N : ∃!i = root, (i 6= root) ∈ N} (3.1)

n = (k, s, p, c) (3.2)

k ∈ {seq, seqm, sel, selm, repeat, success, failure, invert, leaf} (3.3)

s ∈ {idle, active, running} (3.4)

p = [p1, p2, .., pq] (3.5)

c = [c1, c2, .., cr] (3.6)

eval(n) ∈ {S, F,R} (3.7)

The memoryless nodes seq, sel, successd, failured, invert have no state, but
are regarded for the purpose of the algorithm as having the fixed state ns ≡ idle.
The seqm, selm, repeat nodes have additional local state tracking the last running
child, or the number of times a child has returned success.

To evaluate a tree T for one tick, the function Tick(T) from Algorithm 1 is called.
This performs the Reset operation on the tree, then recursively descends from the
root, performing Update on each node. The Update function is overloaded and
specific to each node kind. The Algorithms 2 to 10 specify the Update function for
each node type.

57

Algorithm 1 Evaluate
Precondition: Behaviour tree T
1: function Tick(T)
2: Reset(T)
3: Update(Troot)

4: function Reset(T)
5: for all n ∈ T do
6: if ns = running then
7: ns ← active

8: else
9: ns ← idle

10: function Update(n)
11: return KindUpdate(n) . Call the Update function for this node type

Algorithm 2 Sequence, seq
1: function SeqUpdate(n)
2: for i← 1 to |nc| do
3: result ← Update(ci) . Get the state of the subtree
4: if result = running then
5: return running

6: if result = failure then
7: return failure

8: return success

Algorithm 3 Sequence with memory, seqm
Precondition: Persistent state index
1: function SeqmUpdate(n)
2: if ns = idle then
3: index ← 1
4: for i← index to |nc| do
5: result ← Update(ci)
6: if result = running then
7: index ← i

8: return running

9: if result = failure then
10: index ← 1

11: return failure

12: index ← 1

13: return success

58

Algorithm 4 Selection, sel
1: function SelUpdate(n)
2: for i← 1 to |nc| do
3: result ← Update(ci) . Get the state of the subtree
4: if result = running then
5: return running

6: if result = success then
7: return success

8: return failure

Algorithm 5 Selection with memory, selm
Precondition: Persistent state index
1: function SelmUpdate(n)
2: for i← index to |nc| do
3: result ← Update(ci)
4: if result = running then
5: index ← i

6: return running

7: if result = success then
8: index ← 1

9: return success

10: index ← 1

11: return failure

Algorithm 6 Success decorator, successd
1: function SuccessdUpdate(n)
2: result ← Update(c)
3: if result = running then
4: return running

5: return success

Algorithm 7 Failure decorator, failured
1: function FailuredUpdate(n)
2: result ← Update(c)
3: if result = running then
4: return running

5: return failure

59

Algorithm 8 Invert decorator, invertd
1: function InvertUpdate(n)
2: result ← Update(c)
3: if result = running then
4: return running

5: if result = success then
6: return failure

7: return success

Algorithm 9 Repeati decorator, repeati
Precondition: Persistent state count, repeats i
1: function RepeatiUpdate(n)
2: result ← Update(c)
3: if result = failure then
4: count ← 0
5: return failure

6: if result = success then
7: count ← count+ 1

8: if count = i then
9: count ← 0

10: return success

11: return running

Algorithm 10 Repeatr decorator, repeatr
Precondition: Child C, repeat count r = rand(1, i)

1: result ← tick(Ci)

2: if result = failure then
3: count ← 0
4: return failure

5: if result = success then
6: count ← count+ 1

7: if count = r then
8: count ← 0
9: return success

10: return running

A node about implementation Because of the tree structure of a BT, the code
to implement it is easy to write with recursive function calls. In this case, the
result of a node after a tick event is explicitly passed as the return value of the

60

idle
(0)start

active
(1)

running
(2)

entry running

reset reset

Figure 3.7: State diagram for nodes with memory

evaluation function. However, this is not necessarily the best implementation choice.
Some languages explicitly do not support function recursion (e.g. OpenCL). In other
cases, there may be limits on the available stack size, limiting the depth of recursion.
Passing results this way is far less efficient than might be apparent, since there is at
a minimum the overhead of the function return address to be kept on the stack.

Using an explicit stack, and writing without recursion deals with these problems
but makes the code more opaque. The pseudocode in this section is written using
recursion, we will note the non-recursion method in a later section detailing the
implementation of a BT evaluator written for OpenCL.

3.1.6 Memory nodes as syntactic sugar

We wish to perform automatic analysis of behaviour trees, by specifying certain
equivalent relations so that we can manipulate and simplify then. One complication
with this is the analysis of nodes with memory. By providing a step-by-step method of
transforming all trees to memoryless form, we extend the generality of our automatic
analysis.

Here, we note that all behaviour tree nodes with memory are essentially syntactic
sugar. We can construct a tree using only memoryless forms that behaves identically
to a tree that uses seqm with the following procedure:

1. For every seqm node with memory nk, we create two explicit items of state
sk ∈ {idle, active, running} and ik ∈ N in the blackboard

2. The entire tree becomes the second child of a sel node, with the first child
being a tree which performs the reset transition of the state diagram in Figure
3.7 for all sk. This is shown in Figure 3.8 for a single item of state s. All other
states sk within the tree will have a similar subtree as a preceding child of the
root node from the last subtree.

3. Each seqm is replaced with the tree shown in Figure 3.9. Note, this is for a two
child seqm, with the children being C1, C2.

The state i maintains the index of the last running child. The state s maintains
the node state necessary to implement the state machine in Figure 3.7. For the

61

tree

s← 1

s← 0

?

→

if s = 2

→

Figure 3.8: Enclosing tree for replacing seqm with memoryless forms. The left-hand subtree
performs the reset transition on one nodes state. Each node in the original tree will have a
similar reset subtree.

if s = 1 s← 1

i← 1

i++

s← 1

i++s← 2

→

C2

×

s← 1

if i > 2

→

×

?

→

i← 1

→

?

C1

→

?

→

s← 1s← 2

if i > 1

s← 2s← 1 i← 1 →

Figure 3.9: Replacement memoryless subtree for seqm. When combined with the reset
enclosing structure above, a seqm with two children C1 and C2 can be written using only
memoryless composition nodes as shown.

purpose of brevity within the tree diagrams, the states {idle, active, running} are
abbreviated to {0, 1, 2}. Figure 3.8 performs the reest transition of the FSM; if the
state is running, it is moved to active, otherwise it is moved to idle. Once the state
has been reset, the original tree is executed, as the second child of the root seq.
Within the original tree, all instances of seqm are replaced with the equivalent tree
shown in Figure 3.9. The first branch of the root ensures that the index into the
children is reset to the first child if the previous state was not running. The second
and third subtrees are wrappers around the children C1, C2 that serve to extract the
implicit information about the success, failure, running return state of the original
children and use it to appropriately alter the state variables i and s.

Consider that C1 has returned success and C2 has returned running. In this case i
will contain 2 and s will contain running (2). After the reset subtree has been run,
the first subtree of the replacement for seqm ensures that if the previous state of the

62

seqm was running (now active), the index i will not be reset. The second and third
subtrees have a guard condition to ensure that the tick is directed to the child that
was previously running, i.e C2.

By similarly using blackboard entries to hold explicitly the state represented implic-
itly, we can also rewrite selm and repeat nodes purely in terms of the memoryless
forms.

3.1.7 Manipulation

Given that we can represent all nodes with memory by using the basic memoryless
nodes, we now show how the memoryless forms can be manipulated. These rules
of manipulation will allow us to perform automatic simplification of behaviour trees
for analysis and understanding. Table 3.3 shows the basic node types, expressed
symbolically as functions and variables. The leaf nodes are divided into Q query
nodes that do not alter the state of the blackboard, and A action nodes that may
alter the blackboard state.

Table 3.3: Basic node types symbolically expressed as functions. C,C1, C2 are child sub-
trees, functions f(x), x ∈ {seq, sel, S, F, I} evaluate their children and return their result.
Leaf nodes are Q,A, S, F .

Type
seq seq(C1, C2) Sequence
sel sel(C1, C2) Selection
successd S(C) Subtree always success
failured F (C) Subtree always failure
invert I(C) Invert subtree result
query Q Query blackboard state
action A May alter blackboard state
successl S Leaf node always success
failurel F Leaf node always failure

Using this notation we can write any tree as a set of recursive functions. In Table 3.4
we specify a series of equivalences that allow manipulations of an arbitrary behaviour
tree.

From Table 3.4 items 1 and 2, sequence and selector nodes with an arbitrary number
of children can be constructed by nesting the two-child forms. Subtrees to the right
of always failing (sequence, item 3) or always succeeding (selector, item 4) subtrees
can be removed. A sequence with an always succeeding first subtree with no side
effects is equivalent to the second subtree alone (item 5), and respectively with a
selector with an always failing first subtree with no side effects (item 6). An always
failing subtree with no side effects is equivalent to just an F leaf node (item 7) and
an always succeeding subtree with no side effects is equivalent to just an S node
(item 8).

63

Table 3.4: Tree manipulations. Let Ci be a subtree. Qi is a subtree with no effect on the
state i.e conditional (query) nodes only. F (Ci) is a subtree guaranteed to return failure.
S(Ci) is a subtree guaranteed to return success. F and S respectively are leaf nodes that
just return failure or success

Rule
1 seq(C1, seq(C2, C3)) ≡ seq(seq(C1, C2), C3)
2 sel(C1, sel(C2, C3)) ≡ sel(sel(C1, C2), C3)
3 seq(F (C1), C2) ≡ F (C1)
4 sel(S(C1), C2) ≡ S(C1)
5 seq(S(Q1), C2) ≡ C2

6 sel(F (Q1), C2) ≡ C2

7 F (Qi) ≡ F
8 S(Qi) ≡ S

By repeatedly applying these manipulations, we can simplify a behaviour tree. This
is of particular interest when using evolutionary methods, as a common issue is that
of bloat, where a large tree is the result of evolution, but much of it may have no
effect. Using these manipulations, we can reduce the tree to a more human-readable
form that can be analysed, or we can optimise the resource usage.

3.1.8 Equivalence of BT and FSM

Behaviour trees and finite state machines are equivalent. We can show this by
providing a step-by-step process to convert between them.

Express an FSM as a BT

Assume a state machine with current state si ∈ S, a set of events ej ∈ E, and
transition rules tij : si 7→ sk if ej . We can map this to a behaviour tree with the
following procedure, referring to Figure 3.10:

1. Create as the root node a selector with m children, where m is the number of
states.

2. For each child corresponding to a state si, create a sequence guard, with a check
for the current state followed by a selector with |ti| children, corresponding to
the number of transitions that exist out of the state si, conditioned by events
e.

3. For each child of the selector, corresponding to a particular transition tij condi-
tioned by event ej , construct a sequence with a guard followed by the transition.

The figure shows one transition from one state, but this can obviously be extended
arbitrarily to any number of state with any number of transitions. One thing that is
made explicit is that there is a priority ordering to the transitions; if there are two
transitions out of a state, and the two enabling events both occur simultaneously,

64

trans ti1

?

?

...

if ej s← tij

→ ...

... state sm

trans tin...

if s = si

→state s1

Figure 3.10: Mapping a finite state machine to a behaviour tree. Each state is a subtree
of the root selector node, and consists of a sequence with a guard checking the state, and a
further subtree which checks for all valid events that trigger a state transition in this state.

only one can occur and that is the leftmost one within the selector. In a state machine
diagram, it is either implicitly assumed that there can be no simultaneous enabling
events, or the priority ordering is explicitly stated.

The method can be extended to a probabilistic finite state machine (PFSM) by
adding a second condition child to the transition sequence, see Figure 3.11. The
second guard only allows the transition to take place with probability p.

if rnd<p

→

if ej s← tij

Figure 3.11: Transition sequence extended to support PFSM

Express a BT as an FSM

In order to translate from a BT to an FSM, we use the method described by Colledan-
chise [2017]. Consider a single node BT. It accepts tick events and returns S,F,R.
We can represent that as a state machine, with a state to represent the single node,
with one incoming transition, the tick, and three outgoing transitions, S,F,R, and
a second state which accepts the nodes outgoing transitions S,F,R and has a single
outgoing transition tick.

We can express a sequence in the following way. We replace the single BT node in Fig-

65

tick
source

BT
node

tick

su
cc
es
s

ru
nn

in
g

fa
ilu

re

Figure 3.12: State diagram for a single BT node

C1 C2
tick success

running

failure

su
cc
es
s

running

failure

Figure 3.13: State machine fragment for a two child sequence node

C1 C2
tick failure

running

succ
ess

su
cc
es
s

running

failure

Figure 3.14: State machine fragment for a two child selection node

66

ure 3.12 with the state machine fragment shown in Figure 3.13. The tick events arrive
as tick transitions into the first child node C1, which results in success, failure, running.
The result causes the respective transition out of C1 and if it is success it transitions
to C2. The three exit transitions are to the enclosing state machine. Likewise, if we
need a selection node, we replace the single node with the state machine fragment
in Figure 3.14.

We recursively convert the entire behaviour tree in this manner, substituting in state
machine fragments in these patterns until there are no more inner nodes to convert.
At that point, we have a finite state machine representing the behaviour tree.

We appreciate the argument made by Colledanchise [2017] that there is an analogous
comparison between behaviour trees and finite state machines as between function
calls and the goto statement. The essence of the argument is that the method of
switching control flow in a program represented by goto contains no information
about the context from which it came. This mean that it is harder to write mod-
ular reusable code, since there is the need to embed specific information about the
enclosing context2. Conversely, with a function call, the information about calling
context is preserved, making a return to that context easy. By analogy with goto
based programming, as state machines grow in complexity, the number of transi-
tions to keep track of quickly becomes unmanageable. By making the transitions of
state in a behaviour tree part of the tree structure, we keep the context that allows
modularisation and reuse as complexity grows.

3.1.9 Turing completeness of a BT

It is trivially possible to define a Turing complete behaviour tree. Since the action
nodes of a BT are domain specific, we can simply define one as, for example, ‘Fetch
and execute next instruction from blackboard’. Although true, this obviously is not
a useful description. Let us examine in more detail what would be necessary to fully
define the blackboard and action nodes necessary to implement a Turing complete
system.

Consider a Universal Turing Machine of the Random Access Stored Program (RASP)
type similar to that defined by Cook & Reckhow [1973]3. This consists of an ac-
cumulator A, an instruction pointer PC, and an infinite set of registers {..., X−1,

X0, X1, ...}, each capable of holding an arbitrary integer. It is capable of executing
a limited set of instructions, shown in Table 3.5.

Each instruction occupies two registers X2k, X2k+1, k ∈ Z. The first register of the
pair contains the instruction i and the second contains the parameter j. The program

2E.g. the calling context writes a specific goto address into the code at the end of the called
function, requiring self-modifying code

3We remove the input output instructions, and allow negative register numbers

67

Table 3.5: RASP instruction set

Instruction Mnemonic Opcode Operations
load immediate ldi j 1 A← j PC ← PC + 2
add add j 2 A← A+Xj PC ← PC + 2
subtract sub j 3 A← A−Xj PC ← PC + 2
store st j 4 Xj ← A PC ← PC + 2

branch if positive bp j 5 PC ←
{
j

PC + 2

if A > 0

otherwise
halt halt other

is stored starting at register X0 and the initial value of A and PC is zero. Each cycle
of execution consists of the operations: 1) Examine the contents of i ≡ XPC . 2)
Perform the operations in the operations column for the opcode i, where j ≡ XPC+1.
Execution continues until halt. Any value i /∈ {1, 2, 3, 4, 5} causes the execution to
halt.

To map this to a behaviour tree, we define the blackboard as containing {A,PC,
...,X−1, X0, X1, ...}. A behaviour tree that implements the operations in Table 3.5
is shown in Figure 3.15.

XXPC+1
← Aif XPC = 1

→ halt

A← A+XXPC+1

→

PC ← XPC+1

PC ← PC + 2

PC ← PC + 2A← XPC+1 if XPC = 2 A← A−XXPC+1

if A > 0

PC ← PC + 2

→

→

?

→

?

if XPC = 4PC ← PC + 2 PC ← PC + 2if XPC = 3 if XPC = 5

→

Figure 3.15: Behaviour tree to implement the RASP Turing Machine

Since we can implement a Universal Turing Machine with a suitable behaviour tree
and blackboard, it is thus Turing complete and is theoretically capable of any com-
putation.

3.1.10 Subsumption robot controller architecture

A behaviour tree naturally represents the subsumption architecture [Brooks, 1986]
with the selection operator. The children represent the increasingly higher level
layers of behaviour. In the original paper, the layers are; collision avoidance, aimless
wander, explore, map, and then further higher level behaviours. Figure 3.16 shows a
behaviour tree for the first two levels; if the robot is about to collide with an object,
it stops, otherwise then aimless wander behaviour takes over, which wanders on a
fixed heading until approaching an object, in which case a new movement heading
is set.

68

level 3

level 2

level 1

level 0Sensors Actuators

move forward

?

if nearing obstacle

→

if about to collide change headingstop

→

Figure 3.16: Subsumption architecture behaviour tree. Original subsumption architecture
from Brooks [1986] on top, and first two layers of a subsumption controller behaviour tree
to explore the environment on the bottom

3.1.11 Classes of behaviour tree

We can consider three classes of BT, depending on the composition nodes that are
used. Each class is capable of representing a different range of controller architec-
tures.

1. Blocking: seqm, selm The memory type nodes remember if a child node
returns running and subsequent ticks are sent there, rather than to child nodes
to their left. This is the simplest type of BT and is not reactive, in that if a
condition in a higher priority subtree changes, the running subtree will not be
stopped and will continue until completion. Only one leaf node can be running
in a given tick.

2. Reactive: seqm, selm, seq, sel The addition of the memoryless versions
of the select and sequence nodes allows for already running subtrees to be
preempted by changing conditions. This allows the implementation of the
standard robotics subsumption architecture. Implementation is more complex,
because a running node my be orphaned and need to be moved to a non-running
state gracefully, such that when ticked again it behaves appropriately. As with
the blocking BT, only one leaf node can be running in a given tick.

3. Parallel: seqm, selm, seq, sel, par The par node ticks all of its children

69

in parallel, and waits until a certain number return success or failure, returning
running otherwise. Unlike the previous two types, there can be many subtrees
in the running state. Subtrees in running state may therefore conflict in access
to resources, this is outside the semantics of the BT and has to be controlled
with other mechanisms.

In this work, we use Type 1 (blocking) behaviour trees for initial investigations and
demonstration that it is possible to use the techniques of Genetic Programming to
evolve effective BT controllers in Section 4. For the later work with the Xpucks, we
use Type 2 (reactive) behaviour trees to allow the use of subsumption architecture
controllers.

3.2 Applying evolutionary methods to behaviour trees

We wish to apply evolutionary methods to behaviour trees in order to discover con-
trollers for swarms of robots such that a desired collective behaviour results. Our
reason for using evolutionary methods is the large amount of previous work in the
literature on evolutionary swarm robotics, as noted in Chapter 2, that can provide
some guidance. There is little previous work on evolving behaviour trees, however.
In this section, we examine two possible methods.

All evolutionary algorithms follow the same general set of steps: A population of
candidates exists, which is then evaluated according to some criteria, commonly
called the objective function or fitness function. From this population, individuals
are selected on the basis of their evaluation and undergo alteration, typically by
combination and mutation, to form a new population. By repeating this process, the
characteristics of the population move towards the goal set by the criteria. There are
many different techniques used for each of these steps, giving rise to a wide variety
of differently-named subfields, e.g. Evolution Strategies, Genetic Algorithm, Genetic
Programming, but the fundamentals are the same.

The concept of genotype and phenotype is useful here. The genotype is the repre-
sentation we use for an individual within the population, and its phenotype is the
expression of that representation. DNA and bodies and behaviours, applied to us.
This division gets slightly blurrier when applied within evolutionary algorithms. If
we are evolving, for example, the coefficients of a polynomial to fit some data, the
genotype and the phenotype are one and the same. If we are evolving a set of in-
structions to a 3D printer, the phenotype is the resultant printed part. In our work,
we seek to engineer swarm behaviour., so the behaviour tree is the genotype and the
emergent behaviour of the swarm the phenotype.

What should we use as the genotype when evolving behaviour trees? There are
two approaches that have been used previously; using a tree representation Lim

70

et al. [2010], and using a generative grammar, Perez et al. [2011]. In the first
approach, the representation is the behaviour tree itself. The genetic operators
that are used for the alteration step manipulate the tree(s) directly. The second
approach uses a completely different representation, usually a flat fixed-length bit
string which is manipulated with genetic operators familiar from Genetic Algorithms.
The behaviour tree of an individual is generated using a grammar. We examine this
approach next.

3.2.1 Grammatical generation

We describe allowed behaviour trees using a Backus-Naur Form (BNF) grammar, in
the same way that legal programs in a programming language are often described.
Consider the following, where each line is a production rule, terminals are in quotes,
and alternatives are separated by |:

Listing 3.1: Simple behaviour tree BNF grammar

<tree> ::= <node>

<node> ::= <leaf_node> | <inner_node>

<inner_node> ::= <seq> | <sel>

<seq> ::= "seq2" <node> <node> | "seq3" <node> <node> <node>

<sel> ::= "sel2" <node> <node> | "sel3" <node> <node> <node>

<leaf_node> ::= "if" <condition> | "left" | "right" | "forward"

<condition> ::= "a" | "b"

This completely describes a behaviour tree grammar. A tree consists of a node,
which may be an inner or a leaf node. The inner nodes can be seq and sel with
either two or three children, which are themselves nodes, and leaf nodes can be either
one of two conditions (a or b), or one of three actions (left, right, forward). To
convert a bitstring to a tree using this grammar, we can use the following procedure:
Maintain a state si, corresponding to the current location within the grammar, and
initialise this to s0 = tree. Perform a depth-first recursive traversal of the grammar,
that is, set the next state si+1 to each of the elements of the right hand side of the
rule specified by the current state si in turn. Where there is a choice |, consume
sufficient bits of the bit string to make that choice. If the element is a terminal,
enclosed in quotes, output it. If the end of the bit string is reached, wrap around to
the beginning again. Continue until the entire tree has been generated.

We illustrate with an example: take the bit string 1001000001001000, and consume
from the left. The following shows the consumed bits, the state, and the output:

In the process of generating the tree, we wrap around once and consume the first bit
a second time (marked with a *) when choosing the last <condition>.

There are advantages and problems with the grammatical generation approach. Us-
ing fixed length bit strings is a very familiar approach, techniques of mutation and

71

Listing 3.2: Grammatical generation from bitstream 1001000001001000

1 <inner_node>
0 <seq>
0 "seq2" <node> <node>
1 <inner_node>
0 <seq>
0 "seq2" <node> <node>
0 <leaf_node>
00 "if" <condition>
1 "b"
0 <leaf_node>
01 "left"
0 <leaf_node>
00 "if" <condition>
1* "b"

seq2
seq2

if b
left

if b

crossover are well described in the literature. It is rather elegant. There are several
problems though, it is quite easy to construct a bit string that never terminates
in the generation process. Consider if we had used the string 1111, or any string
consisting of all ones with the above grammar. This would produce a never ending
series of sel3s, descending ever deeper. Obviously, we can modify the generative
process to handle this, eg, below a certain depth we always choose a leaf node rather
than an inner node, but this compromises the elegance of the approach. Wrapping
round and reusing the bit string when the tree generation has yet to terminate also
feels rather unsatisfactory, although this is somewhat of a value judgement.

Controlling the structure of the tree involves controlling the choice mechanism, that
is, how many bits we consume, and how those bits are used to make a selection.
Our simple example above, which only has power-of-two options in each choice is a
straight-forward mapping, but we can effectively have a set of probabilities for each
choice, and consume sufficient bits to give a suitably fine-grained random number.

It is not obvious how many bits the string should contain. We can only represent
a maximum of 2N distinct trees with N bits, but how does increasing the number
of bits affect the behaviour of the evolutionary algorithm? We can find little in the
literature addressing this. Trivially, if the average number of bits needed to make a
choice in the grammar is n, and we have storage capacity for a tree of m nodes, there
is no point in having a bit string longer than n ·m, since bits beyond that length will
not get used. We have simulator memory for a maximum of 2048 nodes (see Chapter
5) which implies an upper bound of useful bitstream length of several thousand bits.
What is more interesting is a string length that allows many possible trees yet is

72

much shorter than the upper limit, consider N = 32. There are a maximum of
232 = 4.3 × 109 possible trees, yet any tree larger than a few nodes will be reusing
bits due to the wrap round behaviour. The actual number of trees is likely to be
much lower, consider the simple grammar above, all bit strings starting with zero will
consist of a single leaf node, of which there are only five possible. There is obviously
scope for much investigation, with little guidance from the literature.

3.2.2 Genetic Programming

Here we use the term Genetic Programming (GP) [Koza, 1992] for the techniques
of evolving computer programs represented as tree structures, to solve problems.
Rather than the indirect representation of grammatical generation, we directly repre-
sent the behaviour tree within the evolutionary algorithm. We use genetic operators
that can manipulate the tree representation.

Traditional GP specifies a set of functions and terminals, where all functions with
one or more parameters are inner nodes of a tree, and terminals and functions with
no parameters are leaf nodes. The tree structure is much like what a compiler will
produce when parsing a program. Unlike general purpose programming languages
though, in traditional GP the functions and terminals are usually chosen to fit the
problem domain. It is also important that a tree produced by the evolutionary
algorithm is type-consistent ; the return type of functions, and terminal types, are
compatible with the types of the parameter inputs they provide. This can be achieved
by defining the problem such that all types are compatible, only allowing genetic
operators to create legal trees, automatic type conversion, and other techniques.

The standard genetic operators of crossover and mutation have their equivalents
with the tree structure of a GP. There are many possibilities, but a simple crossover
operator picks at random one node on each of the two trees and swaps the subtrees
below those nodes to create two new individuals.

Behaviour trees are interesting from the perspective of GP, since they have a com-
pletely uniform and consistent interface; all trees are valid sub-trees, any sub-tree is
a complete tree in its own right, and the return value is always one and only one
of the three values success, failure, and running. Thus there are no complications
regarding type-consistancy. We may have nodes which have parameters, but these
would not be regarded as terminals in the same way as with traditional GP.

So, a GP-style evolutionary algorithm with behaviour trees would proceed something
like this: Create an initial random population. There are various methods, but Koza’s
ramped-half-and-half is recommended by Poli et al. [2008], and we use this method.
This creates trees up to a maximum depth which are either full trees, with every
leaf at the same depth, or grow trees, where nodes are chosen randomly until the

73

maximum depth is reached. The initial population is evaluated and a new population
is generated by selecting individuals on the basis of the evaluation, combining with
tree crossover, and applying various forms of mutation.

Figure 3.17 shows an example of how the tree crossover operation works; a node
from each parent P1 and P2 is selected at random, shown ringed in red. Two new
individuals, C1 and C2 are created by copying the parents and swapping the subtrees
at and below the selected nodes. The majority of nodes in any tree are leaf nodes, so
a uniform random selection of nodes will lead to little change in the larger structure
of the tree. For this reason, it is recommended by Poli et al. to bias the selection of
nodes such that the probability of an inner node being selected is much higher, they
suggest Pinner = 0.9.

→

?if

?

if →

?

→ →

→

?

if

if →

if

→

?if

?

if →

?

→ →

→

?

if

if →if

P1 P2

C1 C2

Figure 3.17: Tree crossover genetic operator. A random node is chosen on P1 and P2 and
two new individuals are created by copying the parents and swapping the subtrees starting
at the chosen nodes.

Figure 3.18 shows examples of two mutation operators being applied to an individual
I. The first, row A, is an example of point mutation, where a node is selected at
random within the individual (often subject to the Pinner = 0.9 rule above) and
that node is changed to a different but compatible node, that is, a node that has
the same arity, or number of children. This is generally an easier operation with
behaviour trees than other forms of GP, since there is no need to take return type
into consideration. The second row, B, shows an example of subtree mutation,
where a the subtree starting from a randomly selected node within the individual
I is replaced with a new, randomly generated subtree. In both cases, the mutation

74

→

?if

?

if →

I I'

→

?if

if →

→

→

?if

?

if →

→

?if

if

→

?

if if

A

B

Figure 3.18: Tree mutation operators. A is point mutation, where a randomly selected
node shown ringed is replaced with another node of the same arity, that is the same number
of children. B shows subtree mutation, where the selected node and its subtree are replaced
with a new randomly generated subtree.

takes place on a copy of the individual I, to give a new individual I ′.

Another form of mutation we use is parameter mutation. As a consequence of all
nodes of a behaviour tree being inner composition, of leaf action or query nodes,
there do not exist separate terminal nodes for constants and variables as there does
in conventional GP. But the leaf nodes specifying some query or action often have
associated parameters, for example a particular blackboard register, or a constant
value. Parameter mutation, then, selects a node at random and if it has parameters,
mutates them according to their allowed values. It is generally leaf nodes that have
parameters, though repeat decorators and the probm probabilistic selector in the
work below do also.

3.2.3 Conclusion on BT representation

We decided to use the direct tree representation of behaviour trees within the evo-
lutionary algorithm because of the perceived greater uncertainties with using gram-
matical generation and the lack of guidance in the literature. It is not clear which
would be better, so this is fundamentally quite an arbitrary choice, but partially
driven by the thought that it would be easier to find guidance in the literature when
using a quite traditional form of GP.

75

3.3 Conclusion

In this chapter, we have briefly looked at other control architectures for swarm
robotics before proposing the use of behaviour trees as a control architecture with
some compelling advantages, namely their modularity and ability to encapsulate
complete sub-behaviours, and their human-readability and amenability to automatic
analysis. In addition to these advantages, their modularity makes it easier to tune
their representational power compared to other controller architectures when used
with automatic discovery methods, potentially aiding the reduction of reality gap
effects.

We discuss in detail the semantics of behaviour trees, from the inner composition
nodes that are common across most works, to the action nodes and blackboard which
provide the domain-specific interface between the environment and the behaviour
tree controller. By formally setting out the semantics, we can describe the complete
algorithms needed to implement a practical behaviour tree interpreter for use in
robots. We also show methods of manipulating the trees such that they can be
automatically simplified, and demonstrate the equivalence of BTs and finite state
machines by providing an step-by-step means of converting between them.

Given a behaviour tree architecture, we then discuss how they may be automatically
discovered using evolutionary techniques, the possible representations that may be
used, and look in more detail at grammatical generation and Genetic Programming
as applicable techniques, deciding upon GP as the route we chose to follow.

76

Chapter 4

Evolving behaviour trees for
swarm robotics

In the previous chapter we looked at the theory of behaviour trees and how they
might be automatically generated by evolutionary methods. In this chapter we test
this with a real swarm of Kilobot robots. We demonstrate that it is possible to
evolve a behaviour tree controller in simulation for a swarm of Kilobots to a high
level of fitness. We then transfer this controller to real robots and show that the
swarm maintains a good level of fitness. Finally, we analyse and explain the evolved
controller.

Some of this work has been published as Evolving behaviour trees for swarm robotics
in Proceedings of DARS 2016 - International Symposium on Distributed Autonomous
Robotic Systems [Jones et al. , 2016].

We design a behaviour tree controller architecture suitable for instantiation in a
swarm of kilobot robots. We then automatically evolve behaviour trees in simulation
to enable the swarm to perform a collective foraging task. The fittest behaviour tree
is then evaluated in a swarm of real robots and analysed.

This chapter is organised as follows; Section 4.1 gives a brief overview of the kilobot
platform, Section 4.2 describes the experimental procedure, Section 4.4 details the
results and Section 4.5 discusses results and possible further work.

4.1 Kilobots

Kilobots are small cheap robots introduced by Rubenstein et al. [2012]. They
are capable of motion using two vibrating motors, communication with each other
over a limited range using Infra-red (IR), distance sensing using the communication
signal strength, environmental sensing with an upwards facing photo detector, and

77

signalling with a multicolour Light Emitting Diode (LED). They are cheap enough
to make it practical to build very large swarms and capable enough to run interesting
experiments. Collective control of the kilobots in order to program and to start or
stop them is achieved using a high intensity IR system using the same protocol as
the inter-kilobot communication system.

Each kilobot has 32kbytes of program memory and 2kbytes of RAM. This allows
the creation of reasonably complex programs. Programming the kilobots is accom-
plished using C targeting the kilolib API, which provides abstractions for accessing
the communication system and the sensors and actuators.

4.2 Materials and methods

Foraging as a collective task is often used as a benchmark for swarm systems [Win-
field, 2009b]. It involves robotic agents leaving a nest region, searching for food,
and returning food to the nest. Cooperative strategies are often more effective than
individuals acting alone [Cao et al. , 1995].

We designed a simple foraging experiment for a swarm of kilobots in an arena upon
which we can project patterns of light to define the environment (Fig. 4.1). At the
centre of the arena is a circular nest region. Surrounding this is a gap, then beyond
that is the food region. A kilobot which moves into the food region is regarded
as having picked up an item of food, a kilobot which is carrying an item of food
that enters the nest region is regarded as depositing the food in the nest. Multiple
kilobots are placed in the central region in a grid and all execute the same controller
(homogenous swarm) for a fixed amount of time. The fitness of the swarm is related
to the total amount of food returned to the nest within the test time. The maximum
possible number of food items depends on the starting spatial distribution of the
kilobots. For a theoretical maximum, assume that the kilobots start on the edge of
the nest region and for the duration of the test move directly back and forth between
nest and food regions by the shortest distance. Let foodmax be the maximum food
items, ttest be the test time, vavg be the average linear velocity of the kilobots, n
be the number of kilobots, fndist be the shortest (radial) distance between the food
and nest regions:

foodmax =
n · vavg · ttest

2 · fndist
(4.1)

We normalise the actual collected food items within the time of the test to give a
fitness value. Let foodcollected be the total collected food items and k be a derating
factor. The fitness f of the controller is given by:

f = k · foodcollected
foodmax

(4.2)

78

3m

2m

3.
5m

200mm 100mm

FoodNest

Kilobots

Figure 4.1: Left: Kilobot arena. The arena is a 3m x 2m surface upon which a projector
defines the environment with patterns of light. Right: Starting configuration for kilobot
foraging experiment. 25 kilobots are placed in a 5x5 grid in the centre of the nest region,
with random orientations. Surrounding the nest is a 100mm gap, then outside that is the
food region.

The derating factor k is used to exert selection pressure towards smaller behaviour
trees to ensure they will fit within the limited RAM resources of the kilobots. It is
related to the RAM resource usage fraction rusage (4.4) in the following way: k = 1.0

when rusage < 0.75 decreasing linearly to 0 when rusage = 1.0.

For our experiments, we want to be able to sense whether we are within a particular
region (nest or food) of the arena. Regions are delineated within the arena by using
different coloured light from a video projector and detected with the upwards-facing
phototransistor of the kilobots. In order to create a robust region sensing capability
with a monochrome sensor, we exploited some particular characteristics of low cost
Digital Light Processor (DLP) projectors [Hutchison, 2005]. The projector we have
is a Benq-MS619ST.

The optical path of these type of projectors consists of a white light source, an optical
modulator array, and a spinning colour wheel with multiple segments. Different full
intensity primary and secondary colours produce different, quite distinct brightness
modulation patterns in the light, which our eyes integrate but which we can detect
easily with a series of samples from the photodetector. We measured the modula-
tion patterns of each of the full brightness primary and secondary colours, this is
illustrated in Figure 4.2. In our case, the projector had a wheel spinning at 120Hz.

79

Within each 8.3ms period, primary colours were represented with a single pulse of
about 1.2ms, cyan and yellow with a pulse of 3.5ms, and magenta with two pulses of
1.2ms separated by a gap of 2ms, giving, including black, four distinguishable pat-
terns. We take 16 brightness samples from the phototransistor at 520 us intervals,
covering one complete cycle, and classify the pattern.

Red RGB=1,0,0 Green RGB=0,1,0 Blue RGB=0,0,1

Cyan RGB=0,1,1 Magenta RGB=1,0,1 Yellow RGB=1,1,0

Figure 4.2: Photodetector waveforms captured with Kilobot positioned under DLP pro-
jector showing primary and secondary colours. Timebase is 1 ms/div

The IR communication system between the kilobots has a range of about 100mm.
Twice a second, the kilobot system software sends any available outgoing message,
retrying if the sending attempt collided with another sender. A kilobot receiving a
valid message calls a user specified function to handle it. The message has a payload
of nine bytes, and associated with the message is signal strength information to
enable the distance from the sender to be calculated.

4.3 Controller

In order to control a robot with a behaviour tree, we need to define the interface
between the behaviour tree action nodes and the robot, and the action nodes that
act on the interface. This interface is known as the blackboard. Here there is a
trade-off between the capabilities that we choose to hard code and those that we
hope will evolve in the BT. We do not design the behaviour of the swarm but we do
make assumptions about what kind of sensory capabilities might be useful for the
evolutionary algorithm. This is often implicit in swarm robotics. The kilobot has
no in-built directional sensors, like the range-and-bearing sensors that are common
in swarm robotics experiments, so we synthesise collective sensing such that it is
possible for a robot to tell if it is moving towards or away from the food or nest. We

80

also give the capability of sensing the environment and the local density of kilobots,
and of sending and receiving signals to other kilobots.

This relatively rich set of hardwired capabilities is outlined in Table 4.1. There
are ten blackboard entries, motors maps to the motion control commands of the
kilolib API, The send_signal and receive_signal entries allow for communication

Table 4.1: Behaviour tree blackboard, defining interface between the behaviour tree and
the robot.

Index Name Access Description
0 motors W 0=off, 1=left turn, 2=right turn, 3=forward
1 scratchpad RW Arbitrary state storage
2 send_signal RW >0.5 = Send a signal flag
3 received_signal R 1=A signal flag has been received
4 detected_food R 1=Light sensor showing food region
5 carrying_food R 1=Carrying food
6 density R Density of kilobots in local region
7 ∆density R Change in density per update cycle
8 ∆distfood R Change in distance to food per update cycle
9 ∆distnest R Change in distance to nest per update cycle

between kilobots initiated within the BT; send_signal is writeable from the BT.
When the value is greater than 0.5, it is considered true, and a signal flag will be
set in the stream of outgoing message packets. The receive_signal entry will be
set to 1 if any message packets were received over the previous update cycle that
had their signal flag set, otherwise it will remain zero. The scratchpad can be read
and written, and has no defined meaning, it makes available some form of memory
for the evolution of the BT to exploit. Detected_food is read-only, and is 1 if the
environment sensing shows that the kilobot is in the food region, and zero otherwise,
and carrying_food denotes whether the kilobot is considered to be carrying a food
item. This entry is set to 1 if the kilobot enters the food region, and cleared to zero
if the kilobot enters the nest region.

The remaining four entries are all metrics derived from the incoming stream of mes-
sages and their associated distance measurements. The kilobot kilolib API returns
distances in mm but these blackboard entries are expressed in terms of metres.
Density and ∆density are measures of the local population density and how it is
changing. Each kilobot has a unique ID, which is embedded in its outgoing message
packets. By tracking the number of unique IDs and the distances associated with
messages from them, we can estimate the local density. Let UIDreceived be the set of
unique IDs received in the last update cycle, disti be the distance in mm associated
with the unique ID, the raw local density in kilobots ·m−2 in an update cycle draw

81

is given by:

draw =
∑

i∈UIDreceived

1

π(disti/1000)2
(4.3)

This value is filtered with a moving average over w = 5 update cycles1 to give
density(t) at update cycle t and ∆density(t) = density(t)− density(t− 1).

The two distance metrics ∆distfood and ∆distnest are calculated by tracking the
minimum communication hops [Hauert et al. , 2008] needed to reach the respective
region, illustrated in Fig. 4.3. For both food and nest, within the message packet
are two fields, a hop count and an accumulated distance. The hop count is the
minimum number of message hops to reach either the food or the nest region. The
accumulated distance is the total length of those hops. Kilobots receiving messages
select the lowest hop count, increment it and forward it and the new accumulated
distance in the outgoing message stream. If no messages are received, we default to
a distance of 0 m if in a food or nest region, or 0.5 m if not in a region. At every

Nest or food
region

Hop 1 - 100mm

Hop 2 - 200mm

Hop 3 - 300mm

Hop 1 - 73mm

Hop 2 - 140mm

Hop 3 - 240mm

Hop 4 - 310mm

Hop 5 - 410mm

A B

Figure 4.3: Calculation of distance metrics. Kilobot ‘A’ is in a food or nest region,
kilobot ‘B’ is connected to ‘A’ via two routes. Grey circles denote maximum communications
radius. ‘B’ selects the message from the top route because the hop count is lowest, giving
an accumulated distance along hops to the region of 300mm.

update cycle, we calculate two raw distance measures distfood_raw and distnest_raw.
These are then filtered with a moving average in the same way as the density value.

The design of the behaviour tree architecture for this experiment deliberately uses

1Chosen in simulation as a reasonable compromise between responsiveness and stability

82

only the memory forms of the select and sequence nodes, making this a Type 1
(blocking) behaviour tree. This was done for several reasons. Firstly, it makes
implementation easier; as noted in Section 3.1.11, there is no need to handle orphaned
running nodes, so the two-phase update process, together with additional node state,
does not apply. Evaluation can be completed with a simple recursive descent of the
tree. Secondly, none of the action nodes are long-running, writing to the motors
takes a single tick, the others are instant. though is possible to create a long-running
subtree, with the use of the repeat node. We anticipated that, due to the relatively
slow movement of the kilobots, the non-reactive nature of the Type 1 behaviour
tree would not be an issue. Thirdly, since this was an experiment to demonstrate
the feasability of evolving behaviour trees for a swarm robotics problem, it seemed
sensible to start with the simplest implementation.

The behaviour tree nodes we implement are outlined in Table 4.2. Nodes are divided
into two types; composition and action. Composition nodes are always inner nodes
of the tree and combine or modify the results of subtrees in various ways. Action
nodes are always leaf nodes and interface with the blackboard. Every update cycle,
occurring at 2Hz, the root node of the tree is sent the tick event. Each node handles
the tick according to its function and returns success, failure, or running. The
propagation of tick events down the tree and the return of the result to the root
happen every cycle.

We use composition nodes seqm, selm, and probm, which can have either 2, 3, or 4
children. The nodes seqm and selm are as described earlier, the node probm is intro-
duced here as a way of introducing randomness by weighted probabilistic selection
of a child node.

On receiving a tick they process their child nodes in the following way: seqm will
send tick to each child in turn until one returns failure or all children have been
ticked, returning failure or success respectively, selm will send tick to each child
in turn until one returns success or all children have been ticked, returning success
or failure respectively, probm will probabilistically select one child node to send tick
to and return what the child returns. They all have memory, that is, if a child
node returns running the parent node will also return running, and the next tick
event will start from that child node rather than the beginning of the list of child
nodes. The repeat, successd, failured nodes have a single child. repeat sends
up to a constant number of ticks to its child for as long as the child returns success,
successd and failured send tick to their child and then always return success or
failure respectively.

The action nodes are leaf nodes and interface with the blackboard, described in
Table 6.3. ml, mr, and mf activate the kilobot motors to turn left, right, or move
forward, returning running for one cycle, then success. The various if nodes compare

83

blackboard entries with each other or with a constant, and the set node writes a
constant to a blackboard entry.

Table 4.2: Behaviour tree nodes. Ch ≡ children, S ≡ succeeded, F ≡ failed, R ≡
running, N ≡ num children, I ≡ repeat iterations, r ≡ randomly selected child, t ≡ ticks,
v, w ≡ blackboard entry, k ≡ contant. Notation from Marzinotto et al. [2014]. Size is the
size of the node in bytes within the controller representation running on the kilobots.

Node Size success if failure if running if Description
Composition
seqm2,3,4 7,9,11 N Ch S 1 Ch F 1 Ch R Sequence, tick until

failure
selm2,3,4 7,9,11 1 Ch S N Ch F 1 Ch R Selection, tick until

success
probm2,3,4 11,17,23 Chr S Chr F Chr R Probabilistic choice
repeat 6 I Ch S 1 Ch F Ch R Repeat subtree I

times
successd 4 Ch R̄ never Ch R Always succeed

subtree
failured 4 never Ch R̄ Ch R Always fail subtree
Action
mf 2 t = 1 never t = 0 Move forward for 1

tick
ml 2 t = 1 never t = 0 Turn left for 1 tick
mr 2 t = 1 never t = 0 Turn right for 1

tick
ifltvar 4 v1 < v2 v1 ≥ v2 never If v1 < v2

ifgevar 4 v1 ≥ v2 v1 < v2 never If v1 ≥ v2

ifltcon 7 v < k v ≥ k never If v < k
ifgecon 7 v ≥ k v < k never If v ≥ k
set 7 always never never Set w ← k
successl 2 always never never Always succeed
failurel 2 never always never Always fail

The controller runs an update cycle at 2Hz. Message handling takes place asyn-
chronously, and a message is always sent at each sending opportunity. Environmental
sensing takes place at 8Hz, synchronously with the update cycle, with a median filter
over 7 samples to remove noise. Each cycle, the following steps take place: 1) New
blackboard values are calculated based on the messages received and the environ-
ment. 2) The behaviour tree is ticked, possibly reading and writing the blackboard.
3) The movement motors are activated, and the message signal flag set according to
the blackboard values.

Implementation of the behaviour tree for execution on the kilobot requires careful
use of resources; the processor has only 2kbytes RAM, which must hold all variables,
the heap, and the stack. The tree structure is directly represented in memory, with
each node being a structure with type, state, and additional type-dependent data
such as pointers to children. Execution of the behaviour tree involves a recursive

84

descent following node child pointers and as such, each deeper level uses entries on
the stack.

The compiled kilobot code uses about 500 bytes for all non-heap variables. We
allocate 1024 bytes to the tree storage, leaving another 500 bytes for the stack and
some margin for Interrupt Service Routine stack usage. Each level of tree depth uses
16 bytes of stack. Let trsize be tree storage bytes and trstack be tree stack usage.
The resource usage is given by:

rusage = max(
trsize
1024

,
trstack

500
) (4.4)

This gives a maximum tree depth of about 30 and a maximum number of about 140
nodes at the average node size.

4.3.1 Evolutionary algorithm and simulator

Behaviour trees are amenable to evolution using Genetic Programming [Koza, 1992]
techniques. Using the DEAP library [Fortin et al. , 2012] a primitive set of strongly
typed nodes were defined to represent behaviour tree nodes and their associated
allowable constants. There are several types of constants: if and set use k ∈
[−1.0, 1.0], this range was chosen to cover the physically possible blackboard values.
Number of repeat iterations is I ∈ [1..9], if blackboard index vi ∈ [1..9] to cover the
readable blackboard entries. set blackboard index w ∈ [1..2] for the writable entries
except the motors, which have dedicated nodes to control. For probm, probabilities
p ∈ [0.0, 1.0].

Evolution proceeds as follows: The population of npop is evaluated for fitness by
running 10 simulations for each individual, each simulation with a different starting
configuration. The starting position is always a 5x5 grid with 50mm spacing in the
centre of the nest region, but the orientation is randomly chosen from interval (−π, π)

radians. The simulation runs for 300 simulated seconds and fitness is as Eqn 4.2.

An elite of nelite is transferred unchanged to the next generation. The remainder
are chosen by tournament selection with size tsize. A tree crossover operator is
applied with probability pxover to all pairs of non-elite, then three different mutation
operators are applied to the non-elite individuals. Firstly, with probability pmutu,
a node in the tree is selected at random and the subtree at that point is replaced
with a randomly generated one. Next, with probability pmuts, a subtree is chosen
randomly and replaced with one of its terminals. Next, with probability pmutn a
node is picked at random and replaced with another node with the same argument
types. Lastly, with probability pmute, a constant is picked randomly and its value
changed. Parameters are shown in Table 4.3. The initial values were chosen firstly
with reference to the literature, particularly Poli et al. [2008], for guidance, and

85

designer knowledge from previous evolutionary algorithm experiments. Population
size was smaller than typical examples in the literature, mostly driven by the need
to reduce runtimes. We then conducted a series of trials to tune the values, aiming
for rapid increases in fitness. Once a reasonable set of parameters were arrived at,
they were left unchanged, although it is likely that further beneficial tuning would
be possible.

Table 4.3: Parameters for a single evolutionary run

Parameter Value Description
ngen 200 Generations
ttest 300 Test length in seconds
npop 25 Population
nelite 3 Elite
tsize 3 Tournament size
pxover 0.8 Crossover probability
pmutu 0.05 Probability of subtree replacement
pmuts 0.1 Probability of subtree shrink
pmutn 0.5 Probability of node replacement
pmute 0.5 Probability of constant replacement

We wrote a simple 2D simulator based on the games physics engine Box2D [Catto,
2009]. The physics engine is capable of simulating interactions between simple convex
geometric shapes. We model the kilobots as disks sliding on a flat surface with motion
modelled using two-wheel kinematics, with forward velocity of 8×10−3ms−1 and turn
velocity of 0.55rad s−1, based on measurements of 25 kilobots, see Table 4.4. Physical
collisions between kilobots, and movement into and out of communication range were
handled by Box2D, with an update loop running at 10Hz. Simulator deficiencies
that could cause reality gap effects were masked using the addition of noise [Jakobi
et al. , 1995]. Gaussian noise was added to linear (σ = 1× 10−3ms−1) and angular
(σ = 0.2rad s−1) components of motion at every simulator timestep, and each kilobot
had a unique fixed linear (σ = 1.3 × 10−3ms−1) and angular (σ = 0.06rad s−1)

velocity bias added, to reproduce measured noise performance and variability of real
kilobots. Message reception probability was fixed at 0.95. Simulation performance
racc, measured using the methodology described in Jones et al. [2015] on an iMac
3.2GHz machine was approximately 8× 104.

Table 4.4: Kilobot performance in rotational and forward motion. 25 kilobots were cali-
brated and measured.

Parameter x̄ σ Units
Forward motion 8.0 1.3 mms−1

Rotate right 0.56 0.073 rads−1

Rotate left 0.52 0.062 rads−1

86

Twenty five independent evolutionary runs were conducted, each one using the pa-
rameters in Table 4.3. Each individual fitness evaluation was the mean over ten
simulations with different starting configurations. A total of 1.1 million simulations
were run2.

The fittest individual across the 25 separate populations was evaluated again for
fitness, this time over 200 simulations with different starting configurations. This
individual controller was then instantiated uniformly across a swarm of real kilobots,
giving a homogenous swarm. The real kilobots were run 20 times with different
starting configurations and their fitness measured.

4.4 Results and discussion

The results (Fig. 4.4) show that we have successfully evolved a behaviour tree for
use as a swarm robot controller to perform a foraging task. When instantiated
in a swarm of real robots, it performs similarly to the simulation, validating the
applicability of using this simulator for evolving kilobot swarm controllers. The
performance is slightly lower in real life (0.058) compared to the simulated (0.075)
performance, this is expected due to reality gap [Jakobi et al. , 1995] effects. It is
worth noting this is still a good outcome, the robots are able to effectively forage.

0 50 100 150 200
Generation

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fi
tn

e
ss

Simulation Real

Final fitnessDistribution of fitness across runs

Max fitness

Figure 4.4: Result of evolutionary runs. The left hand graph shows the maximum individ-
ual fitness across all 25 independent evolutionary runs, with a box plot every 5 generations
to show the distribution. The right hand shows the distribution of fitnesses of the fittest
individual, measured over 200 simulation and 20 real runs.

Fitness rises fast to about 0.03 after the first generation. This is due to the fact
that an extremely simple controller that does nothing except move forward will still

2Due to the elitism policy, three individuals per generation are unchanged and need no fitness
evaluation

87

collect some food; because of the variability of the kilobots, some will move in large
arcs that leave the nest, enter the food region and return to the nest. This type of
controller is easily discovered by the evolutionary algorithm, confirmed by examining
the fittest controller after one generation in the fittest lineage.

Figure 4.5: Kilobot trails from simulation of the fittest controller in the first generation
(top) and the 200th generation (bottom) of the fittest lineage. Small discs are kilobots,
coloured red if they are carrying food, and green based on their current density. The group
of four kilobots in the lower left of the top image are yellow because they are both carrying
food and in close proximity. Black trails show previous motion.

Some example kilobot paths in simulation are shown in Fig. 4.5. The wide looping
trails through the food region in the first generation controller are characteristic of
a controller that just runs the motors in the forward direction continually, while the
final generation controller exhibits much more intentional movement, with the swarm
remaining mostly in the nest and the food/nest gap.

It is noteworthy that the fittest of the 25 lineages is much fitter than the median,
and the innovation seems to have been discovered around generation 30. This sug-
gests that the evolutionary algorithm is possibly not exploring the fitness landscape
very effectively, otherwise we would expect evolution to discover similar behavioural

88

innovations within other lineages.

Table 4.5: Individuals from top five lineages and their usage of the blackboard and be-
haviour tree constructs. All individuals use at least the forward and one other of the motor
action nodes. Usage is after redundant or unreachable nodes have been removed.

Blackboard entry BT Nodes

Rank Fitness 1 2 3 4 5 6 7 8 9 se
q

se
l

pr
ob

re
pe
at

if se
t

1 0.104 x x x x x x x
2 0.0873 x x x x x x x x
3 0.0853 x x x x x x x x
4 0.0723 x x x x x x x x x x x x x x
5 0.0710 x x x x x x x

We can examine the fittest BT, shown in Fig. 4.6, to gain insights into its workings.
First of all, it is interesting to note that not all of the hardwired capabilities are used,
only detected_food, ∆distfood, and ∆distnest. Both scratchpad and send_signal
are read but never written, so are equivalent to zero. This is not the case with all the
evolved behaviour trees, see Table 4.5 for details of the blackboard usage of the top
five fittest trees from different lineages. Between these individuals, every behaviour
tree construct and blackboard entry is used. There is no obvious correlation between
the features used and the fitness of the individual, perhaps indicating that there are
multiple ways to solve this foraging problem.

The overall structure is a three-clause selm, the child trees will be ticked in turn until
one returns success. Consider a single kilobot, with no neighbours in communication
with it. The first clause causes the kilobot to move forward as long as it is not in
the food region. If it enters the food, the second clause comes into play, performing
a series of left turns and forward movements until it moves out of the food region.
Behaviour will then revert to the first clause and it will move forward again, likely
hitting the nest region. We can see that this will produce reasonable individual
foraging behaviour, and this pattern is visible in the lower trail plot in Fig 4.5. The
foraging behaviour will be enhanced in the presence of neighbours, since in this case
the second clause will promote movement away from food generally, rather than just
on the food region boundary. Finally, if the kilobot is executing the second clause,
manages to leave the food then re-enters it, or moves towards it in the presence of
neighbours, the third clause is triggered, which produces some additional left turning.
The repeat sub-clause will fail on the first iteration since it is not physically possible
for the kilobot to move 59 mm in one update cycle of half a second.

This evolved behaviour tree is sufficiently small that it can be analysed by hand
relatively easily. It may be that greater foraging performance could be obtained by
removing the selective pressure to small trees, and a larger tree would be harder to
analyse. But, in contrast to evolved neural networks, which are a black box for which

89

10 Simon Jones, Matthew Studley, Sabine Hauert, Alan Winfield

1 selm3(
2 seqm2(
3 ifgevar(send_signal, detected_ f ood),
4 mf()),
5 seqm3(
6 seqm3(
7 ml(),
8 ifgevar(Ddist f ood, scratchpad),
9 mf()),

10 ifgevar(Ddist f ood, scratchpad),
11 seqm2(
12 seqm3(
13 seqm3(
14 ml(),
15 ifgevar(Ddistnest, Ddistnest),
16 mf(),
17 ifgevar(Ddist f ood, send_signal),
18 mf()),
19 mf())),
20 seqm3(
21 ml(),
22 repeat(5,
23 ifltcon(Ddistnest, �0.058530)),
24 ml()))

1 selm3(
2 seqm2(
3 ifge(0, detected_ f ood),
4 mf()),
5 seqm8(
6 ml(),
7 ifge(Ddist f ood, 0),
8 mf(),
9 ml(),

10 mf(),
11 ifge(Ddist f ood, 0),
12 mf(),
13 mf()),
14 seqm3(
15 ml(),
16 repeat(5,
17 iflt(Ddistnest, �0.058530)),
18 ml()))

Fig. 5: Fittest behaviour tree. Left shows the code as evolved. Right shows the code with redundant
lines removed by hand, the seqm* nodes condensed, and conditionals simplified.

The overall structure is a three-clause selm, the child trees will be ticked in turn
until one returns success. Consider a single kilobot, with no neighbours in commu-
nication with it. The first clause causes the kilobot to move forward as long as it
is not in the food region. If it enters the food, the second clause comes into play,
performing a series of left turns and forward movements until it is again not in the
food region. Behaviour will then revert to the first clause and it will move forward
again, likely hitting the nest region. We can see that this will produce reasonable
individual foraging behaviour, and this pattern is visible in the right hand trail plot
in Figure 4.

Finally, if the kilobot is executing the second clause, manages to leave the food
then re-enters it, the third clause is triggered, with behaviour related to distance
to nest and to interactions with its neighbours. It is currently impossible to predict
emergent swarm behaviour from analysis of the controller since the former is de-
pendent on the multiple interactions between the agents and between agents and
environment. However, we believe that the more easily we can understand the con-
troller, the more likely we are to gain insights into the problem of predicting these
higher-level behaviours.

5 Conclusions and further work

We have introduced the use of behaviour trees as an architecture for evolved
swarm robot controllers. A simple foraging task was designed, a behaviour tree
node set and blackboard interface specified, and behaviour tree were evolved for a
swarm of kilobot robots. The fittest individual was tested in real robots and showed

Move forward until in food

Turn and forward until out of food

Figure 4.6: Fittest behaviour tree. Left shows the code as evolved. Right shows the
code with redundant lines removed by hand, the seqm nodes condensed, and conditionals
simplified. Boxes highlight the three functional clauses.

there are no adequate tools to predict behaviour apart from direct testing [Nelson
et al. , 2009], it is possible at least in principle to analyse any behaviour tree, in
the same way it is possible to analyse any computer program. The behaviour of
each sub-tree can be analysed in isolation, descending until the size of the sub-tree
is tractable, and automatic tools can simplify and prune branches which will never
be entered, or will always do nothing.

Understanding the behaviour of an evolved BT does not mean that it becomes pos-
sible to predict the emergent swarm behaviour that the interaction between the kilo-
bots will produce. However, the more easily we can understand the controller, the
more likely we are to gain insights into the problem of predicting these higher-level
behaviours.

4.5 Conclusions

In order to demonstrate that it is indeed possible to use evolutionary methods to
discover successful behaviour tree controllers for a swarm robotics problem, we de-
scribe a proof-of-concept experiment with a swarm of kilobots in which we design a
behaviour tree architecture and robot simulator, use off-line evolution of behaviour
trees to find a fit controller for a swarm robotics foraging task, then show that the
controller works on a real swarm of robots, transferring effectively. Evolved con-
trollers for swarm robotics are generally hard to understand. We show that using

90

behaviour trees, it is possible to analyse by hand the fittest evolved controller for
insight into the discovered foraging algorithm.

This proof-of-concept experiment demonstrates that behaviour trees are a viable
controller architecture for evolved swarm robotics controllers. We now build on this
work to take a more considered approach to the design of a behaviour tree architec-
ture for the Xpuck robots, a much more capable robot swarm, both computationally
and in terms of the available sensors, with the goal of moving towards an in-swarm
evolutionary process for the generation of BT controllers.

91

92

Chapter 5

Xpuck design

This chapter contains work that was published as A Two Teraflop Swarm in Frontiers
of Robotics and AI [Jones et al. , 2018].

In this chapter, we describe the design of a new swarm robotics platform that makes
use of recently available and cheap high-performance computing capability to aug-
ment the widely used e-puck robot, which many labs will already have available.
We have designed it to have higher computational capability than any other swarm
platforms, see Table 5.1, and to have a battery life at least as good as other solutions,
while minimising costs to allow the building of large swarms. By providing swarms
with high computational power, we can move towards fully autonomous swarms, not
tied to external infrastructure, that can be deployed in the wild.

The total cost of building the complete swarm of 16 Xpuck robots was less than
£2300, so each robot was less than £150 on top of the cost of the e-puck base, and
the design is straightforward for a university technician to reproduce. In order to
facilitate further research we have make the design open source, please see Appendix
A.1 for further details.

As validation of our design, we provide power and performance characterisation.
Design challenges, trade-offs and solutions are discussed, including battery and power
supply, data exchange with the e-puck, providing full access to the e-puck camera,
and changes to the Linux kernel to support hard realtime operation. The wider
system-as-a-whole is described, integrating a Vicon tracking system, support for
virtual sensing in addition to the already available e-puck senses, and experiment
management and data logging. We demonstrate the computational capability of
the platform in two ways. Firstly we evaluate a fiducial tracking image processing
application using the e-puck camera that would not be computationally possible on
the standard e-puck. Secondly, and to lay the groundwork for future experiments,
we implement a fast parallel physics-based robot simulator running on the GPU of

93

E-puck

IR proximity
sensors

Interface
electronics

XU4 single
board computer

VGA camera

3.4Ah battery

Figure 5.1: Several Xpucks in the arena, together with a blue frisbee used for foraging
experiments. Each Xpuck has an e-puck base, with interface electronics, an XU4 single-
board computer, and additional battery enclosed in the white cylinder.

the Xpuck, and use this within a distributed island-model evolutionary system to
discover swarm controllers. Figure 5.1 shows several Xpucks in the experimental
arena, pushing a blue frisbee.

5.1 Xpuck electronics design

In this section we set out our system requirements. We outline potential computing
modules. We characterise the power/performance tradeoffs of our chosen compute
module and then discuss the design and implementation of the Xpuck hardware and
associated system infrastructure to enable running experiments. We then detail the
design and implementation of a fast physics-based robot simulator specifically tai-
lored to the Xpuck to enable on-board evolutionary algorithms. We also describe two
demonstrations of the Xpuck computational capabilities, a fiducial tracking applica-
tion that could not be run on a standard e-puck, and an island model evolutionary
algorithm running on multiple Xpucks.

In order to run experiments building on the literature, we decided that, in addition
to much higher processing power, the Xpuck must meet or exceed the capabilities
provided by the existing e-puck robots with additional processing boards. The e-puck
is a two-wheel stepper motor driven robot. Its sensors comprise a ring of IR proximity
sensors around its periphery, a three-axis accelerometer, three microphones, and a
VGA video camera.

As with the Linux Extension Board (LEB), introduced by Liu & Winfield [2011], we

94

require a battery life of at least 1.5 hours and full access to the e-puck’s IR proximity
and accelerometer sensors, and control of the stepper motors and LEDs. In addition
we require that the VGA camera can stream full frame at >10 FPS. The Xpuck must
run a full standard Linux, able to support ROS [Quigley et al. , 2009]. It must have
WiFi connectivity. GPGPU capabilities must be made available through a standard
API such as OpenCL or CUDA [Khronos OpenCL Working Group et al. , 2010;
Nvidia, 2007]. We also want multicolour LED signalling capability for future visual
communication experiments [Floreano et al. , 2007; Mitri et al. , 2009]. Since many
labs already have multiple e-puck robots, we wished to minimise the additional cost
of the Xpuck to facilitate the construction of relatively large swarms of robots. With
this in mind, we chose a target budget per Xpuck of £150.

We decided at an early stage not to add hardware for short range communication
such as the Range-and-Bearing board [Gutiérrez et al. , 2009b]. Instead, the system-
as-a-whole would comprise multiple Xpucks, each running ROS under Linux, with
the already existing Vicon motion tracking system at the laboratory, together with
software infrastructure to create a virtual senses including range and bearing, allow-
ing detailed logging and control over the communication range and noise levels.

In addition, we require that the processing power be generally accessible, if there
are multiple CPU cores, they should all be useable simultaneously. If there is a
GPU with a notionally large processing capacity, this must be available though some
general purpose API such as OpenCL or CUDA.

5.1.1 Survey of available platforms

Given the requirements, Table 5.1 sets out some of the current swarm platforms and
potential modules that could be used to enhance the e-puck.

There are a number of interesting devices, but unfortunately there are very few
that are commercially available at a budget suitable to satisfy the cost requirement
of £150. Within these cost constraints, of the two Samsung Exynos 5 Octa based
devices, the Hardkernel XU4 and the Samsung Artik 1020, only the XU4 was more
widely available at the time of design. The Artik module became generally available
in early 2017 and would be interesting for future work because of its small form-
factor. There are other small form-factor low-cost modules such as the Raspberry Pi
Zero, as used in the Pi-puck [Millard et al. , 2017], but none that provide standard
API access to GPGPU capability. For these reasons, we chose to base the Xpuck on
the Hardkernel Odroid XU4 single board computer.

5.1.2 High performance computing

The Hardkernel Odroid XU4 is a small Single Board Computer (SBC) based around
the Samsung Exynos 5422 System-on-Chip (SoC). It has 2 GBytes of RAM, mass

95

Table 5.1: Current and potential swarm platforms

Product SoC or microcontroller GFLOPS RAM Price
(fp32) (bytes) (£)

Robot platforms
Kilobot Atmel atmega328p 0.0008a 2K 15
e-puck dsPIC 0.0015a 8K 650
r-one TI Stellaris LM3S8962 0.005 64K 165
Linux Extension
Board

Atmel AT91SAM9260 0.02a 64M 80i

Swarmbots Intel Xscale 0.04a 64M not known
GCTronic
Gumstick

TI AM3703 1.2 512M 600i

Khepera IV TI OMAP3730 1.2 512M 2000
Pi-puck Broadcom BCM2835 1.4b 512M 110i

Pheeno Broadcom BCM2836 7.2c 1G 205
Xpuck Samsung Exynos 5

Octa (5422)
36+122d 2G 135

Single Board Computers
Hardkernel XU4 Samsung Exynos 5

Octa (5422)
36+122d 2G 70

Samsung Artik
1020

Exynos 5 Octae 36+122d 2G 98

Wandboard IMX6Q NXP i.MX6 Quad 25f 2G 120
Intrinsyc
Open-Q820SOM

Qualcomm Snapdragon
820

250g 3G 250

Nvidia Jetson TX1 Nvidia Tegra 210 512h 2G 290
a Integer only, assumes 10 integer instructions per floating point operation
b VMLA x 0.7GHz. VideoCore IV GPU has no OpenCL support
c VMLA x 4 x 0.9GHz. VideoCore IV GPU has no OpenCL support
d CPUs A7 1.4GHz, A15 0.8GHz + ARM Mali-T628MP6 GPU, 4 vector multiplies, 4 vector adds,
1 scalar multiply, 1 scalar add, 1 dot product per cycle, 6 cores, each with 2 arithmetic pipelines
at 600MHz. OpenCL 1.2 full profile
e Assumption. The product literature doesn’t state the SoC but Samsung only used the
Mali-T628MP6 in the Exynos 5 Octa family
f Vivante GC2000 GPU only, 4 vector multiplies, 4 vector adds, 4 cores at 794MHz, OpenCL 1.1
embedded profile
g Very little open information, https://en.wikipedia.org/wiki/Adreno states 498.5 at 624MHz but
assumed to be fp16 rather than fp32. OpenCL 2.0
h According to AnandTech, Ho & Smith [2015]
i In addition to e-puck cost

storage on microSD card, ethernet and Universal Serial Bus (USB) interfaces, and
connectors exposing many General Purpose IO (GPIO) pins with multiple functions.

The SoC contains eight ARM CPU cores in a big.LITTLE1 formation, that is, two
clusters, one of four small low power A7 cores, and one of four high performance A15
cores. The system concept envisages the small A7 cores being used for regular but
undemanding housekeeping tasks, and the higher performing A15 cores being used

1https://developer.arm.com/technologies/big-little

96

Table 5.2: Hardkernel Odroid XU4 specifications

Spec Details
SoC Samsung Exynos 5 Octa (5422)
CPU organisation big.LITTLE 4+4
CPU big 4x ARM Cortex A15 2GHz 4x 32K L1I, 4x 32K L1D,

shared 2M L2 25.6 GFLOPSa

CPU little 4x ARM Cortex A7 1.4GHz 4x 32K L1I, 4x 32K L1D,
shared 512K L2 11.2 GFLOPSb

GPU ARM Mali T628MP6 600MHz 122 GFLOPSc

Memory 2Gbytes LPDDR3 933MHz PoP
Memory bandwidth 14.9 GBytes/s
Idle power 2 W
Maximum power 21W

a 4-wide SP NEONv2 FMA x 4 x 800MHz
b VMLA x 4 x 1.4GHz
c 4 vector multiply, 4 vector add, 1 scalar multiply, 1 scalar add, 1 dot product per cycle x 2
pipelines x 6 cores x 600MHz

when the computational requirements exceed that of the A7 cores, at the expense of
greater power consumption. It also contains an ARM Mali T628-MP6 GPU, which
supports OpenCL 1.2 Main Profile, allowing the relatively easy use of the GPU for
GPGPU computation. Some important specifications are detailed in Table 5.2.

The Linux kernel supplied by Hardkernel supports full Heterogeneous MultiProcess-
ing (HMP) scheduling across all eight cores, with the frequencies of the two clusters
being varied according to the current process mix and load, the specified minimum
and maximum frequencies for each cluster, and the kernel governor policy2. It was
evident from manually changing the CPU frequencies during initial investigation that
there was little subjective performance boost from using the highest frequencies, but
a large increase in power consumption.

5.1.3 Operating point tuning

Computational efficiency is an important metric, directly affecting the battery life.
Initial tests showed that setting the maximum frequencies to the highest allowed by
the hardware (A15 - 2 GHz, A7 - 1.4 GHz) and running a computationally heavy
load caused the power consumption to exceed 15 W. In order to characterise the
system and find an efficient operating point, we chose to perform benchmarking with
a large single precision matrix multiplication using the standard BLAS API function
SGEMM. This computes C = αAB+βC, which performs 2N2(N+1) operations for
an N ×N matrix. Good performance requires both high real floating point perfor-
mance and good memory bandwidth. The OpenBLAS libraries [Xianyi et al. , 2012]
provide optimised routines capable of running on multiprocessor systems and can

2Essentially how fast clock frequency will be varied to meet changing CPU load.

97

utilise all available processor cores. ARM provide useful application notes on imple-
menting an efficient single precision GEMM on the GPU [Gronqvist & Lokhmotov,
2014].

Power consumption was measured for the XU4 board as a whole, using an INA231
power monitoring chip [Texas Instruments, 2013] with a 20 mΩ shunt resistor in
series with the 5 V supply . A cooling fan attached to the SoC was run continuously
from a separate power supply to prevent the fan control thermal regulation from
affecting the power readings. Clock frequency for the A7 and A15 clusters of the
Exynos 5422 were varied in 200 MHz steps from 200 MHz to 1.4 GHz for the A7, and
from 200 MHz to 2 GHz for the A15 clusters respectively. At each step, a 1024 by
1024 SGEMM was performed continuously and timed for at least 5 seconds while the
power values were measured to give Floating Point Operations per Second (FLOPS)
and FLOPS/W. All points in the array were successfully measured except for the
highest frequency in both clusters; 1.4 GHz for A7 and 2 GHz for A15, which caused
the SoC temperature to exceed 95 ◦C during the 5 second window, even with the
cooling fan running, resulting in the automatic clock throttling of the system to
prevent physical damage.

The results confirm that increasing CPU clock frequencies, particularly of the A15
cluster, produced little performance gain but much higher power consumption. Fig-
ure 5.2 shows that the most efficient operating point of 1.95 GFLOPS/W and 9.1 GFLOPS

occurs at the maximum A7 cluster frequency of 1.4 GHz, and the relatively low A15
cluster frequency of 800 MHz. Increasing the A15 frequency to the maximum achiev-
able of 1.8 GHz results in a 6% increase in performance to 9.7 GFLOPS but at the
cost of 40% drop in efficiency to 1.21 GFLOPS/W. Because of this dramatic drop in
efficiency, we fix the maximum A15 frequency to 800 MHz.

As with the CPU measurement, GPU power consumption was measured for the
system as a whole, in the same way. The clock frequency of the GPU was set to
each of the allowed frequencies of 177, 266, 350, 420, 480, 543 and 600 MHz and
an OpenCL kernel implementing a cache efficient SGEMM was repeatedly run on
both the OpenCL devices. Figure 5.2 shows that efficiency only declines slightly
from the peak at around 480 MHz to 2.24 GFLOPS/W and 17.7 GFLOPS at the
maximum 600 MHz. For this reason, we left the maximum allowed frequency of the
GPU unchanged.

Note that the GFLOPS figures in these tests are much lower than the theoretical
peak values in Table 5.2 because the SGEMM task is mostly memory bound.

98

SGEMM 1024x1024 performance, 8 CPU SGEMM 1024x1024 power consumption, 8 CPU

SGEMM 1024x1024 efficiency, 8 CPU

200 300 400 500 600
Frequency (MHz)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ef
fic

ie
nc

y
(G

FL
OP

S/
W

)

0

1

2

3

4

5

6

7

8

Po
we

r c
on

su
m

pt
io

n
(W

)

GPU SGEMM 1024x1024 performance
Performance
Efficiency
Power

Figure 5.2: Performance, power consumption, and efficiency of the CPUs and GPU while
continuously running a 1024 x 1024 single precision matrix multiplication. Highest efficiency
for the CPU clusters is with the maximum A7 frequency of 1.4 GHz but a relatively low A15
frequency of 800 MHz. The GPU efficiency stays relatively flat above 480 MHz.

99

Steppers Sensors

CameradsPICBattery
3.7v
1600mAH

Battery
3.7v
3400mAH

SMPS
5v 2A

Odroid XU4

FTDI USB

FPGA

Levelshift

Sensing

5V power I2C SPI GPIO USB

LEDs

I2C SPI

Interface board

E-puck

Figure 5.3: Block diagram showing the functionality of the interface board. The yellow
box at the top is the XU4 single board computer, communicating over I2C, SPI, and USB
interfaces with the interface board in green. This performs voltage level shifting, provides a
USB interface to the e-puck camera, and supplies 5 v power to the XU4. The e-puck in blue
acts as a slave device to the XU4, running low level proximity sensing and stepper motor
control.

5.1.4 Interface board

An interface board was created to provide power to the XU4 single board computer,
interface between the XU4 and the e-puck, and provide new multicolour LED sig-
nalling. The overall structure is shown in Figure 5.3.

There are three interfaces to the e-puck, all exposed through the expansion connec-
tors; a slow Inter-Integrated Circuit (I2C) bus that is used for controlling the VGA
camera, a fast Serial Peripheral Interface (SPI) bus that is used for exchanging data
packets between the XU4 and the e-puck, over which sense and control information
flow, and a parallel digital interface to the VGA camera. In each case, the interfaces
have 3.3v logic levels.

The XU4 board has a 30 pin expansion connector that exposes a reasonable number
of the GPIO pins of the Exynos 5422 SoC, some of which can be configured to be I2C
and SPI interfaces. The XU4 interface logic levels are 1.8 V. A camera interface was
not available, and initial investigation showed that it would not be possible to use
pure GPIO pins as a parallel data input from the camera due to the high required
data rate. We decided to use a USB interface to acquire camera data.

We use visual signalling as a means of communication within swarms. For this
purpose we included a ring of fifteen programmable RGB LEDs, known as Neopixels,
around the edge of the interface board. Neopixels are relatively recently available

100

digital multicolour RGB LEDs which are controlled with a serial bitstream. They
can be daisy chained in very large numbers and each primary colour is controllable
to 256 levels.

Power supply

The XU4 requires a 5 V power supply. In order to design the power supply, the
following constraints are assumed:

• The XU4 and supporting electronics will be powered from their own battery,
separate from the e-puck battery

• The average power consumption will be 5 W

• The peak power consumption will be 10 W

It is immediately clear that the e-puck battery, a single cell Li-Ion type with a
capacity of C = 1600mAh, would not be able to power the XU4 as well. At a
nominal cell voltage of vnom = 3.7 V, converter efficiency of reff = 85% and a
nominal power consumption of P = 5 W, battery life in hours would be at best be
given by:

t =
vnom · C · reff

P
(5.1)

=
3.7 V · 1.6 Ah · 0.85

5 W

= 1 hour

This is not counting the requirements of the e-puck itself. These estimates are
based on battery characteristics in ideal conditions and real world values will be
lower. Hence the need for a second battery. In order to get a 1.5 hour endurance,
assuming a conservative margin rmargin = 50% to account for real world behaviour,
the required battery capacity is given by:

C =
t · (1 + rmargin) · P

vnom · reff
(5.2)

=
1.5 V · 1.5 · 5 W

3.7 V · 0.85

= 3.6 Ah

Mobile devices are generally designed to work within a power envelope of around
5 W or the case becomes too hot to hold comfortably, see for example Gurrum et al.
[2012]. We assume that with attention to power usage, it will be possible to keep
the average power at this level.

The third constraint was motivated by a survey of the readily available switch-mode

101

power supply solutions for stepping up from 3.7 V single cell lithium to the required
5 V. Devices tended to fall into two types - boost converters that were capable of
high currents (>2 A) but with low efficiencies and large-sized inductors due to low
operating frequencies, or devices designed for mobile devices which include battery
protection and have small sized inductors due to their high efficiency and operating
frequency. Of the latter class the highest output current was 2 A, with future higher
current devices planned but not yet available. Measurements of the XU4 showed an
idle current of 400 mA but very high current spikes, exceeding 3 A during booting. In
order to meet the third constraint and enable the use of a high efficiency converter,
the kernel was modified to boot using a low clock frequency, reducing boot current
to below 1.5 A.

The power supply regulator chosen was the Texas Instruments TPS61232. It is
designed for single-cell Li-Ion batteries, has a very high efficiency of over 90%, a
high switching frequency of 2MHz resulting in a physically small inductor, and has
battery protection with undervoltage lockout.

One aspect of the power supply design that is not immediately obvious is that the
battery current is quite high, reaching 4 A as the cut-off discharge limit of 2.5 V is
reached. This seriously constrains switching the input power. In fact, physically
small switches capable of handling this amount of current are not readily available.
For this reason, and to integrate with the e-puck, two Diodes Incorporated AP2401
high side switches were used in parallel to give electronic switching, allowing the use
of the e-puck power signal to turn on the XU4 supply. The high current also neces-
sitates careful attention to the resistance budget and undervoltage lockout settings.

In order to monitor battery state and energy, we use two Texas Instruments INA231
power monitoring chips, sensing across 20 mΩ resistors on the battery and XU4 side
of the switching regulator. These devices perform automatic current and voltage
sensing, averaging and power calculation, and are accessible over an I2C bus. The
Hardkernel modified Linux kernel also targets the older Odroid XU3 board, which
included the same power monitor chips, so the driver infrastructure is already present
to access them.

We used branded Panasonic NCR18650B batteries, rated at 3400 mAh. Further
investigations showed that the resistance between the battery and the switching
regulator was around 200 mΩ of which 70 mΩ was the sense resistor and the solid
state switch, such that at the undervoltage cutout voltage we had set of 2.8 V, the
cell voltage was still over 3.2 V, causing the power supply to cut out when more than
half the battery capacity remained unused. We reduced the resistance to 100 mΩ by
replacing a PCB jumper with a soldered connection, and soldering and shortening
the flying battery lead, rather then connecting to a socket. The undervoltage lockout
was also lowered to 2.3 V.

102

Figure 5.4: Battery voltage and power consumption. Battery life of close to three hours
while running a ROS graph with nodes retrieving camera data at 640x480 pixels 15 Hz,
performing simple blob detection, exchanging control packets at 200 Hz with the e-puck
dsPIC, and running a basic behaviour tree interpreter. All the Neopixel LEDs were lit at
50% brightness and varying colour, and telemetry was streamed over WiFi at an average
bandwidth of 10 KBytes/s. The fall-off in power consumption at the 2.5 hour point is due to
the battery voltage falling below the threshold voltage of the blue LEDs within the Neopixels.

This resulted in a battery life of close to 3 hours while running a ROS graph with
nodes retrieving camera data at 640x480 pixels 15 Hz, performing simple blob detec-
tion, exchanging control packets at 200 Hz with the e-puck dsPIC and conditioning
the returned sensor data, and running a simple swarm robot controller. All the
LEDs were lit at 50% brightness and varying colour, and telemetry was streamed
over WiFi at an average bandwidth of 10 KBytes/s. Figure 5.4 shows the discharge
curve. Power is relatively constant throughout at about 3.3 W except at the end,
where it drops slightly. This is due to the Neopixel LEDs being supplied directly from
the battery. As the voltage drops below about 3.1 V, the blue LEDs stop working,
reducing the power consumption.

Camera interface

The e-puck VGA camera is a Pixelplus PO3030K or PO6030K, depending on the
e-puck serial number. Both types have the same electrical interface, although the
register interface is slightly different. It is a 640x480, 30fps CMOS sensor, controlled
by I2C, and supplies video on an eight bit parallel bus with some additional lines for H
and V sync. By default, the camera provides 640x480 data within an 800x500 window
in CrYCbY format. Each pixel is 16 bits and takes two clocks. The maximum clock
frequency of 27 MHz gives 30 fps, with a peak bandwidth of 27 MBytes/s, sustained
18.4 MBytes/s. At our minimum desired framerate of 10 Hz, the clock would be

103

9 MHz.

We considered a number of possible solutions to the problem of getting the VGA
camera data into the XU4, initially focussing on implementing a USB Video Class
device, which would then be simply available under the standard Linux webcam
driver but available devices were relatively expensive (e.g. XMOS XS1-U8A-64 £18,
Cypress Semiconductor CYUSB3014 £35, UVC app notes available for both). In the
end, we settled on a more flexible approach, using the widely available and cheap
FTDI FT2232 USB interface chip, together with a low power and small FPGA from
Lattice.

We wanted a low cost solution; the FT2232H is around £5, and provides a USB2.0
High Speed interface to various other protocols such as synchronous parallel, high
speed serial, JTAG, etc. It is not programmable though, and cannot enumerate as a
standard UVC device. The FT2232H provides a bulk transfer mode endpoint. This
is not ideal for video, since it provides no latency guarantees, unlike isosynchronous
mode, but since we control the whole system, we can ensure that there will be no
other devices on the USB bus that could use transfer slots.

Although the FT2232H provides a synchronous parallel interface, it is not directly
compatible with the camera. The FT2232H has a small amount of buffering, and
uses handshaking to provide backpressure to the incoming data stream if it cannot
accept new data, whereas the camera has no storage and simply streams data at the
clock rate during the active 640 pixels of each line. In order to provide buffering and
handle interfacing, we chose to use the Lattice Semiconductor iCE40HX1K FPGA.
This low cost device, less than £4 in a TQ144 package, has 96 programmable IO pins
in four banks each of which that can run with 1.8 V, 2.5 V, or 3.3 V IO standards. It
has 64 Kbits of RAM, sufficient to buffer 6.4 lines of video, or 1.3 ms at our minimum
desired framerate. We assume that the Linux USB driver at the XU4 end can handle
all incoming USB data provided there is an available buffer for the data, meaning that
the combined maximum latency of the user application and kernel driver must not
exceed 1.3ms to avoid underruns. Given reported sustained datarates of 25 MBytes/s

for the FT2232H, this seems plausible, although should this not prove possible, we
had the fallback position of being able to lower the camera clock frequency to a
sustainable level.

The decision to use an FPGA with the large number of IOs capable of different
voltage standards gave greater design freedom. There is no need for any other glue
logic, and it is possible to design defensively, with a number of alternative solutions to
each interface problem. It also makes possible the later addition of other peripherals.
For this reason, sixteen uncommitted FPGA pins were brought out to an auxiliary
connector. Lattice Semiconductor provide an evaluation kit, the iCEstick, broadly
similar to the proposed subsystem, allowing early development before the completion

104

of the final PCBs.

The final system proved capable of reliably streaming camera data at 15 fps, or
9.2 MBytes/s, with a camera clock of 12 MHz.

I2C and SPI communications, Neopixel LEDs

All the e-puck sense and control data, except for the camera, flow over the SPI
interface. It is used to control the e-puck motors and LEDs, the Neopixel LEDs on
the interface board, and to read from the accelerometers and IR proximity sensors
on the e-puck. The I2C bus is only used to set the parameters of the VGA camera.

The SPI bus is a synchronous full-duplex serial communication defacto standard for
communicating between chips. It has a fixed single master, which initiates and con-
trols all communication, and potentially multiple slaves, each sharing clock and data
in and out lines, and each with their own enable line. It is generally capable of much
faster data rates than IIC, with typical clock rates of multiple MHz. Communication
takes place in packets, with controllers usually providing sizes in multiples of eight.

As with the LEB, the XU4 board acts as the SPI master, providing the clock and
enable signals, and the dsPIC of the e-puck the slave. SPI communication is formed
of 16-bit packets. Both the master and slave have a 16 bit shift register and com-
munication is full duplex. The master loads data into its register and signals the
start of communications, followed by 16 clocks, each shifting one bit of the shift
register out from the master and into the slave. Simultaneously, the slave data is
shifted into the master. Between each 16 bit packet, communication pauses for long
enough for the master and slave to process the received packet and prepare the next
outgoing packet. This is handled in hardware with fully pipelined DMA at the XU4
end requiring no delay between packets, but the dsPIC has no DMA and uses an
interrupt routine to perform this. We used an SPI clock frequency of 5 MHz, chosen
as the maximum that maintained good signal integrity as measured with a scope at
each end of the signal path3. Interpacket delay was set to 32 SPI clock cycles, corre-
sponding to 6.4 us. This allows time for about 94 dsPIC instruction cycles, sufficient
to handle the longest possible interrupt latency of 88 cycles with some margin4.

The SPI signals were routed to the FPGA and the board design allows for them to
be routed through it. This enables two things; firstly, the FPGA can watch the data
from the XU4 and use fields within that to control its own peripherals, currently the
Neopixel LEDs, secondly it makes it possible to modify the return data packets from
the dsPIC, allowing, for example, the insertion of data into the packet stream from

3The signal path is Exynos SoC->20cm ribbon cable->Level conversion->FPGA->board-to-
board connector->dsPIC

470 cycles for high priority stepper motor step generation interrupt service routine, and 18 cycles
for the SPI service routine

105

FPGA

Power
supply

USB

NeoPixel

Figure 5.5: Interface board PCB, showing the boost converter PSU for the XU4 5v supply,
the FPGA and USB interface, the VGA camera and SPI level shifting, and the 15 Neopixels.

possible future sensors attached to the FPGA.

The FPGA contains additional logic to interpret fields within the SPI packet for
controlling the Neopixel LEDs. These data are stored in a buffer within the FPGA
and used to generate the appropriately formatted serial stream to the LEDs.

5.1.5 Physical design

The interface board is 70 mm in diameter, the same as an e-puck. It sits on top of the
base e-puck. Above this, the XU4 board is held vertically within an 75 mm diameter
cylindrical 3D printed shell, which also holds the battery. Flying leads from the XU4
for the GPIO parallel and the USB interfaces, and for the power supply, connect to
the interface board. Figure 5.5 show shows the interface PCB, and Figure 5.6 shows
16 completed Xpucks, and the major components of the assembly.

5.2 Software and infrastructure

The swarm operates within an infrastructure that provides tracking, virtual sensing,
and message services. To facilitate this, the Xpucks run a full featured distribution
of Linux and ROS, the Robot Operating System [Quigley et al. , 2009]. This gives
access to much existing work; standard libraries, toolchains, and already existing
robot software. Given the close dependence of ROS on Ubuntu we chose to use
Ubuntu 14.04.4 LTS, running ROS Indigo.

106

Figure 5.6: Xpuck swarm and construction. Top: 16 assembled Xpucks. Centre: Partially
disassembled Xpuck, showing arrangement of components. Bottom: Major components, left
to right, top to bottom. Outer 3D printed shell, showing Vicon tracking reflectors in unique
pattern on top. Support chassis, which holds the XU4 single board computer and the LiION
battery. Spacer ring, locating the chassis above the PCB and reflecting the upward facing
LEDs outwards. XU4 computer, with leads for power and data. Interface PCB. Base e-puck,
with red 3D printed skirt.

107

5.2.1 Real time kernel

The standard Linux kernel is not hard real-time, that is, it does not offer bounded
guarantees of maximum latency in response to events. One of the tasks that is run-
ning on the XU4 that requires real-time performance is the low-level control loop
comprising the SPI data message exchange with the e-puck. The maximum speed
of the e-puck is about 130 mm/s. A distance of 5 mm corresponds to about 40 ms.
It would be desirable to have a control loop with a period several times faster than
that, one commonly used in e-puck experiments is 100 Hz, or tcontrol = 10 ms. The
minimum time for the control loop to respond to a proximity sensor is two SPI mes-
sage lengths, so to achieve a 10 ms control period, we need an SPI message period
tperiod < 5 ms. Assuming a 5 MHz SPI clock with a message comprising 32 16 bit
packets and a 6.4 µs interpacket gap, the total time per message is tmessage = 307 µs.
This gives a budget of tperiod−tmessage = 4.7 ms for processing and latency. Measure-
ments using cyclictest5 over 500000 loops of 1 ms, or about 8 minutes, with the Server
preemption policy kernel while running SPI message exchange at 200 Hz showed fig-
ures of 13.9 ms, and even when running the Low-Latency Desktop preemption policy
this was above 3.5 ms. This leaves little margin for processing.

We used the PREEMPT-RT patch, Rostedt & Hart [2007], which modifies the ker-
nel to turn it into a real time operating system (RTOS), able to provide bounded
maximum latencies to high priority real-time user tasks. With the RTOS kernel the
measured latencies while running SPI message exchange never exceeded 457 µs over
several hours running at 200 Hz.

Measurement of actual latencies within the SPI message code still showed some very
high latencies, which we fixed with a patch6 addressing this issue with the Samsung
S3C64xx SPI peripheral. With this patch applied, measured latencies within the SPI
message code never exceeded 457 µs over several hours running at 200 Hz.

5.2.2 Resilient filesystem

One of the important issues when making reliable Linux embedded systems is how
to deal with unexpected power removal. Linux filesystems, in general, are likely
to be corrupted if the power is removed while they are performing a write. Even
journalling filesystems like ext4 are prone to this. This is why Linux needs to be
properly shut down before power is removed, but this is simply not practical for
an experimental battery-powered system. Disorderly shutdowns will happen, so this
needs to be planned for.

We implement a fully redundant filesystem with error checking using BTRFS [Rodeh

5https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest
6Jeff Epler, [RFC 0/4] Improving SPI driver latency (vs v3.8.13.14-rt31),

http://www.spinics.net/lists/linux-rt-users/msg12195.html

108

et al. , 2013] as described in a StackExchange answer7. BTRFS is modern jour-
nalling filesystem that supports on-the-fly compression and RAID, and is capable of
self-healing, provided there are redundant copies of the data. The idea is that we
create two partitions on the same SD card and mount them as a completely redun-
dant RAID1 array. Any filesystem corruption will be seen as a mismatch between
checksum and file, and the redundant copy on the other partition used to replace
the corrupt version. This has proven to be very reliable so far, with no corrupted
SD cards.

5.2.3 Arena integration

The Xpucks work within an arena which provides the infrastructure for experiment
control, implementing virtual senses if needed, and for logging, see Figure 5.7. It is an
area 2 m by 1.5 m equipped with a Vicon8 tracking system and an overhead network
webcam. Each Xpuck has a USB WiFi dongle, and the arena has a dedicated WiFi
access point. For robustness, each Xpuck has a fixed IP address and the standard
scripts are replaced with a script that continually checks for connectivity to the access
point and attempts reconnection if necessary.

The motion tracking system is a Vicon MX equipped with four cameras and con-
nected to a dedicated PC. The cameras are modified to use visible rather than
infra-red light so as not to interfere with the IR proximity sensors of the e-pucks.
The system is capable of tracking unique combinations of reflective markers that are
fixed to the top of the robots to millimetre accuracy at a frame rate of 50 Hz. Pose
data from the tracked markers is available on a network socket with a processing
delay of three frames, giving a minimum latency from motion to data of 60 ms.

Software called the switchboard runs on the Hub server and is responsible for the
distribution of experiments to the Xpucks, their initiation, and the logging of all
experiment data. Each Xpuck automatically starts a ROS node at boot which
connects to the Hub over ZeroMQ sockets [Hintjens, 2013] supplying a stream of
telemetry about the physical state of the Xpuck, including battery levels and power
consumption, temperature, sensor values and actuator settings. The switchboard
sends timestamps, virtual sense data, and can command the ROS node to download
and execute arbitrary experiment scripts, which would typically set up a more com-
plex ROS graph for the robot controller, which in turn will run the experiment upon
a trigger from the switchboard. Controllers are always run locally on the Xpucks.
This is all controlled either from the command line on the Hub, or with a GUI giving
visibility to important telemetry from the swarm.

7Corruption-proof SD card filesystem for embedded Linux?
http://unix.stackexchange.com/questions/136269/corruption-proof-sd-card-filesystem-for-
embedded-linux

8https://www.vicon.com/

109

https://www.vicon.com/

Vicon PC

Hub PC

Experiment
data

WiFi router

Vicon cameras

Xpucks 2m x 1.5m arena

Figure 5.7: The Xpuck arena. Experiments take place within a 2 m x 1.5 m area surrounded
by walls slightly higher than the height of the Xpucks. Each Xpuck has a unique pattern
of spherical reflectors on their top surface to enable the Vicon motion tracking system to
identify each individuals pose. The Vicon PC is dedicated to managing the Vicon system
and makes available a stream of pose data. The Hub PC is responsible for all experiment
management, data logging, and virtual sense synthesis.

Each Xpuck is marked with a unique pattern of reflectors recognised by the Vicon
system. There are four reflectors arranged on a 4x4 grid with spacing of 10 mm. We
used a brute force search to find unique patterns for each of the 16 Xpucks. Because
of the size of the marker pattern and of the Xpucks themselves, there should be no
ambiguous conditions when Xpucks are close to each other. This has proved effective,
with unambiguous detection even when all 16 Xpucks were placed packed together
in the arena.

The switchboard software connects to the Vicon system and receives pose messages
at the update rate of 50 Hz. This is used to log the absolute positions of the Xpucks
during experiments and also to synthesise virtual senses included in the outgoing
streams of data from the switchboard to the Xpucks. Range and bearing is an
important sense in swarm robotics experiments, which we can construct directly
using the e-pucks IR proximity sensors or with additional hardware [Gutiérrez et al.
, 2009a,b]. We can also synthesise range and bearing information from the Vicon
data with behaviour defined by a message distribution model, which allows us to
specify parameters such as range, noise, and directionality. There is the capability
for Xpucks to send broadcast messages consisting of their ID, this is disseminated by

110

the switchboard according to the message distribution model. Messages received have
no content, but are an indication that the sender and the receiver can communicate,
actual data transfer can take place point-to-point. In this we take inspiration from
O’Dowd et al. [2014], who use IR communication between e-pucks to establish if
contact is possible, data transfer then taking place over WiFi.

5.3 GPGPU robot simulator

In this section we describe the design and realisation of a fast parallel physics-based
2D multi robot simulator running on the Xpuck SoC GPU.

In order to perform on-board evolution of controllers or to evaluate multiple what-if
scenarios, we need to be able to run many simulations much faster than real-time.
A typical evolutionary algorithm might have a population of p potential solutions.
Each of these needs to be evaluated for fitness by running r simulations with differ-
ent starting conditions. Many generations g of evaluation, selection, combination,
and mutation take place to produce fitter individuals. Typically, p, r, g might be
(50, 10, 100). One scenario we envisage is evolving a controller for the next fixed
interval ∆t of real time. During the current time interval, we need to complete
nsims = prg simulations of that time ∆t, or:

nsims · treal
tsim

< 1 (5.3)

where tsim is the simulated time and treal is the wall clock time for that simulated
time. It is generally the case [Vaughan, 2008; Jones et al. , 2015] that multi robot
simulation time is proportional to the number of agents being simulated. We define
a simulator speed using the robot acceleration factor:

racc =
nrobots · tsim

treal
(5.4)

where nrobots is the number of robots, tsim and treal as above. With Eqn 5.3 we get
a required racc of:

racc > nsims · nrobots (5.5)

We can see that if we are using a single simulator, the required racc increases with
the number of robots being simulated. But if we run a distributed evolutionary
algorithm, and have a simulator embodied in each robot, the required racc simply
becomes:

racc > nsims (5.6)

For the example above, we therefore require a simulator with racc > 50000.

There is a basic trade-off between simulator fidelity and speed. Typical values of

111

racc when running on a PC are 25 for a full 3D physics simulation like Gazebo, 1000
- 2000 for 2D9 arbitrary shape simulators with relatively detailed sensory modelling
like Stage [Vaughan, 2008], and ARGoS [Pinciroli et al. , 2011], and 50000 - 10000010

for constrained geometry 2D physics game engines like Box2D [Catto, 2009]. There
is also a cost to generality; the critical path in Stage is the ray-tracing operation for
modelling of distance sensors, necessary in order to handle arbitrary object shapes in
the simulated world. We show in Jones et al. [2016] that a constrained geometry 2D
physics engine simulator is capable of being used to evolve swarm controllers which
transfer effectively to the real world, so this motivates our simulator design.

For the experiment described in Jones et al. [2016] we wrote a robot simulator for
swarms of kilobots [Rubenstein et al. , 2012] based on the 2D physics game engine
Box2D [Catto, 2009]. This achieved an racc of 8 × 104 running on a 3.2 GHz iMac
computer. Box2D models objects as simple convex shapes, with mass per unit area,
and collisions between the objects in a physically realistic way. The speed comes with
loss of generality; because shapes are not arbitrary, collisions and intersections can be
computed geometrically. We made some initial experiments with the performance of
the Box2D-based kilobot simulator on the XU4 with a view to accelerating the core
engine on the GPU. Running purely on the CPU achieved an racc of around 1000,
some 50 times too slow. Examining the code and that of an OpenCL accelerated
port11 showed that it would be hard to achieve GPU acceleration with the relatively
low number of objects (10s) we expect within our simulated worlds.

In order to get good performance on an application running on a GPU, it is necessary
that there is a large number of work items that can be performed in parallel. The
Mali Midgard GPU architecture present in the Exynos 5422 SoC of the XU4 has six
shader cores, each of which can run 256 threads simultaneously. In order to keep the
cores busy it is recommended that a kernel be executed over hundreds or thousands
of work items, depending on its resource usage. We therefore need to design our
simulator to have parallelism at least in the hundreds to take advantage of the GPU,
and be sufficiently constrained in scope that we avoid the costs of generality; by using
only straight lines and circles in our simulation, collisions and sensor intersections
can be calculated cheaply by geometry, rather than expensive ray-tracing.

As well as the physical aspects of the simulation, the controllers for each simulated
robot also need to be implemented for good performance. We use behaviour trees as
the controller architecture, for good performance on a GPU we needed to pay some
attention to the characteristics of OpenCL.

9or "two-and-a-half D" with sensors having some awareness of Z but kinematics and dynamics
modelled purely in 2D

10We achieved 80000 with our Box2D-based kilobot simulator [Jones et al. , 2016]
11https://download.tizen.org/misc/media/conference2014/.../tdc2014-webphysics.pdf

112

5.3.1 Simulation model

The simulation models up to 16 Xpuck robots within a 2 m x 1.5 m rectangular arena
centred about the origin, with the edges of the arena surrounded with immovable
walls. As well as the Xpuck robots, there can be other inert round objects that can
be pushed by the Xpucks. The reference model for the robots is given in Table 6.1,
this describes the sensors and actuators that are exposed to the robot controller.

We can divide the simulation into three sections; physics, sensing, and control.
Physics handles the actual physical behaviour of the robots within the arena, mod-
elling the dynamics of motion and collisions in a realistic way. Sensing constructs
the input variables described in the robot reference model from the locations and
attributes of the objects within the simulated world. Control runs a robot controller
for each simulated robot, responding to the reference model inputs, and producing
new output variables, resulting in the robot acting within the world.

There are three types of object within the world, the arena walls, the Xpucks, and
inert objects. The walls are immoveable and are positioned horizontally and verti-
cally symmetrically about the origin. Xpucks, which are round and coloured, can
sense each other with their camera, proximity sensors and range and bearing, and
can move with two-wheel kinematics. Inert objects, which are round and coloured,
can be sensed by Xpuck cameras but not by the proximity sensors because they are
low in height. They move only due to collisions.

Physics

The physics core of the simulation is based on work by Gaul [2012]. There are only
circular bodies, which are rigid and have finite mass, and the walls, which have infinite
mass. Interactions between bodies are governed by global attributes of coefficients of
static and dynamic friction, and restitution. Interactions between the bodies and the
arena floor are governed by individual attributes of mass and coefficient of friction.
The physical state of each body i is described by the tuple Si(x,v, θ, ω) representing
position, velocity, angle, angular velocity.

The equations of motion governing the system are:

v̇ =
1

m
F

ω̇ =
1

I
τ

ẋ = v

θ̇ = ω (5.7)

Where F is force, m is mass, τ is torque, I is moment of inertia. They are integrated
using the symplectic Euler method [Niiranen, 1999] which has the same computa-

113

tional cost as explicit Euler but better stability and energy preserving properties.

Collisions between bodies are resolved using impulses. For each pair of intersecting
bodies, a contact normal and relative velocity are calculated, producing an impulse
vector which is used to instantaneously change the linear and angular velocities of
the two bodies. This is iteratively applied multiple times to ensure that momentum
is transferred in a physically realistic way between multiple contacting bodies.

Collision detection between pairs of bodies with a naive algorithm has O(n2) per-
formance scaling12 so most physics simulators handling a large number of bodies
(100s upwards) use a two stage process with a broadphase step that eliminates a
high proportion of pairs that cannot possibly be in collision, before the narrowphase
step that detects and handles those bodies that are actually colliding. But we have
only a maximum of 21 bodies (4 walls, 16 robots, 1 object) which means that any
broadphase step must be very cheap to actually gain performance overall. We tried
several approaches before settling on a simple binning algorithm: Each object is
binned according to its x coordinate, with bins just larger than the size of the ob-
jects. A bin contains a bitmap of all the objects within it. Objects can only be in
collision if they are in the same or adjacent bins so the or-combined bitmap of each
two adjacent bins is then used to form pairs for detailed collision detection.

The two wheel kinematics of the robots are modelled by considering the friction
forces on each wheel due to its relative velocity to the arena surface caused by the
wheel velocity and the object velocity. Friction force is calculated as Coulomb but
with µ reduced when the velocity v is close to zero using the formulation in Williams
et al. [2002]:

µ = µmax
2 · arctan(k ∗ v)

π
(5.8)

With the same justification as Williams et al. [2002], we chose k = 20 empirically
to ensure numerical stability. The forces on each body are resolved to a single force
vector F and torque τ . Non-robot objects simply have zero wheel velocities with the
wheelbase modified to reflect the physical behaviour.

The noise model is a simplified version of that described by Thrun et al. [2005].
Three coefficients, α1, α2, α3, control respectively velocity dependent position noise,
angular velocity dependent angle noise, and velocity dependent angle noise. So
position and angle are modified:

x′ = x+ v · s(α1)

θ′ = θ + ω · s(α2) + |v| · s(α3) (5.9)

12Big O notation describes how the performance of an algorithm scales with increasing input size

114

where s(σ) is a sample from a Gaussian distribution with standard deviation σ and
mean of zero. Because the noise model is on the critical path of position update
and the calculation of even approximate Gaussian noise is expensive, we use a pre-
calculated table of random values with the correct distribution.

The physics integration timestep is set at 25 ms for an update rate of 40 Hz. This
value was chosen as a trade-off performance and physical accuracy, meeting the
simulator performance requirements while still giving realistic physical behaviour.
The 40 Hz rate gives 4 physics steps per controller update cycle.

Sensing

There are three types of sensors that need to be modelled. Each Xpuck has eight
IR proximity sensors arranged around the body at a height of about 25 mm. These
can sense objects out to about 40 mm from the body. The reference model specifies
that the real-valued reading varies from 0 when nothing is in range, to 1 when there
is an object adjacent to the sensor. Similarly to the collision detection above, the
maximum sensor range is used to set the radius of a circle about the robot which
is tested for intersection with other objects. For all cases where there is a possible
intersection, a ray is projected from the robot at each sensor angle and a geometrical
approximation used to determine the location of intersection with the intersected
body and hence the range. This process is actually more computationally expensive
than collision detection, but only needs to take place at the controller update rate
of 10 Hz.

The second and third types of sensor are the camera blob detection and the range
and bearing sense. Blob detection splits the camera field of view into three vertical
segments and within each segment, detects the presence of blobs of the primary
colours. Range and bearing sense counts the number of robots within 0.5 m and
produces a vector pointing to the nearest concentration. Together they are the most
computationally expensive of the senses to model. They necessarily traverse the
same data structures and so are calculated together.

To model the camera view, we need to describe the field of view subtended by each
object, what colour it is, and whether is is obscured by nearer objects. We implement
this by dividing the visual field into 15 segments and implementing a simple z-buffer.
Each object is checked and a left and right extent derived by geometry. The segments
that are covered by these extents have the colour of the object rendered into them,
if the distance to the object is less than that in the corresponding z-buffer entry. As
each object is checked, the distance is used to determine if the range and bearing
information needs to be updated.

In the real robot arena, range and bearing is implemented as virtual sensing using a

115

Vicon system and communication over WiFi. There is significant latency of around
100 ms-200 ms between a physical position and an updated range and bearing count
and vector reaching the real robot controller. Also the camera on each Xpuck has
processing latency of a similar order. For this reason and due to the computational
cost, this sensor information is updated at half the controller rate, or 5 Hz.

Controller

The controller architecture we use is behaviour tree based, discussed in detail in
Chapter 3. A behaviour tree consists of a tree of nodes and a blackboard of variables
which comprise the interface between the controller and the robot. At every con-
troller update cycle, the tree of each robot is evaluated, with sensory inputs resulting
in actuation outputs. Evaluation consists of a depth-first traversal of the tree until
certain conditions are met. Each agent has its own blackboard, state memory and
tree. Although our initial work is using homogeneous swarms, with all robots execut-
ing an instance of the same tree, we wanted the flexibility to support heterogeneous
swarm simulation. Supporting both these forms requires separating the tree from
the blackboard and state memory.

5.3.2 Implementation of simulator on GPU

To best exploit the available performance of the GPU, our implementation must have
a high degree of parallelism. We achieve this by running multiple parallel simulations
almost entirely within the GPU. We pay little penalty transferring data, since each
thread is relatively long lived, and although we will have inevitable thread divergence,
we should not suffer a performance penalty because of the particular characteristics of
the Mali Midgard architecture. Because the total number of objects in the simulation
is low, in the 10s, we cannot achieve the necessary parallelism within the simulation
itself. The limit to parallelisation of running multiple simulations for an evolutionary
algorithm is the number of simulations per generation; it is necessary to completely
evaluate the fitness of the current generation in order to create the individuals that
will make up the next generation. With the numbers given above, this would be 500
simulations, below what would normally be recommended to keep the GPU busy,
but long lasting threads ensure the GPU is fully utilised.

As we implemented the simulator, it actually turned out that memory organisation
was the most critical element for performance. Each of the four cores within the
first core group of the GPU13 has a 16 Kbyte L1 data cache and a 256 L2 cache
shared between them. Ensuring that data structures for each agent were minimised,
and that they fitted within and were aligned to a cache line boundaries resulted in
large performance improvements. Memory barriers between different stages of the

13The six cores are divided into two core groups, one with four cores and one with two. These
are presented as two separate OpenCL devices. For ease of coding, only one core group was used.

116

simulation update cycle ensured that data within the caches remained coherent and
reduced thrashing. As performance improved and the memory footprint changed, the
effect of workgroup size and number of parallel simulations was regularly checked. We
used the DS-5 Streamline14 tool from ARM to visualise the performance counters of
the GPU which showed clearly the memory-bound nature of the execution. Profiling
of OpenCL applications is difficult at anything finer than the kernel level, so there
was much experimentation and whole application benchmarking.

5.3.3 Implementation of behaviour tree interpreter on GPU

The algorithm to execute a behaviour tree is given in Section 3.1.5. As we note, this
is expressed most naturally using recursion. However, recursion is not necessarily the
best way to implement a behaviour tree interpreter, since the use of the general call
stack for storage is not as efficient as other methods, since (at least) the return address
from each called function has to be stored, as well as any passed parameters.In
addition, the amount of space available for the stack is relatively opaque.

More fundamentally, we need to implement the interpreter in OpenCL, and the
language specification explicitly forbids function recursion.

The design requirements can be summarised as:

1. Separate tree and state storage.

2. Efficient use of memory

3. No recursion

For the initial experiment into evolving behaviour trees in Chapter 4, we used a single
data structure for the tree and node state, where each node was a structure with
pointers to any children, and embedded state. This works well when implemented on
a single self-contained robot, as each kilobot was in that experiment, but is wasteful
of space when we have a homogeneous swarm, since the tree is replicated. It also
makes the Reset process in Algorithm 1 of tick evaluation more costly, involving
a complete traversal of the tree to reach each item of state. For this reason, we
have a static data structure for each tree, with fixed offsets for each node into state
storage area. Each agent within the simulation has a pointer to its state space, and a
pointer to the tree it is executing. This tree structure can be shared by any number
of agents.

With up to 16 agents and 512 parallel simulations, we may need 8192 regions of
memory for state storage. At every tick evaluation, Reset must change the state of
each tree node according to Figure 3.7. Nodes that are in state running are moved

14https://developer.arm.com/products/software-development-tools/ds-5-development-
studio/streamline

117

to state active, and nodes in any other state are moved to state idle. This process
is relatively costly, since it applies to every node in the tree, but arranging the tree
state as a flat structure means that it can be traversed in a simple linear fashion,
with no pointer following.

The data structures are shown in Figure 5.8. The tree buffer consists of a header,
with a pointer15 to the root node of the tree, and fields holding the size of the
blackboard and the total number of nodes. Following this are the tree nodes, each
consisting of a type identifier, an offset to the node state in the state buffer, and
node specific fields. Nodes with children will have 16 bit offset pointers to those
child nodes. The state buffer of an agent consists of the current random number
generator seed for this agent, the blackboard variables, and the state for each node.
The per-node state is two bytes, the first is the current state of the node, the second
is an index value, used by the sequence, selection, and repeat nodes. Not all node
types use the index byte, but the regular structure is kept to allow easy traversal for
the Reset process.

We have a fixed allocation of memory for each of the two buffers; 4096 bytes for the
state buffer, and 16384 bytes for the tree nodes. Node sizes are variable, depending
on the particular node, but average about 8 bytes. The fixed allocation thus allows
for a maximum of 2048 nodes16. The total memory used for BTs when running 512
parallel simulations with 16 agents is about 160 Mbytes.

As noted above, OpenCL forbids recursion. In order to rewrite the algorithms in
Chapter 3 in a non-recursive way, we have to provide an explicit stack to support
the tree descent and evaluation; adding items while descending, removing them once
evaluated. We also need to provide a way of returning values from lower nodes of
the tree. Rather than using the explicit stack for this, we use the status bytes for
each node that are necessary anyway. As well as supporting the state machine in
Figure 3.7, they now also serve to store the final result of node evaluation. Higher
level nodes can then read the result state of their children.

Finally, on the right in Figure 5.8 is an example of how a simple behaviour tree might
appear in memory. The root offset points to the root seq node, highlighted in red.
This node points to its state in the state buffer, and to its two children, a movcv

and a repeati, which in turn points to its child mulav. Each node has a pointer to
its state, and some parameters. The ordering in this example is an artefact of the
recursive descent tree parsing process that generated the memory layout.

15Actually a 16 bit offset from the start of the buffer
16Since the limit is the number of 2 byte state entries

118

NodeType

Type specific

data

Ptr

seq2

status0 (u8)

0x17

index0 (u8)

0x5a

0x0d

movcv

0x54

dest

i

mulav

f

0x56

dest

src1

src2

seq2 status

seq2 index

movcv status

movcv index

repeati status

repeati index

mulav status

mulav index

0x00

0x09

0x0a

0x0b

0x0c

0x0d

0x0e

0x0f

0x10

0x11

0x12

0x13

0x14

0x15

0x02

0x5a

0x08

repeati

0x58

0x08

0x54

0x58

0x56

0x16

0x17

0x18

0x19

0x1a

Root (u16)

Size (u16)

Nodes (u16)

BB size (u16)

NodeType

Type specific

data

Ptr

Seed (u32)

BB0 (u32)

BB1 (u32)

BBn (u32)

status1

index1

statusn

indexn

Header

Tree

Seed (u32)

BB (20x4)

0x00

0x04

Root (u16)

Header (3x2)

0x1b

0x1c

0x1d

0x1e

0x1f

0x20

0x21

0x22

i

0x23

Tree buffer Tree bufferState buffer State buffer

mulav dest, src1, f, src2

imovcv dest, i

→

Figure 5.8: Behaviour tree interpreter data structures. On the left, the two columns are
the tree structure and the state structure. On the right is a specific example of a simple
tree, shown below in tree form.

5.3.4 Results: Performance of simulator

Table 5.3 shows the results of running parallel simulations for a simulated time of
30 seconds. Each simulation consists of 16 robots running a simple controller for
exploration with basic collision avoidance, and one additional object that can be
pushed by the robots. The effect of running different numbers of parallel scenes and
with various different levels of functionality enabled are shown. trss is the time to
simulate one robot second. trss = 1

racc
, so the required acceleration factor of 50000

corresponds to trss = 20µs. It can be seen that the requirement is met when running
256 simulations in parallel, with trss = 17µs. It is interesting to note that when
running 512 simulations, the performance is better with all functionalities except the
controller enabled. We surmise that, when running the controller, the total working
set is such that there is increased cache thrashing with 512 parallel simulations.

119

Table 5.3: Speed of simulator with various functionalities enabled. 16 robots, 1 passive
object, basic exploration and collision avoidance controller. Tested over five runs with 256
and 512 parallel simulations. trss is time (µs) per robot simulated second. With 256 parallel
simulations, the physics functionality dominates at 40% of the processing time, but with 512
parallel simulations, controller processing is the largest proportion.

256 simulations 512 simulations
Functionality trss ∆trss % trss ∆trss %

Physics 6.9 6.9 40 6.7 6.7 31
+ Sensors 11 4.5 26 11 4.0 19
+ Camera and R&B 15 3.1 18 14 3.3 16
+ Controller (All functionality) 17 2.6 16 21 7.2 34

The performance of the simulator running on the Xpuck GPU is comparable to the
same code running on the CPU of a much more powerful desktop system and at
least ten times faster than more general purpose robot simulators such as Stage
and ARGoS running on the desktop. Although later chapters will demonstrate the
transferability of the evolved solutions from this simulator, we note at this stage that
the fidelity of the simulator is similar to previous work [Jones et al. , 2016] which
successfully transferred with only moderate reality gap effects.

5.4 Image processing demonstration: ArUco tag detec-
tion

The high computational capability of the Xpuck makes it possible to run camera
image processing algorithms not possible on the e-puck on its own or enhanced with
the Linux Extension Board. In order to demonstrate this and to evaluate the perfor-
mance of the camera, we implement ArUco marker tracking [Garrido-Jurado et al. ,
2014] and test it with the onboard camera. ArUco is a widely used library that can
recognise square black and white fiducial markers in an image and generate camera
pose estimations from them. In this demonstration, we use the marker recognition
part of the library and test the tracking under different distances and Xpuck rota-
tional velocities.

A ROS node was written to apply the ArUco17 marker detection library function to
the camera image stream and to output the detected ID and pixel coordinates on
a ROS topic. Default detection options were used and no particular attention was
paid to optimisation.

Two experiments were conducted. In both cases we used video from the Xpuck
camera at a resolution of 320x240 and a frame rate of 15 Hz. First we measured the
time taken to process an image with the detection function under conditions of no
markers, four 100 mm markers in a 2x2 grid, and 81 20 mm markers in a 9x9 grid.

17Version 1.2, standard install from Ubuntu 14.04.4 ROS Indigo repository.

120

Frame times were captured for 60 seconds.

Second, we affixed four ArUco tags of size 100mm with different IDs to locations
along the arena walls. An Xpuck was placed in three different locations within the
arena and commanded to rotate at various speeds up to 0.7 rad/s. Data was collected
for 31500 frames. Commanded rotational velocity, Vicon tracking data, and marker
tracking data were all captured for analysis.

The data was analysed in the following way; each video frame is an observation, which
may have markers present within it. Using a simple geometrical model, we predict
from the Vicon data and the known marker positions whether a marker should be
visible in a given frame and check this against the output of the detector for that
frame. From this we derive detection probability curves for different rotation speeds.

5.4.1 Results: Performance of image processing task

For the computationally demanding image processing task, Table 5.4 shows the time
taken for the Xpuck to process a 320x240 pixel frame using the ArUco library to
search for markers. With four large markers, the 23 ms processing time is fast enough
to sustain the full camera frame rate of 15 Hz. In the 81 marker case, detection speed
slows to 94 ms, such that a 15 Hz rate is not sustainable. In both cases however, all
the markers were correctly detected in each frame.

Table 5.4: Processing time for ArUco tag image recognition task under different conditions

Condition Processing time (ms) σ

No markers 12.4 2.7
4x 100 mm markers 23.3 4.5
81x 20 mm markers 93.8 0.25

The dsPIC of the e-puck would not be capable of running this code - it is only
capable of capturing camera video at 40x40 pixels and 4 Hz with no image processing
[Mondada et al. , 2009] and has insufficient RAM to hold a complete image. The
Linux Extension Board processor could potentially run the detection code, but we
estimate the processing time would be at least 50 times longer18 giving a frame rate
of less than 1 Hz.

The arena detection experiment collected 31500 frames, with 11076 marker detections
possible in ideal circumstances. Actual detections numbered 8947, a total detection
rate of 81%. Figure 5.9 shows the probability of detecting a marker under different
conditions. With four markers around the arena, and the Xpuck capturing data
at three locations within the arena, there are twelve distance/angle combinations.
Distances vary from 0.5 m to 1.5 m, and angles from 0◦ to 70◦. The grey envelope

18ARM926EJS @200MHz = 220DMIPS, A15 @800MHz = 2800DMIPS, 4x penalty for no floating
point, single core only: 50x

121

50 100 150 200 250
Angular velocity (pixels/s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 d
et

ec
tio

n

Marker detection under different conditions

Individual
Average

Figure 5.9: Probability of marker detection under different conditions. There are four
markers around the arena, with data collected at three locations, giving twelve distance/an-
gle combinations. Observations at a resolution of 320x240 pixels were made for 31500 frames,
with 8947 marker detections out of a possible 11076, a detection rate of 81%. The number
of detections compared to the maximum possible for each geometry were binned by angular
velocity to give probability curves. Grey lines are individual distance/angle combinations,
and the blue line is the average over all combinations. Generally, detection rate falls with
increasing angular velocity, with a 50% detection rate at 180 pixels/s.

and lines show the individual distance/angle combinations against the angular ve-
locity, with the blue line being the average over all observations. Angular velocity is
expressed in pixels/s for better intuition about how fast a marker is traversing the
field of view of the camera. Generally, the detection rate falls as the angular velocity
increases, with a 50% detection rate at 180 pixels/s.

This shows that, even with unoptimised code, the Xpuck has sufficient computational
performance, and the camera subsystem is of sufficient quality, that visual marker
tracking is feasible. This would not be possible on the base e-puck.

5.5 In-swarm evolution demonstration

One of our motivations for moving computation into the swarm is to tackle the
scalability of swarm controller evolution. To demonstrate both the computational
capability of the Xpuck swarm and scalability, we implement an island model evo-
lutionary algorithm and demonstrate performance improvement when running on
multiple Xpuck robots.

The island model of evolutionary algorithms divides the population of individuals into
multiple subpopulations, each of which follows its own evolutionary trajectory, with
the addition of migration, where some individuals of the subpopulations are shared or

122

exchanged with other subpopulations. Island model evolutionary algorithms enable
coarse-grained parallelism, with each island corresponding to a different compute
node, and sometimes outperform single population algorithms by maintaining diver-
sity [Whitley et al. , 1999]. Even without that factor, the ability to scale the size
of total population with the number of compute nodes hosting subpopulations is
desirable for a swarm of robots running embodied evolution.

5.5.1 Implementation of island model

On each Xpuck, we run a genetic algorithm evolving a population of behaviour tree
controllers similar to that described in Jones et al. [2016] using methods from Genetic
Programming [Koza, 1992]. Evolution proceeds as follows; an initial subpopulation
of nsub = 32 individuals is generated using the Koza’s ramped_half_and_half pro-
cedure, detailed in Poli et al. [2008], with a depth of ndepth = 4. Each individual
is evaluated for fitness by running nsims = 8 simulations with different starting con-
ditions and averaging the individual fitnesses. The subpopulation is sorted and the
top nelite = 3 individuals are copied unchanged into the new subpopulation. The
remaining slots are filled by tournament selection of two individuals with replace-
ment followed by a tree crossover operation, with random node selection biassed to
internal nodes 90% of the time [Koza, 1992], to create a new individual. Then, ev-
ery parameter within that individual is mutated with probability pmparam = 0.05,
followed by mutating every node to another of the same arity with probability
pmpoint = 0.05, followed by replacing a subtree with a new random subtree with
probability pmsubtree = 0.05. This new population is then used for the next round of
fitness measurement.

The genetic algorithm is extended to the island model in the following way; after
every nepoch generations, each Xpuck sends a copy of the fittest individual in its
sub-population to its neighbours. They replace the weakest individuals in their sub-
populations. Currently, this is mediated through a genepool server, running on the
Hub PC, although direct exchange of genetic material between individual Xpucks
is also possible using local IR communication. This server maintains the topology
and policy for connecting the islands. This may be physically based, drawing on the
position information from the Vicon. It is important to note that server provides
a way to abstract and virtualise the migration of individuals, in the same way we
use the Vicon information to provide virtual sensing. When the server receives an
individual from a node, it replies with a set of individuals, according to the policy.
These are used to replace the least fit individuals on the requesting node. The process
is asynchronous, not requiring that the nodes execute generations in lockstep. The
policy for this experiment is to make a copy of each individual available to every

123

other node, so with nnodes nodes the migration rate is

rmigration =
nnodes − 1

nsub · nepoch
(5.10)

Task and fitness function

We evolve a behaviour tree controller for a collective object movement task. The
task takes place in a 2 m x 1.5 m arena with the origin at the centre and surrounded
by walls greater than the height of the Xpucks. The walls and floor are white. A
blue plastic frisbee of 210 mm diameter is placed at the origin. Nine Xpucks with
red skirts are placed in a grid with spacing 100 mm centred at (−0.8, 0) and facing
rightwards. The goal is to push the frisbee to the left. Fitness is based on how far to
the left the frisbee is after a fixed time. An individual Xpuck can push the frisbee,
but at slower than the full Xpuck speed, so collective solutions have the potential to
be faster. The swarm is allowed to execute its controller for 30 s. After this time,
the fitness is given by Eqn 5.11.

f =

rderate
−x

1−lfrisbee_radius
, for x < 0

0, otherwise
(5.11)

where x is the x-coordinate of the centre of the frisbee, and rderate is a means of
bloat control, proportionately reducing the fitness of behaviour trees which use more
than 50% of the resources available.

In order to show scalability with increasing numbers of Xpucks, we compare two
scenarios, firstly a single Xpuck running a standalone evolution and secondly six
Xpucks running an island model evolution. In both cases the parameters are as
above. With the island model, every nepoch = 2 generations, a node sends to all its
neighbours a copy of its fittest individual and receives their fittest individuals, using
these to replace its five least fit individuals, giving a migration rate rmigration = 0.078.
Each scenario is run ten times with different initial random seeds.

5.5.2 Results: Performance of island model evolution

The results are summarised in Figure 5.10. It is clear that the six node island model
evolutionary system performs better than the single node. Maximum fitness reached
is higher at 0.7 vs 0.5, and progress is faster. Of interest is the very low median
fitness of the single node populations (shown with red bar in boxes), compared to
the mean. This is because seven out of the ten runs never reached a higher fitness
than 0.1 suggesting the population size or the number of generations is too small.
Conversely, the median and mean of the island model population’s maximum fitnesses

124

are quite similar, showing a more consistent performance across runs. If we look at
how fast the mean fitness rises, a single node takes 100 generations for the fitness to
reach 0.15. The six node system reaches this level of mean fitness after 25 generation,
four times faster.

Figure 5.11 shows a plot of the elapsed processing time per generation over ten
runs. The variation is mostly due to the complexity and depth of the behaviour
tree controllers within each generation, together with the trajectory of the robots
in simulation. Each of the ten runs of both the island model and the single node
systems completed in less than 10 minutes. For comparison, each evolutionary run
in our previous work [Jones et al. , 2016] took several hours on a powerful desktop
machine.

This demonstrates the Xpucks are sufficiently capable to host in-swarm evolutionary
algorithms that scale in performance with the size of the swarm.

5.6 Experimental procedure

The arena infrastructure provides all the services required to run experiments with
the Xpucks. In order to run an experiment, we use the following procedure.

Each required Xpuck is turned on. During boot, ROS is automatically started19

with a basic graph. This performs several functions. Firstly, it interfaces to the
hardware of the Epuck and the Xpuck shim board. Secondly, it maintains a two-way
communication link with the central hub computer. Thirdly it handles experiment
sequencing, startup, and running. Finally, it presents an interface in the form of
ROS topics that provide the senses and actuators detailed in the reference model,
constructed from both real and virtual senses derived from the Vicon system.

On the hub PC, the switchboard program is started. This provides a graphical inter-
face through which the state of the Xpuck robots can be monitored and controlled.
When the robots have booted up, they establish communications with the switch-
board and start exchanging telemetry. Important values are the battery voltage and
the telemetry packet round-trip time. Once all the robots are running and showing
good telemetry, the experiment can begin.

From the GUI, an experiment file is sent to all the robots. This is essentially a
Python script that is executed on the robots. Typically, it will start the simulator
and evolutionary algorithm, set up additional ROS nodes for executing behaviour
tree controllers in real life, and enable logging of experiment data. All experiment
files must be able to respond to PAUSE, RUN, and STOP commands from the switchboard.
When all robots have indicated that they have received the experiment file and are

19Using http://wiki.ros.org/robot_upstart

125

http://wiki.ros.org/robot_upstart

A

10 20 30 40 50 60 70 80 90 100

Generation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Fi

tn
e
ss

Fittest individual over 10 runs, single node
Max in each generation

Min in each generation

Mean over 5 generations

B

10 20 30 40 50 60 70 80 90 100

Generation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fi
tn

e
ss

Fittest individual over 10 runs, six nodes
Max in each generation

Min in each generation

Mean over 5 generations

1Figure 5.10: Single node vs six node island model performance. Comparison of 100
generations of evolution using a single node (A) and using an island model with six nodes
(B). Each node has a population of 32 individuals, evaluated 8 times with different starting
conditions for fitness. Each node in the six node system replaces is five least fit individuals
with the fittest from the other five nodes every two generations. Boxes summarise data for
that generation and the previous four. Red bar in boxes indicates median. The six node
system clearly shows higher maximum fitness after 100 generations, and reaches the same
mean fitness as the single node system in a quarter of the time. The large difference between
mean and median in the single node system is due to seven of the ten runs not exceeding a
fitness of 0.1.

126

0 20 40 60 80 100

Generation

0

1

2

3

4

5

6

7

8

T
im

e
 (

s)

Processing time per generation over 10 runs,
average time per run = 5.7 minutes

Min/max time per generation (s)

Mean time per generation (s)

Figure 5.11: Time per generation of single node evolution, 10 runs of 100 generations each,
with different starting conditions. The average length of a run is 5.7 minutes. The variation
in processing time is due mostly to the size and complexity of the behaviour trees within
the population.

in a ready state, the experiment is started. The robots run autonomously, except to
listen for the above commands.

5.7 Conclusion

In this chapter we have described the design, development, tuning and programming
of the complete Xpuck swarm robot system and accompanying infrastructure. We
now have a behaviour tree controller architecture, a fast simulator capable of sup-
porting the required high rate of simulation needed for evolutionary algorithms, the
experimental infrastructure needed to provide virtual sensing and data logging, and
a swarm of robots.

We next move on to the design of a behaviour tree architecture for the Xpuck robot
that is suitable for use with evolutionary algorithms and tries to minimise reality
gap effects by design, taking a more formal approach than that used for our initial
explorations.

127

128

Chapter 6

Designing a behaviour tree
architecture

In this chapter, we will describe in detail the design process for a behaviour tree
architecture targeting a swarm of Xpuck robots, described in Chapter 5. As we note
in Chapter 3 we are inspired by the approach and arguments of Francesca et al.
[2014a] for reducing the effects of the reality gap.

A central part of the methodology Francesca et al. use is to define the capabilities
of the robots as seen by the controller in terms of a reference model, and then to
define constituent behaviour and conditions the controller may use in terms of the
reference model. By formalising the model, we define the capabilities required of a
minimal simulation and make explicit what might be implicitly assumed. We also
define the conditioning of the real robot senses and actuators into a common format.

The use of these constituent behaviours and conditions is a means of motivating
the design of the behaviour tree and blackboard; we should be able to express them
easily and flexibly within our architecture.

6.1 Robot reference model

The reference model is an abstraction that formally describes the sensors and actu-
ators available to the robot controller. The reference model for the Xpucks is given
in Table 6.1. This is formulated using the standard senses and actuators of the base
e-puck robot that the Xpuck extends, together with two virtual senses; a compass
and a range-and-bearing sense. The input variables are inputs to the controller from
the senses. The output variables are what the controller alters to act within the
world. The constants define various aspects of the robot abstraction that do not
change. The choices about what to abstract away, and what to idealise is driven by

129

both the physical capabilities of the robot, and the necessity of writing a simulator
to model these capabilities with sufficient fidelity and speed.

The proximity sensors Pi are a set of eight IR reflectance sensors spaced around the
body of the e-puck at the angles given in ∠qi. They are strictly short range, with a
maximum range of around pmax or 3 cm. They work by turning on an IR emitter and
measuring the received level from an IR sensor, and comparing this to the received
level when the IR emitter is turned off. They are short-range, vary quite widely
between individual sensors and behave differently with different materials. Only
objects taller than 30 mm will be detected. In order that it is possible for Xpucks to
detect each other it was necessary to 3D print ‘skirts’ of opaque material that reflect
the emitted IR. The standard plastic body of the e-pucks is quite transparent to IR.
The raw characteristics can be approximated by an inverse-fourth law relationship
with distance, like radar (inverse square from emitter, inverse square from reflector)1.
We abstract this to a real value between 0 and 1, ranging from a value of 0 when
there is no object within the detection range of the sensor, to a value of 1 when when
an object is adjacent to the detector.

The camera of the e-puck is VGA resolution and can run at 30 frames per second
(FPS), although the base e-puck is only capable of sampling a small subset of each
frame. The Xpucks are capable of much more intensive pixel processing such that we
can run image processing algorithms. But if we make the camera image processing
too complex, the question of how to model this well within the simulator arises. It
then becomes a tradeoff between easy to simulate and yet still useful for a swarm
robot. We settled upon a scheme of dividing the visual field into three equal vertical
segments, within which we recognise the presence of primary coloured pixels above
a threshold quantity.

We carefully control the real visual environment to simplify the task of modelling.
The arena floor and sidewalls are white. The field of view (FOV) of the cameras is
vertically truncated by ignoring pixels above the centre-line, this means that only
objects within the arena are perceived. The robots have red 3D printed ‘skirts’ and
are otherwise white. Plastic objects that can be used for foraging tasks are widely
available in primary colours, and it is possible to mark areas of the arena walls with
coloured paper. The camera sense is thus reduced to just 9 bits of information; the
presence or not of red, green, or blue coloured objects within the left, centre, or right
hand visual fields.

The compass sense gives the heading of the robot in the world frame. In the case of
the Xpucks, this is synthesised virtually, using a Vicon object tracking system and

1The inverse square law for signal strength at a distance from a point source is a consequence
of the surface area of a sphere 4πr2 being proportional to the square of the radius, the signal being
spread over some fixed proportion of said sphere.

130

transmitted via WiFi, but this is not necessary, we have a set of BM055 Inertial
Measurement Unit (IMU) sensor boards for future use which provide a 9 degree of
freedom output (three gyroscope axes, three accelerometer axes, and three magnetic
field axes).

A sense of where the neighbouring robots are is generally important for constructing
swarm behaviours . One such sense is the range and bearing sense. This captures
the number of neighbours n within half a metre rmax of the robot, and the distance
and bearing to each of them. There are a number of ways that range-and-bearing
has been implemented on e-pucks. Using the built-in IR sensors together with a
specialised library libircom [Gutiérrez et al. , 2009a], the design of an additional
sensor board [Gutiérrez et al. , 2009b], and virtual sensing. We chose to synthesise a
virtual range and bearing sense for several reasons. Firstly, experiments showed that
the range and bearing performance when using the built-in IR sensors was very poor.
Secondly, we did not have any of the range-and-bearing sensor boards. Finally, using
virtual sensing allowed us to control the characteristics of the sensor as we chose,
setting the maximum range and allowing the injection of various degrees of noise.
It is important to note, however, that nothing precludes the use of a real sensor
to perform this task, none of the experiments used functionality that could not be
constructed in a real sensor.

The only actuators described in the reference model are the two wheels, where the
controller can specify their velocities in the range [−vmax, vmax]. When both are set
to an equal positive value, the robot will move forward in a straight line. Given that
the robot is circular in form with the wheels mounted symmetrically along an axis
through the centre of the robot, with the addition of l, the wheelbase, or distance
between the wheels, the kinematics are completely described:

ω =
vright − vleft

l

ẋ′ =
vright + vleft

2
(6.1)

where ẋ′ is the velocity in the x′ axis of the robot frame of reference. For a derivation,
see, for example Siegwart et al. [2011].

The controller runs at an update period of tupdate = 100 ms. Every update period, the
input variables from the sensors are presented to the controller, which then generates
new values for the wheel actuator output variables.

Figure 6.1 shows the locations of the proximity sensors and their range, and the
camera and its field of field, together with the wheelbase and robot body diameter.
The world reference frame is labelled x and y, and the robot frame is shown with

131

Table 6.1: Robot reference model for the Xpucks

Input variables Values Description
Pi∈{1,2,..,8} [0, 1] Proximity sensor i
Ri∈{left,centre,right} {0, 1} Red blob detection
Gi∈{left,centre,right} {0, 1} Green blob detection
Bi∈{left,centre,right} {0, 1} Blue blob detection
θ [−π, π) Compass, giving pose angle in

world frame
n ∈ N {0, ..., 15} Number of neighbouring Xpucks
(r,∠b)i∈{1,...,n},n6=0 ([rmin, rmax], [−π, π)) Range and bearing of neighbour m
Output variables
vi∈{left,right} [−vmax, vmax] Left and right wheel velocities
Constants
tupdate 100 ms Sensor and controller update

period
rmin 75 mm Minimum range and bearing range
rmax 0.5 m Maximum range and bearing range
vmax 0.13 ms−1 Maximum wheel velocity
∠qi∈{1,2,...,8} 0.297, 0.855, 1.571, Angle of proximity sensor i

2.618,−2.618,−1.571,
−0.855,−0.297

pmax 30 mm Proximity sensor maximum range
pheight 35 mm Height of proximity sensors above

ground
FOV 56◦ Camera field of view
d 75 mm Diameter of robot
l 53 mm Wheelbase

axes names x′ and y′.

6.2 Constituent behaviours and conditions

All possible tasks T that the robot may perform are defined implicitly by the reference
model, it would not be possible for the robot with the reference model in Table 6.1 to
move towards heat, for example, having no sensor capable of perceiving temperature.
The set of tasks that the robot can actually perform, T′ ⊆ T, is defined by the
controller architecture, that is, the method of mapping of sensor inputs to actuator
outputs. We might consider that we want T−T′ to be as small as possible, but this
comes at the cost of increasing generality of the controller.

An important argument made in Francesca et al. [2014a] is the relevance of the
bias-variance tradeoff concept from machine learning to the issue of the reality gap
in automatically discovered controllers for swarm robotics. They assert that the re-
ality gap is an example of overfitting due to the high expressiveness of, for example,
neural networks as a controller architecture. In machine leaning, high variance. By

132

y'

x'

l

d

FO
V

pmax

y

x

Figure 6.1: Illustration of some of the robot reference model parameters. Proximity sensors
are the grey boxes, with a maximum range of pmax, the camera is shown with a purple box.
The robot frame of reference is shown with the axes labelled x′ and y′. The diameter of the
robot is given by d and the wheelbase, the distance between the two wheels by l.

increasing the bias, or moving in the direction of a less expressive or general con-
troller architecture, they assert that we can reduce the reality gap of the discovered
controllers but still maintain the ability to express a useful subset of tasks.

To this end Francesca et al. define a controller architecture consisting of a set of
constituent behaviours and a set of conditions utilising the reference model for the
robot that are then used in the automatic discovery of state machine controllers.
The definition of these is regarded as the domain of the expert.

We follow a similar path, but one advantage of the BT architecture is that its hi-
erarchical nature allows for behaviours to be composed. In this, we are not limited
to choosing explicitly the constituent behaviours. We can instead define a set of
primitive action nodes and blackboard registers and then construct the constituent
behaviours as subtrees. These subtrees could either be used as fixed elements within
the evolutionary algorithm, or potentially be themselves evolvable, in the manner
of Automatically Defined Functions (ADFs) [Koza, 1992]. By changing these con-
stituent behaviours we can tune our location along the bias-variance tradeoff.

133

Francesca et al. define six behaviours and six conditions. The behaviours are: Explo-
ration - The robot moves in a straight line until one of the front proximity detectors
is triggered, when it turns on the spot away from the triggered sensor for a random
number of timesteps. Stop - The robot stays still. Phototaxis - The robot moves
towards any detected light or straight. Obstacles are avoided. Anti-phototaxis - The
robot moves away from detected light or straight, with obstacle avoidance. Attrac-
tion - The robot moves towards other robots, with obstacle avoidance, and Repulsion
- the robot moves away from other robots, with obstacle avoidance. Attraction and
Repulsion have a parameter determining how strong the respective force is, and Ex-
ploration has a parameter determining the maximum number of timesteps the robot
will turn for. The conditions are: Black-floor, Gray-floor, White-floor, Neighbour-
count, Inverted-neighbour-count, and Fixed-probability. Each of these being true en-
ables a state machine transition with probability controlled by a parameter.

Given the different reference model for the Xpuck, we obviously cannot replicate the
same set of behaviours and conditions, but we hope that the ones we have chosen are
in the same spirit, providing useful building blocks but with sufficient granularity to
reduce reality-gap effects. Using these building blocks, we will then try and define a
set of action nodes and blackboard registers with which to implement the building
blocks as subtrees. The process of implementing the behaviours will inform the
choice of action nodes, and that will also inform further iterations of constituent
behaviours.

This is quite akin to the process of designing the Instruction Set Architecture (ISA)
of a computer processor; there is a tension between more complex instructions that
express ideas compactly, but at the expense of flexibility, and simpler, more regular
instructions that can be used to construct the more complex instructions but perhaps
take more space. Perhaps we are seeking elegance, simple enough but no simpler.

6.2.1 Constituent behaviours

The following is our starting point for the constituent behaviours, based heavily on
Francesca et al. [2014a].

Exploration: The robot moves straight forward. Obstacle avoidance is performed
in the following way: If the vector sum of the individual proximity sensors, given by

vprox =
8∑
i=1

(Pi, qi) (6.2)

faces forwards i.e. vprox · x̂ > 0 and |vprox| > 0.1, there is an obstacle in front of
the robot, so the robot turns on the spot for a random time bounded by τ in the
direction away from vprox.

134

Stop: Stop moving.

Upfield: Move towards the +x end of the arena, with obstacle avoidance embed-
ded. The robot follows the vector v, where k = 5 and vup is the unit vector away
from the home end of the arena.

v = vup − kvprox (6.3)

Downfield: Move towards −x end, with obstacle avoidance embedded. The robot
follows the vector v, where k = 5 and vup is the unit vector away from the home
end of the arena.

v = −vup − kvprox (6.4)

Attraction/Repulsion: Move towards or away from robots in the neighbourhood,
as detected by the range and bearing data, with obstacle avoidance. The robot
follows the vector v. Degree of attraction tuned by the parameter α, when α is
positive the attracted to neighbours, when negative, repulsed. When there are no
neighbours, the robot moves forward.

vrb =

α
∑n

i=1 (rmin
ri
,∠bi), if n > 0

(1,∠0), otherwise

v = vrb − kvprox (6.5)

6.2.2 Constituent conditions

The conditions defined by Francesca et al. enable probabilistic state transitions
depending on certain sensor inputs. The equivalent with a BT is a subtree that
probabilistically returns success based on sensor conditions. The Xpuck does not
have ground greyscale sensors but does have a camera, this is used for the red,
green, and blue conditions.

Red: If Ri = 1, for any i ∈ {left, centre, right}, return success with probability
β.

Green: If Gi = 1, for any i ∈ {left, centre, right}, return success with probability
β.

135

Blue: If Bi = 1, for any i ∈ {left, centre, right}, return success with probability
β.

Neighbour-count: Return success with probability:

z(n) =
1

1 + ek(l−n)
(6.6)

where n is the number of robots in the neighbourhood, k is steepness of the function,
and l is the number of robots to give P = 0.5.

Inverted-neighbour-count: Return success with probability 1− z(n), with z(n)

defined as in Eqn. 6.6.

Fixed-probability: Return success with probability β.

Table 6.2: Behaviours, conditions, and their parameters

Behaviour Param Range Description
Exploration τ {1, 2, .., 100} Explore, turn away if obstacle for

τ steps
Stop Stop moving
Upfield Move towards +x end, with ob-

stacle avoidance
Downfield Move towards −x end, with ob-

stacle avoidance
Attraction α [0, 15.875] Move towards neighbouring

robots, with obstacle avoidance
Repulsion α [0,−16] Move away from neighbouring

robots, with obstacle avoidance
Condition
Red β [0, 1] Probabilistic success if red seen
Green β [0, 1] Probabilistic success if green seen
Blue β [0, 1] Probabilistic success if blue seen
Neighbour
count

k [0, 15.875] Probabilistic success based on
neighbour count

l [0, 15]
Inv-neighbour
count

k [−16, 0]

l [0, 15]
Fixed β [0, 1] Fixed probabilistic success
probability

6.3 Blackboard and action nodes

Designing a behaviour tree architecture for a particular reference model involves
defining the blackboard and the action nodes. Composition nodes are universal, we

136

implement the ones detailed in Table 3.1. Since seq* and sel* nodes of arbitrary
arity can be synthesised by nesting, we just provide small fixed variants.

There are similarities with designing an instruction set architecture for a CPU; bal-
ancing the desire for an elegant and orthogonal set with the demands of the specific
behaviours we want to be able to express. Of course we can express any behaviour
with a set of very simple behaviours that amount to effectively machine code, but
this is probably not a good target for evolutionary algorithms (too many possi-
bilities with no functionality), and also likely to be towards the wrong end of the
bias-variance tradeoff, being capable of too high an expressiveness. So what we want
is a set of orthogonal and meaningful2 behaviours that can be combined to easily
produce the constituent behaviours and conditions described Section 6.2. In some
ways, the blackboard/action node split is reminiscent of the Move machine proces-
sor architecture, where an extremely minimal instruction set, even as little as just
a single conditional move, achieves functionality by mapping that functionality onto
addresses that are the source and destination of the move [Lipovski, 1976; Tabak &
Lipovski, 1980]. The blackboard entries encapsulate certain basic functionality, and
the action nodes are used to operate on that.

Many of the constituent behaviours detailed above involve 2D vectors, for motion
and for sensing. For this reason, the first major design decision was to make the
natural handling of vectors a central element of the nodes and blackboard.

The blackboard consists of a set of 32 bit floating point registers addressed by an
integer index. Some blackboard entries represent two component vectors, and these
entries have even indices, with B2i representing the first (x) component of the vector,
and B2i+1 representing the second (y) component of the vector. Some blackboard
entries represent scalar quantities, and these entries can have any value indices. It
is possible to access a vector component of the blackboard as a scalar by use of the
appropriate index.

The register pair at index 0, 1 will always read as zero. There is a scalar and a vector
scratch register which can be written and read and serve as a memory. They have
no direct effect on the environment.

Blackboard entries may be linked to physical actuators. These can only be updated
by one action node per controller update cycle. The first action node to access a
physically linked register will return success, any subsequent access within that
update will return running, indicating that the register is not yet available. Any
physically linked register not written in an update cycle will assume a default value,
not maintain any previously set value. Currently the only physically linked entry is
the vgoal register.

2in terms of xpuck behaviour

137

All vector quantities are considered to be in the robot reference frame, which defines
the +x axis as the forward facing direction i.e. the direction the camera points and
the direction in which the robot will move if identical positive velocities are sent to
the two motors. The vector (1, 0) or x̂ is thus the unit vector pointing forwards, the
vector (0, 1) or ŷ points out of the left hand side of the robot, see Figure 6.1.

Table 6.3 summarises the blackboard, we will now talk in some detail about the
design decisions involved.

6.3.1 Goal velocity, physically linked registers

Probably the most interesting register is the goal velocity vector, vgoal. It is through
this that the BT will actuate the robot. Fundamentally, we want a simple but flexible
motion control. If we copy a vector quantity into this register, we are saying that
we want the robot to move in that direction with a speed related to the magnitude
of the vector.

We stated above that a physically linked blackboard register may be written to by
only one node per update cycle, and if it is not written to, it should assume a zero
default value. Why? Firstly, why can only one node per update cycle write to a
physically linked node. Consider Figure 6.2. A memory sequence node with six

vgoal ← forwardvgoal ← forward vgoal ← forward

.→

vgoal ← forwardvgoal ← forward vgoal ← turn left

Figure 6.2: A behaviour tree to move in a polygon

children, five of which command forward move, and a final that commands a left
turn. If there was no restriction on writing to the goal register in an update, the first
child node would be ticked, then when that returned success the next node would
be ticked and so on until all the nodes had been ticked in a single update cycle,
with the final value for the update cycle being ‘turn left’. The robot would just
continually spin anticlockwise on the spot. This is clearly not the intent, and it will
generally be the case that registers linked to some physical process will require time
to take effect. By ensuring that only the first node that writes to a physical register
can return success and any subsequent writes within that cycle return running, the
natural intent of the tree is produced; the robot moves forward for five update cycles,
then turns left for one update cycle, repeating every six cycles.

Why use a zero default value? Lets consider a simple behaviour tree that makes the
robot move forward if there is nothing detected by the proximity sensors. Two ways
to write the tree are shown in Figure 6.3, the left hand tree assumes that the goal
register has a default zero, and the right hand tree shows what is necessary if there

138

Table 6.3: Blackboard registers. Read-only registers can be used as a destination without
error but will be unchanged.

Index Name Access Description
0 zero R Zero. This register will always read as a zero vector or scalar and

will not be affected by writes
2 vgoal RW Goal velocity vector. Writing to this register determines how the

robot will move. If the vector points backwards, the robot will
turn on the spot in a direction determined by the sign of the y
component of the vector. If it points forwards, the robot will move
forwards while turning to minimise the angle between the vector
and the forward direction of the robot. The speed the robot moves
at will be determined by the magnitude of the vector, with any
magnitude larger than 1 giving the maximum wheel velocities
The motor velocities are determined as follows:
At the start of a tick, vgoal ← (0, 0)
At the end of a tick, the vector may have been updated. If it is
non-zero, it is transformed to wheel motor velocities by:

s =

{
1, if |vgoal| < 1

|vgoal|, otherwise

v′goal =
1

s

{
(0, sgn(vgoal · ŷ)|vgoal|), if vgoal · x̂ < 0

vgoal, otherwise

v′′goal = R(∠45)× v′goal
(vleft, vright) = vmaxv

′′
goal

4 vprox R Proximity vector. Reading this register returns the vector sum
of all the proximity sensors, where each sensor has magnitude
varying from 0 if there is nothing within the sensor range pmax,
to 1 if there is something directly adjacent to the sensor.
vprox =

∑
i∈{1,...,8}

(Pi,∠qi)

6 vup R Upfield vector. This is the unit vector pointing upfield, that is,
towards the +x end of the arena. Given by:
vup = (1,−∠θ)
where θ is the pose angle of the robot in the world frame.

8 vattr R Attraction vector. The points towards the nearest concentration
of neighbouring robots. It is formed from the range-and-bearing
system information by:

vattr =

{∑n
i=1(rmin

ri
,∠bi) if n > 0

(1,∠0) otherwise
10 vred R Red vector. This points towards the detected red blobs within the

camera FOV. It is given by:
vred = (Rleft,∠18.7) + (Rcentre,∠0) + (Rright,∠− 18.7)

12 vgreen R Green vector, calculated as with red
14 vblue R Blue vector, calculated as with red

vblue = (Bleft,∠18.7) + (Bcentre,∠0) + (Bright,∠− 18.7)
16 sn R Neighbour count. The number of neighbours detected by the

range-and-bearing system
17 sscr RW Scratchpad
18 vscr RW Scratchpad

is no default. Clearly, the left version feels more natural and is simpler.

139

→

if no prox vgoal ← forward

vgoal ← stop

if no prox vgoal ← forward

→

?

Figure 6.3: Behaviour tree to move forwards while there is nothing detected by the prox-
imity sensors, with default to zero on left, and keep last value on right.

We can make the comparison to an FSM with multiple states, some of which move
the robot. The state of the FSM dictates what is sent to the actuator, not the
previous state of the actuator. It is the same for a behaviour tree, but here the state
is implicit in the path to activation of a node writing the register for the first time
in an update cycle.

6.3.2 Steering

Given a vector in the world frame to follow, how do we steer? The e-puck robot
which the Xpucks are based on has two-wheel differential drive kinematics; it is non-
holonomic and cannot just move in any direction, but needs a steering strategy to
reach a goal velocity or position in the world frame. One simple strategy with a fixed
goal vector for a two-wheel robot is to turn until the pose angle of the robot is the
same as the angle of the vector, then to move in a straight line along the vector. But
this does not handle changing vectors well since movement needs to be stopped for
reorientation to take place.

We want the movement to be smooth. We also need a completely reactive strategy, we
can’t use a top-down approach of route-planning followed by constrained trajectory
generation and play out since there is no overall endpoint target. Fajen & Warren
[2003] studied human navigation towards a goal in the presence of obstacles and found
that people tried to minimise the difference between their heading and the the goal
heading but nearby obstacles in their path caused repulsive changes in heading away
from the goal until the obstacle was passed. Routes emerged as a consequence, rather
than being planned. Huang et al. [2006] take this insight and develop a steering
law for non-holonomic robots that produces smooth paths. Park & Kuipers [2011]
consider the case of smooth trajectory generation for wheelchairs, where obstacles
are dynamically changing, and the comfort of the user requires that acceleration or
jerk (change in acceleration) is limited.

This motivates an initial design where the assumption is that there will be a contin-

140

uous updating of the velocity goal vector with the current goal in the robot frame.
The trajectory followed should vary smoothly.

Let us suppose that we want the robot to move in the +x world frame direction,
represented by the blackboard register vup, and to achieve this, we have a simple
behaviour tree consisting of a single action node that continually performs vgoal ←
vup.

All blackboard vectors are in the robot frame, so consider what that means for the
simple example. Start with the robot facing in the +y direction, having a angle
in the world frame of π

2 . The register vup will have a value of (1,−∠π
2
), a unit

vector pointing to the right hand side of the robot. Intuitively, as humans, we would
start to turn to the right, and also move forward, increasing our forward motion and
reducing our turning as we became better aligned to the target.

The steering behaviour was originally written in an ad-hoc way to directly generate
wheel velocities from the goal vector vgoal based on this intuition. We motivated this
with the following requirements:

1. The magnitude of the vector controls the motor velocity. A zero magnitude
vector will produce no motion, a vector of magnitude 1 produces the maximum
motor velocity. Any vector larger than 1 is normalised to magnitude 1.

2. The direction of the vector controls the robot direction. A vector in the (+x, 0)
direction will activate both motors identically, moving forwards. Increasing
vector angle away from 0 will produce higher turning rate, ω, and lower forward
velocity v.

3. If the vector points behind the robot, the robot will rotate in place, not move
backwards. The idea behind this is to keep the direction of motion predomi-
nately forward, where the camera and most proximity sensors point.

These requirements were formalised as the following equations for wheel velocities
vleft and vright, given the input goal vector vgoal:

s =

1, if |vgoal| < 1

|vgoal|, otherwise
(6.7)

v′goal =
1

s

(0, sgn(vgoal · ŷ)|vgoal|), if vgoal · x̂ < 0

vgoal, otherwise
(6.8)

[
vleft

vright

]
= vmax

[
cos π4 − sin π

4

sin π
4 cos π4

]
× v′goal (6.9)

The goal vector is normalised to unit magnitude if it is greater magnitude than 1,
and if the vector points to the back of the robot x < 0 it is rotated (keeping the

141

same magnitude) to the nearest x = 0 location, Eqn 6.8. Noting that a unit x̂ vector
should activate both motors equally, and rotating by π

4 gives x and y both equal to√
2

2 , we use this rotation, with a scaling to the maximum allowed motor velocity, to
transform the goal into motor velocities.

In order to briefly but more formally analyse the steering law, it is best expressed
in polar form. Let vgoal ≡ (r, φ) be the goal vector expressed as magnitude r and
heading in the robot frame φ. l is the distance between the wheels. Firstly, get the
wheel velocities:

vgoal ≡ (r, φ) (6.10)

r′ = f(r) =

r, if r < 1

1, otherwise
(6.11)

φ′ = g(φ) =


π
2 , if φ > π

2

−π
2 , if φ < −π

2

φ, otherwise

(6.12)

[
vleft

vright

]
= vmax

[
cos π4 − sin π

4

sin π
4 cos π4

]
×
[
r′ cosφ′

r′ sinφ′

]
(6.13)

Then express as linear and angular velocities:

v = r′vmax
√

2 cosφ′ (6.14)

ω =
r′vmax

√
2

l
sinφ′ (6.15)

Figure 6.4 shows the commanded velocity and angular velocity resulting from Eqns
6.14 and 6.15. This shows similarity to the result of Fajen & Warren [2003] that the
turning rate is roughly proportional to difference in heading of the robot and the
goal.

We will implement this steering law using a discrete time controller, with an update
rate of tupdate as specified in the robot reference model. A basic rule-of-thumb for
a discrete time controller to work correctly and be stable is that the highest system
frequency is preferably less than half Nyquist, or a quarter the sampling rate. Given
a controller update rate of 10 Hz, this gives a maximum frequency of ≈ 2.5 Hz. The
system frequency in this case is given by ω and the maximum value from Eqn 6.15 of
ω = 0.13×0.707

0.053 = 1.7 rad/s ≈ 0.3 Hz, comfortably meeting the requirement. Another
point to consider with our system is that there is a latency tlatency associated with

142

certain virtual senses. If this latency is included, is the system stable? We ran
simulations to test the behaviour, using the discrete time equations below.

1

0

1

 (r
ad

ia
ns

s
1)

Steering law for robot heading

3 2 1 0 1 2 3
Goal heading in robot frame (radians)

0.00

0.02

0.04

0.06

0.08

v
(m

s
1)

Figure 6.4: Steering law for robot. Velocity and angular velocity for a given goal vector
heading angle in the robot frame. When the heading is zero, the robot moves forward,
as the heading increases, the forward velocity smoothly decreases and the angular velocity
smoothly increases, until the robot is turning on the spot at a vector angle of ±π/2.

At every control step s ∈ {0, 1, ...} where ts = s · tupdate we calculate new velocities,
but the goal is based on the robot heading at time t − tlatency to account for the
latency between actual position of the robots and the supply of virtual senses. We
also introduce the additional gain term kωgain to get a feel for the steering stability
margin.

φ′ = g(φ(t− tlatency)) (6.16)

vs =
vmax · r′ ·

√
2 cosφ′

2
(6.17)

ωs =
kωgain · vmax · r′ ·

√
2 sinφ′

l
(6.18)

These are integrated to produce the robot pose using basic Euler integration with

143

∆t = 1 ms.

xi+1 = xi + vs cos θ∆t (6.19)

yi+1 = yi + vs sin θ∆t (6.20)

θi+1 = θi + ω∆t (6.21)

The world frame goal heading is switched between −π
4 and π

4 to give the system step
response. We simulate with a virtual sensor latency tlatency = 0.25 s, obtained from
measuring the real system, see later chapters, and various rotational velocity gains
kωgain.

0 2 4 6 8 10
Time (seconds)

1.0

0.5

0.0

0.5

1.0

Po
se

 a
ng

le
 (r

ad
ia

ns
)

Pose angle step response, different gains
k gain = 1
k gain = 2
k gain = 5
k gain = 10

Figure 6.5: Robot pose angle step response with different gains

The simulated system behaviour is shown in Figure 6.5. The system is stable at a
gain of 1, with critically damped behaviour somewhere between gains of 2 and 5. By
a gain of 10, corresponding to a maximum ω = 17.7 = 2.8 Hz, the system is close to
oscillation, broadly confirming the rule-of-thumb estimate above.

Finally, we simulate the system with a contrived but possible scenario, shown in
Figure 6.6. This "square" behaviour tree sets vgoal to be the +x, +y, −x, and −y
directions for 50 updates or 5 seconds each, one after the other. The robot should
trace an approximate square while moving in an anticlockwise direction. The results

144

vgoal ← vup

50 5050

vgoal ← R(3π2)vup

.→

50

vgoal ← R(π2)vup vgoal ← R(π)vup

Figure 6.6: Move in an approximate square, taking 5 seconds per side. R(θ) represents a
rotation by the angle θ.

of this simulation are shown in Figure 6.7, with the pose of the robot plotted every
second and with the starting pose at location (0,0) facing −y. At each corner, see the
zoomed figure, when the heading changes we can see linear velocity reduced to zero
and angular velocity increased as the turn starts, with the linear velocity gradually
increasing again as the heading starts to approach the goal heading. The steps in
the lower graph also shows clearly the effect of the 100 ms control update cycle on
the recalculation of new wheel velocities.

145

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Time (s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Lin
ea

r v
el

oc
ity

 v

v

0.0

0.5

1.0

1.5

2.0

An
gu

la
r v

el
oc

ity

Linear and angular velocities during a turn

Figure 6.7: Simulation showing the pose of a robot while running the "square" behaviour
tree. Pose position is the centre of the shaded circles, and pose angle is indicated by the
bold line, with the grey line showing the trajectory. The robot starts with pose (x, y, θ) =
(0, 0,−π2) and moves in an anticlockwise direction. The top graph shows the robot body
actual size with poses each second, the centre graph shows the lower right corner at 0.1
second intervals with the pose indicator shrunk for clarity, and the bottom graph shows
the linear and angular velocities during the turn. The steps in the curves are due to the
controller update period of 100 ms.

6.3.3 Sensors

We now cover the remaining blackboard registers, which are mostly associated with
sensor input conditioned in various ways. They are designed in order to easily con-
struct the constituent behaviours and conditions detailed in Section 6.2. In summary,
the behaviours are explore, upfield/downfield, and attraction/repulsion. The condi-
tions related to sensors are red, green, blue, and neighbour count.

Exploration, as encapsulated in the explore behaviour, involves moving forward un-
less there is an obstacle in the way, in which case the robot turns away from the
obstacle for a random amount of time. The sense required for this is a proximity
sense. As defined by the reference model, each IR proximity sensor returns a value
between 0, for nothing in range, to 1, for an obstacle adjacent to the sensor. We

146

turn this into the blackboard vector vprox by summing the vectors comprising the
magnitude and angle of each of the individual sensors. This vector will tend to point
towards the nearest obstacle, with a magnitude related to how close the obstacle is.
We say ‘tend’ because it would be possible for there to be obstacles equally spaced
on opposite sides of the robot, resulting in a zero magnitude vector. This approach
of using the vector sum of the IR sensors is commonly used.

Moving upfield or downfield with embedded avoidance needs a blackboard register
containing the orientation of the world frame relative to the robot, as well as the
proximity register vprox. This is the register vup. The upfield direction corresponds
to the +x direction, or a world frame pose angle of zero. Since the base e-puck robot
does not have a compass, we implement this sense virtually, using the known absolute
pose of the robots from the Vicon tracking system. The pose angle θ is turned into
a unit vector (1,∠ − θ), transforming the pose angle to the robot reference frame.
Due to the way the Vicon system processes data, there is a latency of approximately
200 ms between the real pose angle changing, and this being reflected in the value of
the vup register at the robot.

Attraction and repulsion towards or away from concentrations of neighbouring robots
is done by constructing the vector vattr from the range and bearing information
detailed in the reference model. As with vup, the robots have no built-in range and
bearing sense, this this is synthesised from the Vicon tracking system. The vector is
constructed similarly to the method used by Francesca et al. [2014a]. One difference
is as a result of a bug in a simplification implementing this. Francesca et al. [2014a]
define the attraction behaviour to move towards the nearest neighbouring robots, or
move forward if there are no neighbours, and the repulsion behaviour to move away
from nearest neighbours or forward if no neighbours. Our intent was to use a single
vector blackboard register, and multiply this by positive or negative constants to
get attraction and repulsion behaviour but the vector included the ‘move forward
otherwise’ unit +x vector. This results in the repulsion behaviour actually using a
unit −x vector with no neighbours, resulting in ‘rotate anticlockwise if no neighbours’
behaviour. We consider the effects of this bug later.

Next, we have the constituent conditions of red, green, blue seen by the camera. Since
the camera vision system, as described by the reference model, divides the field of
view into three segments, left, centre, and right with detection or absence for each,
we choose to regard each bit as a unit vector of different direction, based on the field
of view of the camera, and then form the vector sum. A vector pointing through the
centre of the left-hand segment will be at an angle of 18.7◦, one third of the 56◦ FOV
of the camera. Likewise, the centre segment is at ∠0, and the right-hand segment at
∠−18.7◦. This formulation means that to move towards a blue object, for example,
a suitable behaviour tree could simply consist of vgoal ← vblue.

147

Table 6.4 shows all the possible patterns of detection for a single colour, and the
resultant vectors, and Figure 6.8 shows the same information diagrammatically.

Table 6.4: List of all possible vectors in polar and rectangular form for one colour from
the camera system.

Left Centre Right Vector (polar) Vector (rect)
0 0 0 (0.00,∠0.00) (0.00, 0.00)
0 0 1 (1.00,∠−18.7◦) (0.947,−0.321)
0 1 0 (1.00,∠0.00◦) (1.00, 0.00)
0 1 1 (1.98,∠−9.35◦) (1.95,−0.321)
1 0 0 (1.00,∠18.7◦) (0.947, 0.321)
1 0 1 (1.89,∠0.00◦) (1.89, 0.00)
1 1 0 (1.98,∠9.35◦) (1.95, 0.321)
1 1 1 (2.95,∠0.00◦) (2.95, 0.00)

000

001

110

010

100

101 111

011

Figure 6.8: Diagrammatic view of all possible vectors from the camera system. Binary
labels correspond to {left, centre, right} colour detection.

Finally we have the neighbour count of nearby robots. This is a scalar value and as
such simply occupies a single blackboard address. It is the total number of robots
that are currently within range of the range-and-bearing system. As defined by the
reference model, this is the count of all robots within a range of 0.5 m.

6.3.4 Zero and scratchpad

The last blackboard entries are the zero and scratchpad registers. The zero register
vzero is defined for similar reasons that a fixed zero is often defined in processor
architectures, because it is a very commonly used value and means that more generic
action nodes can be defined which with the use of vzero become more specific. This
essentially simplifies and regularises the set of action nodes that need to be defined
in order to implement the desired constituent behaviours. It can be written to with
no side effects.

The scratchpad registers, one scalar sscr and one vector vscr are memories. They
are writeable, and maintain the last written value between update cycles. The intent
of adding memory is to potentially allow the evolution of more complex behaviour
tree controllers than might otherwise be possible. An analogy would be between a
feed-forward and a recurrent neural network. We make no assumptions about what
use evolution may make of these registers.

148

6.4 Action (leaf) nodes

The leaf nodes of the behaviour tree interface to the blackboard and can alter it
or test conditions against it. As with all behaviour tree nodes, they return either
success, failure, or running. We define a subset the action nodes called query nodes.
A query node has no effect on the state of the blackboard, and never returns running.
Action nodes may, but do not have to, result in a change to the blackboard, that is,
they may act on the environment.

The complete set of ten action nodes is summarised in Table 6.5. The set of nodes
above the line write a result into a destination blackboard register. The first two,
movcs and movcv, write a constant value into either a scalar or a vector blackboard
destination register respectively. They each take two parameters, a destination index
d and an 8 bit constant i. In the case of movcs i is interpreted simply as a signed
integer value in the range [−128..127].

For movcv, what we choose to represent with i is a unit vector at a particular angle
ranging from −π for i = −128 to π 127

128 for i = 127. The reasoning for choosing this
restricted set of representable constant vectors, rather than allowing a two component
formulation of arbitrary vectors is as follows. Firstly, we are working within the
domain of evolutionary algorithms. If we allow arbitrary vectors, say by having
two 32 bit floating point parameters, we vastly increase the search space for no
gain; most numbers are probably not useful since the velocity goal blackboard entry
vgoal saturates at a vector magnitude of 1. Secondly, the size of the nodes is an
important design consideration; we intend to run many simulations using behaviour
tree controllers in parallel, it takes 8 bytes for two floating point numbers versus 1
bytes for a unit vector at various angles. We want expressiveness, but not too much,
and we want space efficiency as well. Again, the parallel to ISA design is apposite.

The next two leaf nodes, mulas and mulav, are used to manipulate blackboard regis-
ters. They are both of the form d← s1+fs2, where d, s1, s2 are blackboard registers,
and f is a 32 bit floating point constant. mulas acts on scalar registers and mulav

on vector registers. These could be regarded as rather complicated instructions, per-
forming the addition of one source operand to the result of a constant multiplication
of a second source operand, before writing to the destination register. Because we
can use the vzero or szero register as a source operand, together with different choices
of constant we can perform addition, constant multiplication, or register move.

Finally the rotav instruction adds one source vector register s1 to a second source
vector register s2 rotated by a constant angle defined by a signed 8 bit value i. The
result is then stored in the destination vector register d. As with movcv the angle is
defined as π i

128 . Together, these five leaf nodes allow us to create, scale, translate
and rotate vectors, and create, scale and add scalars.

149

The question of what these nodes should return deserves a brief consideration. It
would be possible for these nodes to return success or failure based in some way on
the result of the operation, for example, a zero result could return failure. Although
superficially attractive, this is not necessarily useful, what does zero mean? We
would be privileging a particular value and complicating the reasoning about node
behaviour. Again, another point of reference is processor design, where the idea of
flags being set by operations gave way to specific instructions to test state, in order
to minimise side effects and regularise instruction sets3. For this reason, we make
all nodes that may affect the blackboard only return success or running, and nodes
that query the blackboard only return success or failure.

Thus, each of these nodes will return either success or running. If the destination
register is a physically connected register, in our case this only applies to the vgoal
register, and a previous action node within the current update cycle has written to
that register, the node will return running, otherwise it will return success.

The second set of nodes, below the line in Table 6.5 are the query nodes. They
have no side effects, and return only success or failure. The first two, successl and
failurel, rather unsurprisingly always return success or failure respectively. We
might ask why these are needed, and they are indeed syntactic sugar in that we can
create equivalent effects with the use of the zero register and other condition nodes.
It turns out that it is quite common to have constructs like that shown in Figure 6.9
where we want to try a number of options which may fail, but we don’t what the
entire subtree to fail if all the options do. By adding a final successl child we can
ensure that sel always returns success.

?

try option 1 successltry option 2 try option 3

Figure 6.9: A selection node that always succeeds, even if all children fail.

The ifprob node provides a means of introducing probabilistic behaviour. This is
necessary specifically in order that we can implement the neighbour-count constituent
condition, see Section 6.2.2. More generally, we need a source of randomness to be
able to implement probabilistic finite state machines in a BT. Depending on the value
of a source register s1, and two constants k and l, we return success with probability
governed by the location of s1 on the logistic curve defined by k (steepness) and
l (location). The constants k, l are eight bit values interpreted as 5.3 signed fixed
point numbers. They can represent numbers from −16.0 to 15.875 in steps of 0.125.

3An important part of superscalar processor design.

150

Figure 6.10 shows some curves with different k steepness values.

15 10 5 0 5 10 15
Source register s1

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 su
cc

es
s P

su
cc

es
s,

l=
0

Psuccess with different k, s1 values
k=0.125
k=0.250
k=0.500
k=1.000
k=2.000
k=4.000
k=8.000
k=15.875

Figure 6.10: Different ifprob curves with different values of k and the source register s1.
The location parameter l is fixed at zero.

We can see that ifprob is quite a general purpose query node. With low values of k,
or low steepnesses, we can have a smoothly varying range of probabilities depending
on the source register value and the location l. See, for example, the k = 0.25 curve
on Figure 6.10. Or, by specifying a high value of k, the curve is step-like, and can be
used as an integer compare to x, with l = x− 0.5 specifying the value and the node
returning success if s1 >= x and failure if s1 < x. Another use is to specify fixed
probabilities. By setting the source register to the zero register, the probability of
success depends only on the values of k and l. By choosing the values appropriately,
we can select a fixed probability between 0 and 1 with a maximum gap between
available values of 1

256 .

151

Table 6.5: Action nodes. Scalar nodes have suffix s, vector nodes suffix v. [n] is the nth
blackboard entry. d and s1, s2 are 8 bit indices into the blackboard, with vector entries, the
LSB is ignored and assumed zero. f is a 32 bit floating point. i, j are 8 bit signed integer.
k, l are 5.3 fixed point signed, P is probability. R(θ) is a rotation matrix

[
cos θ sin θ
− sin θ cos θ

]
Name Parameters Behaviour Description
movcs d, i [d]← i Set d scalar to constant

movcv d, i [d]← (1,∠π i
128)

Set d vector to unit vector con-
stant

mulas d, s1, f, s2 [d]← [s1] + f × [s2] Scalar scale and add
mulav d, s1, f, s2 [d]← [s1] + f × [s2] Vector scale and add
rotav d, s1, i, s2 [d]← [s1] +R(π i

128)× [s2] Vector rotate and add
successl success Always return success
failurel failure Always return failure

ifprob s1, k, l Psuccess =
1

1 + ek(l−[s1])

Success with probability gov-
erned by location of s1 on logis-
tic curve defined by k (steepness)
and l (location). P = 0.5 when
l = [s1]

ifquad s1, i

q = i mod 5

 1
-4

 4
-1

 3
-2

 2
-3

0

If q 6= 0 success if the vector s1 is
in the quadrant q and |s1| > 0.1.
If q = 0 success if |s1| ≤ 0.1

ifsect s1, i, j

a = π
i

128

w = π
j

256

success if |∠[s1]− a| < w

w
a

If j 6= 0 success if the vector s1 is
in sector defined by angle of cen-
tre of sector i and sector width j
and |s1| > 0.1. If j = 0 success
if |s1| < 0.1

The final two nodes, ifquad and ifsect are designed to tell something about the
direction of a vector, returning success if pointing in a particular direction and of
sufficient magnitude. ifquad divides the 2D space into quadrants, numbered 1, 2, 3, 4

in increasing positive angles, and −1,−2,−3,−4 in increasing negative angles. The
node constant i specifies the quadrant and is interpreted modulo 5. Quadrant 0 is a

152

special case. If the magnitude of the vector in blackboard register s1 is > 0.1 and
the direction of the vector is in quadrant q = i mod 5, the node returns success.
If the quadrant is 0, the node returns success if the vector is of magnitude < 0.1,
providing a way of identifying small near-to-zero vectors.

The node ifsect performs a similar function but in a more generic way. The node
constants i and j define the angle and width respectively of a sector of the 2D space.
If the vector in blackboard register s1 is of magnitude > 0.1 and is in the sector so
defined, success is returned. If the width of the sector is specified as 0, success is
returned if the magnitude < 0.1. The constant j is interpreted as an unsigned 8 bit
number, so the sector width can be defined to subtend up to π radians.

The reason for these two similar nodes is historical; originally, we only implemented
ifquad in order to write the constituent behaviours we defined above, but later
work showed that the quadrant-based formulation is actually slightly awkward to
use, consider for example the question of whether the robot is facing towards some
coloured object. Using ifquad this involves checking if the vector, vblue, say, is
quadrants 1 or 4. But maybe we want greater specificity; all non-zero vectors from
the camera will fall within this complete semicircle. These problems arose when we
started implementing behaviours beyond the original constituent behaviours, and
motivated the design of ifsect. But by that point there was an already existing
codebase making use of ifquad, so we decided to keep it.

6.5 Behaviours and conditions expressed as subtrees

Given the complete set of behaviour tree nodes and blackboard entries described in
Tables 3.1, 6.3, and 6.5, we can now express each of the constituent behaviours and
conditions described in Section 6.2 as subtrees. This section shows the trees as both
listings and diagrams. The first line of a listing names the subtree and its parameters
if it has them.

Behaviour explore

The robot explores the environment, moving forwards unless there is an obstacle
detected in front of it, when it will turn away from the obstacle for a random amount
of time up to a limit t. Figure 6.11 shows a behaviour tree that accomplishes this
task.

All the composition nodes are memoried forms, meaning that, within the explore

subtree, there is no preemption, actions once started are carried out to completion.
At the root is a three-clause selm node, which tries each child subtree in turn until
one succeeds. The first two subtrees consist of guarded sequences, first checking if
the vprox blackboard register is in the front left quadrant (quadrant 1) and if so,

153

explore(t):
selm3
seqm2
ifquad vprox, 1
repeatr t
movcv vgoal,−64

seqm2
ifquad vprox,−1
repeatr t
movcv vgoal, 64

movcv vgoal, 0

≤ t ≤ tifquad vprox,−1

.
?

movcv vgoal,−64

.→ movcv vgoal, 0

ifquad vprox, 1

.→

movcv vgoal, 64

Figure 6.11: Subtree for behaviour explore

turning clockwise for up to t control steps, then checking if it is in the front right
quadrant (quadrant -1) and if so, turning anticlockwise for up to t control steps,
and if neither of these conditions are true, meaning there is no obstruction in front
of the Xpuck, it moves straight forwards, remembering that movcv assigns a unit
vector with direction given by the second parameter. This subtree will always return
running, if it is performing a turn, or success.

It would be possible to encode forward movement with obstacle avoidance more
simply by specifying the goal vector as:

vgoal = x̂− kvprox (6.22)

meaning: move forward (in unit x direction) while proximity vector is small, oth-
erwise move in the opposite direction to the obstacle as indicated by the proximity
vector. But this would only produce random movement necessary for exploration as
a consequence of noise, compared to the given formulation above which deliberately
introduces random amounts of turning at each obstacle.

6.5.1 Behaviour stop

This behaviour is implicit when there are no actively ticked action nodes that write
to the vgoal register.

6.5.2 Behaviours upfield and downfield

These behaviours are specified to move towards the +x or −x ends of the arena, with
embedded obstacle avoidance. Here we are not concerned with explicitly embedding
randomness, so the trees are very simple, shown in Figure 6.12, and we can use the

154

upfield:
mulav vgoal,vup,−5,vprox

downfield:
seq2
mulav vscr,vzero,−1,vup

mulav vgoal,vup,−5,vprox

mulav vgoal, vup,−5, vprox

mulav vscr, vzero,−1, vup

→

mulav vgoal, vscr,−5, vprox

Figure 6.12: Subtrees for behaviours upfield and downfield

attraction(a):
sel2
seq3
ifprob sn, 15, 0.5
mulav vscr,vzero, a,vattr

mulav vgoal,vscr,−5,vprox

movcv vgoal, 0

movcv vgoal, 0

mulav vgoal, vscr,−5, vproxmulav vscr, vzero, a, vattr

?

ifprob sn, 15, 0.5

→

Figure 6.13: Subtree for attraction and repulsion

form:

vgoal = direction− kvprox (6.23)

where the goal vector is the sum of the desired direction and the some negative
multiple of the proximity vector. The factor k describes how strong the ‘aversion’
to obstacles is, Francesca et al. [2014a] use a value of 5, which we follow. Since the
upfield vector register vup is a unit vector, when the robot gets close enough to an
obstacle, the resultant will always be large enough to cause avoiding action.

Upfield can be specified with a single mulav node, but for downfield, we need to
make use of the scratch register vscr and the zero register vzero to calculate the
downfield direction by inverting vup before subtracting the proximity component.

Behaviours attraction and repulsion

The robot moves towards or away from the nearest concentration of robots in the
neighbourhood, with the strength of attraction or repulsion being governed by the
parameter α, negative values producing repulsion. Obstacle avoidance is embedded,
and when there are no neighbours, the robot moves forward. As noted in Section
6.3.3, the original intent of the vattr blackboard register was that it could simply
be multiplied by a positive or negative constant in order to get the attraction or
repulsion, with forward movement in the absence of any neighbouring robots, but
by including the unit x vector for forward movement when there are no neighbours
this results in incorrect behaviour in the repulsion case. For this reason, we use a

155

red(b)
seq2
sel2
ifquad vred, 1
ifquad vred,−1

ifprob szero,−0.25, b
ifquad vred, 1

?

ifquad vred,−1

ifprob szero,−0.25, b

→

Figure 6.14: Subtree for red (similar for green and blue)

slightly more complicated tree, shown in Figure 6.13.

Here we have a guarded sequence that calculates the goal vector as:

vgoal = αvattr − 5vprox (6.24)

providing the attraction and repulsion functions, together with obstacle avoidance.
The guard is interesting though, using ifprob as a means of testing whether there are
any robot neighbours. Recall that ifprob s1,k,l returns success with probability
based on the position of the blackboard register src on the logistic curve defined by
k (steepness) and l (position). Here, a value of k = 15 is almost a step function,
and l = 0.5 means that if the blackboard register sn, corresponding to the number
of neighbours, is zero then success will be returned with P = 0.00055, and if the
number of neighbours is one, success with P = 0.99945.

If there are neighbours, the guard will almost certainly pass, and the goal vector will
be as above, but if there are no neighbours, the sequence fails and the second clause
of the select is activated, assigning the unit x vector to the goal vector and giving
forward movement.

6.5.3 Conditions red, green, and blue

These conditions as defined in Section 6.2.2 take one parameter, the probability of
success β. If the camera detects the given colour within its field of view, the tree will
return success with probability P = β. We implement this functionality as shown
in Figure 6.14 for the colour red. Other colours make the obvious changes. If the
camera resultant vector for the given colour is in either quadrant 1 or quadrant -1,
which is true for any of the cases in Table 6.4 except for no colour detected, the
selection is satisfied and so the ifprob node is triggered returning success with a
probability based on b. Note that we cannot specify the probability directly, but
by using a point on the logistic curve with steepness 0.25, see Figure 6.10. At this
steepness, by varying b between the possible values of −16 to 15.875 we can choose
one of 256 probability values from P = 0.018 to P = 0.981. Of course, we could use

156

neighbour(k,l)
ifprob sn, k, l ifprob sn, k, l

Figure 6.15: Subtree for neighbour and invneighbour

fixedprob(b)
ifprob szero,−0.25, b ifprob szero,−0.25, b

Figure 6.16: Subtree for fixedprob

other steepness settings to access a different range of probabilities.

6.5.4 Conditions neighbour and invneighbour

These conditions return success probabilistically, based on the number of neighbours.
They take two parameters, k, the steepness of the logistic curve, and l, the number
of neighbours to give P = 0.5. We can see that this condition can be written purely
as a specific usage of ifprob, as shown in Figure 6.15. There is also no need for
a separate invneighbour node, since this functionality can be achieved by negating
the steepness parameter k which is equivalent to inverting the probability.

6.5.5 Condition fixedprob

Finally, the fixed probability node fixedprob. Again, this is simply a specific use of
the ifprob node, as shown in Figure 6.16. As with the colour detection condition, we
use a shallow sloped logistic curve to give smoothly varying probabilities for success
based on the value of b varying over its range between −16 and 15.875.

6.6 Conclusion

In this chapter, we have shown how we have approached the problem of designing
a behaviour tree architecture, starting with a reference model for the robot which
we wish to control. This gives us a formal abstraction of the robot capabilities and
constrains the behaviours that are possible. We then define several behaviours and
conditions that we consider are useful for a robot to have, both from the swarm
robotics perspective, but also from the perspective of serving as concrete endpoints
for the design process. By keeping these design endpoints in mind, we iteratively
seek to produce a set of action nodes and blackboard registers that are capable
of elegantly expressing them. By demonstrating how these concrete endpoints can
actually be written, we feel that this design process ends up with an architecture
that is capable of expressivity and generalisation.

It is important to note that the methodology used here is by no means limited to a
2D robot, which we use because of our familiarity with both designing 2D simulators

157

and with the availability of a large number of e-puck robots that could be enhanced
into Xpucks for this work. To apply the methodology to flying drones, for example,
the reference model would obviously be different but would still present a simplified
abstraction of the real robot. The blackboard would still be used to present the
abstracted robot senses and actuators to the BT leaf nodes, and the leaf nodes would
be designed with the behavioural modalities of the drone in mind. Conceptually, the
process would be very similar, and an interesting work to undertake in the future.

158

Chapter 7

Controller transferability

A central aim of this work is to move towards the idea of an autonomous swarm.
By this, we mean a swarm of robots performing useful tasks in the real world that
is not reliant on exterior computational resources, and can potentially adapt to a
changing environment. Much conventional swarm robotics relies on the discovery of
controllers, for example by evolution, in a computationally expensive offline reality
simulation process.

In the previous two chapters, we have described the behaviour tree architecture we
will use for our swarm robotics experiments, and the design of the Xpuck robot, which
makes up the swarm of robots. We have talked about the design of the parallel robot
simulator capable of running on the robots and detail some results demonstrating
the processing power of the swarm, both for running a distributed evolutionary
algorithm, and for running a tag-tracking image processing task. In this chapter we
examine the problems of transferring automatically discovered controllers from the
simulated environment to the real world and describe the steps we have taken to
mitigate these problems.

A fundamental issue with the use of simulation in the automatic discovery of swarm
robotics controllers is the reality gap. We noted in Chapter 3 the work of Francesca
et al. [2014a] as an inspiration for the design of our behaviour tree architecture,
enabling representation of behaviours at different granularities. The question of
simulator fidelity is closely linked, the more minimal the simulator representation
of reality, the more robust to reality gap effects it is necessary for our controller
architecture to be. Finding a good balance between simulator fidelity, behaviour
representation, and evolutionary algorithm that best mitigates the reality gap prob-
lem while still providing timely production of new controllers is the central theme of
this chapter.

The structure of this chapter is as follows; firstly, we outline the collective task we

159

aim to have the swarm perform. We calibrate and validate the simulator by mak-
ing measurements of physical parameters of the robots and their behaviour, and
incorporating these into the simulator, noting problematic areas and proposing mit-
igations. The calibrated simulator together with these mitigations is then used to
evolve controllers for the task, which are transferred to the real robots. We measure
the performance against the task of the controllers in simulation and in reality, show-
ing no significant difference in performance, thus demonstrating successful mitigation
of the reality gap.

7.1 Benchmark task

We need a benchmark task for the swarm of robots that is non-trivial and has
relevance to possible real-world applications. In the field, foraging is regarded as
canonical problem [Winfield, 2009a] in that it encapsulates the solution of many
sub-problems, such as navigation, object recognition, and transport, and that it is a
direct analogue to many real-world problems, such as harvesting, pollution control,
search and rescue and many others.

There are many forms that foraging takes in swarm robotics experiments, often using
virtual resources. Our version requires the swarm to continuously move a stream of
objects in a particular direction, a collective transport task. We feel that the direct
manipulation of objects is an important part of the problem, so we use a real object,
in our case a round blue plastic frisbee. The Xpuck robots have no manipulators, so
the frisbee can only be moved with pushing actions. We define the task thus:

The blue frisbee is placed approximately in the centre of the arena, shown in Figure
7.1. The size of the arena is 2 m by 1.5 m, with the origin in the centre. The swarm
must move the frisbee in the −x direction. If the frisbee contacts either the +x or
the −x walls of the arena, at the far right and left sides respectively, the robots are
stopped in place and the frisbee relocated back to the approximate centre before the
robots are started again. The fitness of the swarm is the x component of the velocity
of the frisbee in the −x direction, normalised to the maximum Xpuck velocity and
averaged over some time period.

This task is interesting because the robots of the swarm must locate the frisbee,
move towards it, position themselves so that they are on the correct side, and then
push it towards the −x end of the arena, and continue to do this when the frisbee
is relocated back to the centre. In order that the robots of the swarm actively
pushing the frisbee are effective, there must also be little obstruction of the frisbee
by other robots. This requirement for multiple different types of sub-behaviour and
switching between them depending on the current state of the swarm and arena
makes this task non-trivial and open to different possible solutions. Many swarm

160

1. Frisbee being pushed in -x
direction, increasing fitness

2. Frisbee contacts left
arena wall, relocated to

approximate centre

3. Frisbee being pushed in +x
direction, decreasing fitness

Robots

1.5m

2m

+y

+x

-y

-x

Figure 7.1: Diagrammatic overview of the benchmark foraging task. Origin at the centre.
Within the 2m x 3m arena, the robot swarm (shown as red discs) must try and move the
frisbee (shown in blue) to the left of the arena. If the frisbee contacts the left or right walls
of the arena, it is relocated back to the approximate centre.

robotics benchmarks are quite simple. For example, Francesca et al. [2014b] pit
human designers and several automatic methods against each other with a number of
different swarm tasks, consisting of forms of aggregation, dispersal and coverage. The
most complex task is SCA - Shelter with Constrained Access, that must maximise
the aggregation of robots on a particular area which is protected by walls on three
sides, with environmental cues. Here the robots must seek the opening to the shelter,
then aggregate there. Many foraging tasks in the literature are virtual, a robot is
deemed to have picked up ‘food’ once it reaches an appropriate region and retrieved
it once it returns to a ‘nest’ region, with no physical interaction with objects [Hoff
et al. , 2013]. We argue that the requirement to find and move a real object increases
the difficulty of the task and makes it more representative of real-world applications,
such as warehousing and logistics.

7.2 Simulator physics calibration

The design of a robot simulator for use in evolutionary algorithms, or to ask what-if
questions about possible scenarios, has to balance a fundamental trade-off between
fidelity and performance - the more detail with which you simulate the real world, the
longer it will take at a constant rate of calculation. But why does fidelity matter?

161

One of the fascinating things about evolutionary algorithms and other automatic
discovery processes is the way in which solutions to the problem posed by the objec-
tive function are often unexpected and surprising. Lehman et al. [2018a,b] collate
examples of this, with one class being the exploitation of simulator bugs and edge
cases. These edge cases are the obvious corollary of a lack of simulator fidelity and
potentially represent the ability to defy the laws of physics. An evolved controller
solution that relies on this is not going to transfer well to reality.

A standard approach to lack of fidelity is to mask the deficiencies in noise [Jakobi
et al. , 1995] but how much noise is sufficient? Too much noise makes it hard for
evolution to find solutions. And the lack of fidelity is not a fixed thing - certain
aspects of the simulation will be much truer to reality than others. This implies a
possible strategy of avoiding or masking more the particularly problematic areas of
simulation if possible, by design or by modifying the objective function [Koos et al.
, 2013]. It also suggests that we can spend more of the calculation budget in certain
important areas, if we know what they are.

We therefore face a multifaceted trade-off; what our simulation representation is,
how we spend our simulation calculation budget within that representation, how
we characterise the most problematic areas of simulation, how we avoid or forbid
behaviours in those areas, how we use noise to mask infidelities. The approach we
use is as follows. Firstly, in the previous chapter, we decided upon a 2D constrained
geometry simulator as able to provide the desired raw performance, Eqn 5.3, and
detail its implementation. In this section, we calibrate the various parameters of the
simulation by measuring the real robots, and their senses, both real and virtual. We
then run identical simple controllers on both simulated and real robots, gathering
large amounts of sensor and actuator data from both in order to visualise and discover
important points of difference. Differences are addressed by modifying simulator
behaviour if that is possible without significant performance effects, or masking and
avoiding the problematic areas otherwise.

7.2.1 Simulator physical parameters

There are a number of physical parameters used in the simulation, shown on Table
7.1. These should reflect reality as closely as possible. Some are straightforward to
measure, such as mass. Others less so. We next describe each of these parameters,
and the way they can be measured. Where direct measurement is not possible, we
highlight this, and in the subsequent section describe the methodology by which we
chose suitable values.

162

Object masses

These are the masses of the Xpuck robots, and the passive object which can be
pushed by the Xpuck, in reality a blue frisbee of about 210 mm diameter. It is
obviously straightforward to measure their masses.

Table 7.1: Simulator parameters

Parameter Value Description
mxpuck 0.3 kg Mass of Xpuck
mobject 0.07 kg Mass of object
µxpuck 0.65 Coefficient of friction between Xpuck and floor
µfrisbee 0.5 Coefficient of friction between the frisbee and floor
α1 0.1 Velocity dependent position noise
α2 0.1 Angular velocity dependent angle noise
α3 0.1 Velocity dependent angle noise
µbodies 0.15 Coefficient of friction between bodies
e 0.1 Coefficient of restitution between bodies

Coefficients of friction with floor

The simulator calculates friction forces in two domains. Firstly, as a 2D physics
simulation, there are the friction forces that apply within the plane of simulation,
that is, disregarding the notion of a ‘floor’ and gravity. Objects collide, and in
the process of collision transfer momentum which may be linear or angular. The
coefficients of restitution e and friction between objects µbodies governs the process
of momentum transfer. Secondly, there is the interaction of the objects with the
arena floor. There are no collisions to resolve in this case, purely forces and torques
as a result of object velocities, wheel velocities, and normal forces due to mass and
gravity. These are governed by two coefficients µxpuck and µfrisbee.

Coefficients of friction between Xpuck and floor, and frisbee and floor were measured
with a Sauter FK50 force gauge, with a resolution of 0.02 N. A thread was attached
to the Xpuck or frisbee at the lowest possible position and the force gauge pulled
across the arena surface, pulling the Xpuck or frisbee with it. While in motion, the
reading was taken. Ten readings were taken, the top and bottom discarded, and the
remaining eight used to calculate a mean value of µ. We also measured static friction
with the Xpuck by noting the highest reading just before movement started. With
the frisbee, the mass was low enough that the force was only about ten times the
minimum resolution of the gauge, making it very difficult to get meaningful static
readings. The simulator only models a single component of friction for movement of
bodies over the arena floor, we averaged the static and dynamic measured values for
the Xpuck, giving values of µxpuck = 0.65 and µfrisbee = 0.5.

163

Coefficients of friction and restitution between objects

Measuring e, µbodies is much more complicated, and highlights an important area
of difference between the simulator and reality. The simulator is a 2D physics sim-
ulation. Interactions between bodies within the plane of the simulation, that is,
collisions between bodies, use velocity and mass, together with the coefficients of
restitution e, and friction µbodies to calculate the impulse vectors, which is then re-
solved to force and torque components. But these objects in simulation are ideal
2D circles contacting at a single point. The real robots are three dimensional, have
protrusions, rough edges, 3D printed plastic cases, and are decidedly non-ideal in
characteristics. Looking up standard values for µ for plastics suggests figures of
0.3− 0.5, but using numbers like this within the simulator results in very unrealistic
looking behaviour.

Likewise, typical values for the coefficient of restitution for plastics are quite high, in
the region of 0.8, but this is for a perfect sphere of material dropped onto a perfectly
hard surface. Using 0.8 as a value in simulation resulted in absurd collisions, which
bore no resemblance to actually observed collisions in the real world. Obviously, a
robot is not a perfect sphere of plastic, and what is actually contacting is flexible
layers of the 3D printed skirts and surrounds, which act more like compliant dampers
than pure solids.

Noise model

The simulator noise model is a simplified form of that presented in Thrun et al.
[2005]. Three coefficients, α1, α2, α3, control respectively velocity dependent position
noise, angular velocity dependent angle noise, and velocity dependent angle noise.
So position and angle are modified at each timestep:

x′ = x+ v · s(α1) (7.1)

θ′ = θ + ω · s(α2) + |v| · s(α3) (7.2)

where s(σ) is a sample from a Gaussian distribution with standard deviation σ and
mean of zero.

7.2.2 Choosing appropriate parameter values

As we have seen, there are a number of parameters for which there is no direct
measurements possible. These are the coefficients of restitution e and friction µbodies,
and the noise model parameters σ1, σ2, σ3. The approach we follow is to run the real
robots over some defined trajectory, which may include collisions, multiple times. We
use the Vicon system to accurately measure their true poses. We then construct the
same scenario in simulation and run multiple trials, and adjust the parameters until

164

Table 7.2: Measurement of coefficient of friction of Xpuck and frisbee on perspex arena
surface. High and low bracketed values discarded.

Reading Xpuck static Xpuck dynamic Frisbee
1 (2.06 N) (1.40 N) 0.30 N
2 2.06 N 1.64 N 0.34 N
3 1.78 N 1.58 N 0.38 N
4 2.06 N 1.70 N 0.32 N
5 (1.74 N) 1.72 N 0.36 N
6 1.92 N (1.80 N) (0.40 N)
7 2.00 N 1.66 N (0.28 N)
8 1.88 N 1.80 N 0.34 N
9 1.90 N 1.76 N 0.28 N
10 2.06 N 1.80 N 0.32 N

F̄ 1.96 1.71 0.33
µ = F

gm 0.67 0.58 0.5

we have achieved a good correspondence between the simulator object trajectories
and the real trajectories.

The noise of the real robots for simple movements is actually quite low, commanded
to move a fixed distance of 1 m, the standard deviation of the positional error was
8 mm in both x and y. This corresponds to α1 ≈ 0.01 and α3 ≈ 0.015. Values for
α2 were harder to measure, we make the assumption it is similar to alpha3 and thus
alpha2 ≈ 0.015. These figures represent the real noise of a single robot. In fact,
each Xpuck has a differing bias, caused by wheel diameter variations, which caused
position differences of a similar order, around 10 mm. Imperfections and dirt in the
arena contribute further to the noise over all robots. These real factors probably
contribute to at least doubling the numbers above.

We used 0.1 for all three α, representing a degree of noise masking, equivalent to
between three and five times the actual noise including inter-robot variation. Jakobi
et al. [1995] use double the measured noise but used a simulator with a higher
degree of fidelity than ours, with quite carefully modelled light sensors, for example.
The effect of noise masking is to deny the evolutionary algorithm access to areas
of difference between simulator and reality, it cannot ‘see’ them and exploit them
to produce controllers relying on unphysical behaviours, which will obviously not
transfer well. But too much noise will mean the evolutionary algorithm will not be
able to advance. The shape of the problem must still be apparent. There is obvious
scope for further work to examine the best level of masking.

The coefficient of restitution seemed to make little difference to Xpuck-frisbee colli-
sions below a value of about 0.3, but Xpuck-Xpuck collisions looked most realistic
at a lower value, so this was fixed at 0.1.

The coefficient of friction µbodies was most significant in effect. Figure 7.2 shows an

165

example collision with parameter sweep. The coloured lines show the trajectories of
the Xpuck and frisbee in real life before and during a collision, and the grey lines
show simulated trajectories with over a sweep of parameter values. In this case there
is good agreement between simulation and reality at µbodies ≈ 0.15. Other examples
are not quite so clear cut but this value seemed a reasonable compromise.

0.25 0.20 0.15 0.10 0.05 0.00 0.05 0.10
X position (m)

0.3

0.2

0.1

0.0

0.1

Y
po

sit
io

n
(m

)

0.000000

0.000000

0.040000

0.040000

0.080000

0.080000

0.120000

0.120000

0.160000

0.160000

0.200000

0.200000

0.240000
0.240000 0.280000

0.280000

0.320000

0.320000

0.360000

0.360000

0.400000

0.400000

Sweep of bodies collision 5
Xpuck
Frisbee

Figure 7.2: Example parameter sweep of a collision between Xpuck and frisbee. Coloured
lines show trajectories in reality, grey lines are simulated trajectories with different values
of the parameter µbodies the coefficient of friction between bodies.

7.2.3 Observations and mitigation

Throughout this process of hand tuning, guided by parameter sweeps, recorded real
collisions, and observation, it became obvious that collisions between objects were
the most problematic area of the simulation to model with good fidelity. This is
not a surprise, the physics is more complicated. The dynamics are more ‘three
dimensional’; consider a collision between two Xpucks, they contact at a point above
the arena floor which tends to result in each Xpuck slightly rocking back and applying
less normal force to their wheels, meaning less friction between the Xpucks and floor,
and a lower apparent friction between the Xpucks. This cannot be modelled easily
in a 2D simulator. Conversely, the collisions between an Xpuck and the frisbee are
at a physical location very close to the arena floor and are more faithfully modelled.

Given that the cost of more accurately simulated collisions is a simulator performance
impact we cannot afford, we choose instead to minimise the most problematic col-
lisions. An unconstrained evolutionary algorithm working within the simulator will
find novel solutions that exploit these infidelities. We mitigate this with a subsump-
tion controller architecture, making collision avoidance using the IR proximity sense

166

the highest priority behaviour, before the evolved behaviour. Figure 7.3 shows this.
We define a behaviour subtree called avoiding which returns success if an obstacle
in front of the Xpuck has been detected and collision avoidance is taking place. The
top of the tree only uses the evolved behaviour if avoiding returns failure.

Evolved treeavoiding

?

→

ifsect vprox, 32, 64

?

ifsect vprox,−32, 64

vgoal ← −5vprox

Figure 7.3: Implementing collision avoidance subsumption architecture. The top level tree
is shown on the left, if the ‘avoiding’ behaviour is not happening, them the evolved tree will
be executed. The ‘avoiding’ subtree is shown on the right. If there is an obstacle detected
to the front left or front right of the robot, it will move in the opposite direction to the
proximity vector.

By evaluating evolved trees within this top level tree we ensure that the ability
of the evolutionary algorithm to exploit the poorly modelled collision dynamics is
minimised and thus we reduce one of the causes of reality gap effects.

7.3 Sensor calibration

So far, we have only considered the physics aspects of the simulation, but the simu-
lator also has to run the robot controller. In this section, we look at the modelling
and conditioning of the robot sensors. Recall that we define the abstract reference
model of the robot senses, in Table 6.1. This is the basis from which we construct
the behaviour tree blackboard, Table 6.3, and action nodes, Table 6.5. It defines
how we represent the real sensor data to the controller, and also what a simulator
model of the senses has to provide. From the perspective of the robot controller, it
sees no difference between the simulator and reality, with regards to the format of
the presented sensory data.

We can see that in both the real robot and in simulation, for a given physical ar-
rangement of robots and objects within the arena, there should be an identical rep-
resentation of the senses that is presented to the controller. The methodology we
use in this section is as follows. We run real robots in various scenarios and log all
blackboard data, together with positional information from the Vicon system. We
then take this data and use it to construct many frames, consisting of the physical
locations of all objects within the arena over time, which are presented to the sim-
ulator. For each frame, we run the simulator for one timestep in order to get the
simulated senses for that frame. We then have a time series of real senses, and a

167

corresponding time series of simulated senses for identical positions. We can then
compare these two sets of data to find problematic areas.

7.3.1 IR proximity sensors

The reference model states that the eight IR proximity sensors, spaced around the
robot at a height of about 35mm above ground level, respond with 0 when there
is no object within range, and 1 when there is an object immediately adjacent to
the sensor. As described in Section 5.3.1 within the simulator these are modelled by
casting a ray from the sensor position out to the maximum sensor range and using
a fast approximation to get any intersection distance with other objects.

The real sensors have an IR emitter and an IR detector. By measuring the detected
level of IR with the emitter both turned off and turned on, the contribution due to
IR reflection can be estimated. The level of detected IR reflection is dependent on
the distance to the object, but also on the angle, and the materials of the object. The
behaviour with distance is highly non-linear and approximates inverse fourth power,
as with radar. In order to derive a reasonable transformation from this raw data
to the desired real-valued distance range of [0, 1] we measured the response rsensor
(ADC counts) of eight different sensors to plain white card at multiple distances
rdistance in metres.

The raw data all had similar characteristics as distance increased, with an initial
slow drop until a threshold distance, beyond which the signal fell sharply, flattening
out towards zero. We aligned all the curves with distance and value offsets, and a
scaling factor, then found a best fit curve with two regions. Figure 7.4 shows the
aligned curves, with a fitted idealisation.

The fitted curve takes the form:

rsensor = 3500 ·

(40rdistance + 0.7)−4 − 0.06 if rdistance > 0.007 m

−5rdistance + 1.04 otherwise
(7.3)

Real sensor data was conditioned by creating an eight entry table populated from
this fitted curve and using this to perform piecewise-linear interpolation of the raw
sensor data to give a linear distance measurement. This was converted to the required
[0, 1] range.

7.3.2 Camera

The camera sense divides the field of view into three segments, each one third of the
width of the frame. Within each segment, we may detect red, green, or blue. The
arena floor and walls are white, the only coloured items are the red Xpuck skirts,
the blue frisbee, and potentially green coloured items affixed to the walls. The real

168

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Distance rdistance (m)

0

500

1000

1500

2000

2500

3000

3500

4000

S
e
n
so

r
re

a
d
in

g
 r
se
n
so
r
(A

D
C

 c
o
u
n
ts

)

Cleaned data from E-puck IR proximity sensors

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Sensor 5
Sensor 6
Sensor 7
Sensor 8
Fitted

Figure 7.4: IR proximity sensor data, scaled and shifted to align, with the fitted curve.

camera feed is processed by classifying pixels as red, green, or blue if they fit within
defined regions of the HSV colourspace, shown in Table 7.3, then checking if the
proportion of pixels within a segment exceeds a threshold.

Table 7.3: Colour regions within HSV colourspace used to classify pixels

Colour Hue Saturation Value
Red [320◦, 20◦] [0.4, 1.0] [0.4, 1.0]
Green [80◦, 160◦] [0.4, 1.0] [0.4, 1.0]
Blue [180◦, 260◦] [0.2, 1.0] [0.4, 1.0]

Initial experiments suggested that the range of the camera for detecting coloured
blobs was limited. This was due to setting a detection threshold of 5%, which
was necessary to eliminate false positives when the visual background was cluttered.
Within the controlled environment of the arena, we were able to reduce the detection
threshold to 0.2%, equivalent to 50 pixels at a resolution of 320 × 240. This made
it possible for an Xpuck to reliably detect the frisbee from the opposite end of the
arena.

We were also concerned that the detection ability would be adversely affected by the
angular velocity of the Xpucks. Four Xpucks were placed in the arena, together with
the blue frisbee. The Xpucks were at distances varying from 0.5 m to 1.8 m from the
frisbee. Each Xpuck was commanded to rotate at ten different angular velocities of
10%, 20% etc up to 100% of the maximum angular velocity of about 3.5 radians/s.

169

Camera blob detection data was captured, along with Vicon ground truth data, and
simulated senses calculated as described above. The length of the vector difference
between real blackboard vector vblue and the simulated version was measured for
each controller update cycle. Only measurements taken when the angular velocity
was stable were used. There were a total of 1357 measurements. Table 6.4 shows
the possible values of a camera vector. The maximum length of a vector difference
between any of the possible values is 2.95. The length of difference between the
simulated vblue and the real one can be regarded as a measure of the camera sense
reality gap:

rgap =
|vblue_sim − vblue_real|

2.95
(7.4)

We plot the normalised vector difference length rgap against the angular velocity for
each of the measurement points.

 0.3 0.7 1.0 1.4 1.7 2.0 2.4 2.7 3.1 3.4
Angular velocity (rad/s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Re
al

ity
 g

ap
 (n

or
m

al
ise

d
ve

ct
or

 d
iff

er
en

ce
 le

ng
th

)

Frisbee detection reality gap at different angular velocities

Figure 7.5: Camera frisbee detection reality gap at different angular velocities. Each point
is a single measurement of the difference between the simulated and real values of vblue, nor-
malised to the maximum possible difference, at a particular angular velocity. Measurements
are binned to the nominal angular velocity to give the boxplots. In general, real detection
accuracy falls as angular velocity increases.

Figure 7.5 shows the results. Generally, as the angular velocity increases, the reality
gap increases too, but remains below 10% on average. It is worth considering what
the reality gap consists of in this case. The simulator camera sense is perfect, it
does not model pixels and thresholds but directly uses the geometry to calculate if
a coloured object is visible within a segment of the camera. The real camera has

170

processing latency, shearing effects from lateral movement1, and blurring. All of these
factors increase the error with increasing robot angular velocity, when compared to
a perfect camera.

7.3.3 Virtual Senses

The virtual senses of range-and-bearing, giving the blackboard registers of vattr and
sn, and the compass, giving vup, are both derived from the Vicon motion tracking
system. This has a latency of a certain number of frames, and in addition there is
other overhead in the packet exchange with the robots. In order to quantify this, we
set up an experiment where a robot would execute a behaviour tree that would move
forward and pause every few seconds. All sensor and actuator data is timestamped
and logged.

Figure 7.6 shows once of the pauses. We can clearly see the latency effect, about five
or six telemetry ticks between a change in commanded velocity and the Vicon system
registering the change. This amounts to about 200 ms latency for these senses.

480 490 500 510 520 530 540 550
Telemetry update ticks (40 ms)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

X
ve

lo
cit

y,
 m

s
1

Latency of velocity measurements due to Vicon
Commanded x velocity
Measured x velocity

Figure 7.6: Time delay between commanded velocity change and the Vicon tracking re-
ported velocity.

As noted earlier, in the design of the simulator we perform range-and-bearing cal-
culations only every other controller update of 100 ms for reasons of computational

1The camera uses a rolling shutter, so the time of exposure of a pixel depends on the vertical
position of the pixel within the frame.

171

complexity. This is not exactly the same as the Vicon latency since the delay will
vary from control step to step but it is similar.

7.4 Testing controller transferability

A major step towards full on-board evolutionary experiments is the evolution of
controllers in simulation that transfer well to a swarm of real robots, demonstrating
similar performance. In other words, with a low reality gap. In this section, we take
the benchmark task outlined above and evolve a controller to perform this task using
the simulator with calibrations and mitigations as described above. We then transfer
the controller to the swarm of Xpucks and measure their fitness in reality.

7.4.1 Detailed task

The task is broadly as described in Section 7.1. Nine robots are used. The arena is
2 m x 1.5 m surrounded with 180 mm high walls, with the origin at the centre of the
arena. The robots are placed with random pose at least 100 mm from any others in
the region bounded by x ∈ [−0.5 m,−0.9 m] and y ∈ [−0.5 m, 0.5 m]. A blue frisbee
of 210 mm diameter is placed randomly in the region bounded x ∈ [0.8 m, 0 m] and
y ∈ [−0.2 m, 0.2 m]. The task for the swarm to move the frisbee as far in the −x
direction of the arena as possible from its starting point within 1 minute. The fitness
is expressed as a normalised velocity:

fraw = −xfinish − xstart
tsimvmax

(7.5)

and can range from [−1, 1].

For the purpose of the evolutionary algorithm, we make two modifications to the
raw fitness. Firstly, we penalise solutions that fail to move the frisbee at all. If the
start and finish positions are identical, we subtract 1 from the raw fitness. The value
was chosen arbitrarily to be greater than any possible negative fitness value from
movement of the frisbee. This was motivated by the observation that any movement
of the frisbee at all, even in the wrong direction is a prerequisite for a proto-solution;
if the robots move randomly we have a better controller than if the robots are static.

Secondly, the fitness value is derated by factor rderate based on the resource usage,
or parsimony of the controller. Parsimony rparsimony is the proportion of the total

172

available memory space that is not occupied by the behaviour tree:

kpenalty =

1 if xfinish = xstart

0 otherwise

rderate =

2rparsimony if rparsimony < 0.5

1 otherwise

fevo = rderate · (fraw − kpenalty) (7.6)

Once the free space falls below 50%, the fitness is reduced, reaching zero when all
memory is occupied. This has the effect of controlling bloat within the evolution of
the behaviour tree, an important issue within Genetic Programming [Koza, 1994].

7.4.2 Behaviour tree nodes and allowed parameters

It is important for the purpose of thinking about applying evolutionary methods
to behaviour trees to separate behaviour tree nodes and subtrees into different sets.
Genetic Programming, when creating new trees or mutating existing trees must have
a set of inner nodes and a set of leaf nodes from which it can choose. The inner nodes
are some subset of the composition nodes C ′ ⊂ C shown in Table 3.1. The leaf nodes
are some subset of the base action nodes A shown in Table 6.5, but we may also define
a set of subtrees T that can be used by the evolutionary algorithm as if they were
leaf nodes. This is possible because of the modularity of behaviour trees. So the leaf
nodes are given by L ⊂ A ∪ T .

As well as the sets of allowable inner and leaf nodes, the evolutionary algorithm
requires a set of allowed ranges for all possible parameters within these nodes. These
can be divided into blackboard registers that are sources, registers that are destina-
tions, and various types of integer, fixed point, and floating point constants.

The complete set of standard composition nodes described in Table 3.1 are used,
with fixed arities of 2, 3, and 4 for the seq* and sel* types. Table 7.4 shows the
action nodes and subtrees we make available to the evolutionary algorithm. The
action nodes are as outlined in Table 6.5 except for the nodes rotav, which was not
implemented at the time of this experiment, and ifquad, since ifsect provides the
same functionality in a more flexible way.

We use all the subtrees defined in Section 6.5 (explore, upfield, attract, neighbour,
fixedprob) with the addition of avoiding, described above, and bleft, bright, and
bfront. These are very simple subtrees that are special cases of ifsect, using the
blackboard register vblue. They return success if there is a blue object within the
left, right, or central field of view of the camera, corresponding to the possible vblue
vector angles of 18.7, 9.35◦ for left, 0◦ for centre, and −9.35,−18.7◦ for right. The

173

sector locations and widths shown in Table 7.4 classify these vectors. The motivation
for this is that since the task involves moving a blue frisbee, by providing these spe-
cific cases of ifsect we can narrow the search space of the evolutionary algorithm
and speed evolution.

Note: While documenting bleft and bright we discovered that we had in fact
specified the sector width for the special case ifsect nodes incorrectly as ∠81◦

rather than ∠162◦. This means that both bleft and bright will only ever return
failure.

Table 7.4: Action nodes and subtrees used for transferability experiment. Notation S ≡
success, F ≡ failure, r maximum number of timesteps turning, g strength of movement
towards or away from +x or neighbours, k and l steepness and location of logistic curve.

Node Parameters Description
movcs d, i Set scalar to constant
movcv d, i Set vector to constant
mulas d, s1, f, s2 Multiply and add scalar
mulav d, s1, f, s2 Multiply and add vector
ifprob s1, k, l S wth probability based on operands
ifsect s1, i, j S if vector in sector
successl S always
failurel F always
Subtree
explore r Move forward until obstacle, then turn randomly < r
upfield g Move in +x or −x direction
attract g Move towards or away from other Xpucks
neighbour k, l S with probability based on number of neighbours
fixedprob k S with fixed probability
avoiding S if proximity collision avoiding
bleft S if blue in left of camera FOV

ifsect vblue,∠90◦,∠162◦

bright S if blue in right of camera FOV
ifsect vblue,∠− 90◦,∠162◦

bfront S if blue in centre of camera FOV
ifsect vblue,∠0◦,∠8◦

The allowed parameter ranges are shown in Table 7.5. We don’t allow the evolu-
tionary algorithm to generate nodes that write to read-only blackboard registers,
although this would have no effect except to increase the search space. The restric-
tion of the floating point range deserves a little further consideration. The complete
range of a 32-bit floating point number is (−3.4 × 1038, 3.4 × 1038). This is huge,
and much of this range will produce useless outputs, in the sense that the veloc-
ity goal vector saturates at length 1. In addition, by allowing unrestricted ranges,
the multiplies in mulas and mulav readily result in infinities and NaNs, which tend

174

to propagate through further calculations2. If these reach the physics computation
part of the simulation, it not longer functions correctly. We adopted a two-fold ap-
proach to this problem, firstly restricting the range of floating point values allowed
as parameters. This in itself does not stop infinities or NaNs within the controller,
so secondly, we check and enforce that the controller outputs of motor velocity are
sensible, replacing infinities and NaNs with zeros so that the physics simulation does
not explode.

Table 7.5: The allowed ranges for parameters within the evolutionary algorithm. B is the
set of all blackboard registers

Parameter Range Description
d {zero,vgoal, sscr,vscr} Destination registers. Only zero, the goal

vector and the scratchpads
s1, s2 B Source registers. All registers
i, j [−128..127] 8-bit signed integer constant, all values

valid
k, l [−128..127]

8 5.3 signed fixed point, all values valid,
equivalent to [−16, 15.875]

r [1..100] 8-bit integer, restricted range, for repeat*
f [−32.0, 32.0] 32 bit floating point, restricted range
g [−5.0, 5.0] 32 bit floating point, restricted range, for

attraction/repulsion strength

7.4.3 Evolutionary algorithm

The evolutionary algorithm proceeds in the following way using the parameters in
Table 7.6. A random population of size npop is created using the Koza’s Ramped
half-and-half procedure [Poli et al. , 2008], shown in Algorithm 11, with a maximum
tree depth of ndepth. The fitness of the population is measured in simulation with
a simulated time of tsim. Multiple evaluations neval carried out on each individual,
with different starting conditions and the average of the modified fitness function
fevo given in Equation 7.4.1 is used.

A new population of individuals is then formed from this population; the fittest nelite
individuals are transferred across unchanged. The remaining individuals in the new
population are created by using standard tournament selection of size ntsize to select
two parents which are combined with a tree crossover operation biassed to choose
inner node crossover points at probability p = 0.9 [Koza, 1992]. These individuals
then undergo parameter mutation with p = pmutparam for each parameter in the tree.
This is followed by point mutation over all nodes, which with p = pmutpoint may
replace a node with another of the same arity. Then follows subtree mutation, which
with p = pmutsubtree per individual may replace a randomly chosen node biassed to

2IEEE754 standard for floating point has rules for how Not a Number and infinity propagate;
any operation with a NaN yields a NaN, and various operations involving infinities produce a NaN.

175

inner nodes with p = 0.9, with a new random subtree generated using full with a
depth randomly chosen up to a maximum of ndepth.

Table 7.6: Evolutionary algorithm parameters

Parameter Value Description
npop 64 Population
ngen 1000 Generations
neval 8 Evaluations
nelite 3 Number of elite
ntsize 3 Tournament size
ndepth 4 Tree depth
tsim 60 s Simulated time
pmutparam 0.05 Probability of parameter mutation
pmutpoint 0.05 Probability a node may be replaced by a node of the same

arity
pmutsubtree 0.1 Probability an individual may have a node replaced by a

new subtree

This new population replaces the original population and the process repeats for
ngen generations. At each generation only the non-elite individuals are re-evaluated,
the elites keep their previously measured fitness.

The choice of parameter values was initially guided by Poli et al. [2008] and the
parameters that worked in Chapter4, but several changes were made based on ex-
perience. Mutation was simplified to just three operators, with parameter and node
mutation changed to a fixed rate per node, rather than probability per tree, but with
values roughly equivalent to those in Table 4.3 for a ten node tree. Population was
increased to 64, more typical in the literature, and number of evaluations reduced to
8, these numbers based on the parallel simulator having highest performance with
power-of-two numbers of evaluations of at least 256. We ran some trials varying
the mutation rates by factors of two in each direction with little observed change in
evolutionary trajectory so left them at the values shown. Varying initial tree depth
below four resulted in slower progress and lower fitness, above seemed to make little
difference.

This evolutionary algorithm was run ten times with different random seeds. Table
7.7 shows the fitness and the parsimony of the fittest individual of each run, together
with the average fitness of the entire population.

7.4.4 Transfer to reality

The fittest controller from Run 7, with a fitness of 0.10, was measured using 500
simulations with different starting conditions. It was then transferred to the swarm
of real robots and run 20 times.

For each real run, the robots were positioned to the left of the x = −0.7 line and the

176

Algorithm 11 Ramped half-and-half. Use both full and grow methods to generate
a population of p of individuals with a maximum depth varying from 0 to d − 1.
The depth of a node is the number of edges traversed to reach it. C is the set of
composition nodes, A is the set of action nodes.
1: function RampedHalfAndHalf(p,d)
2: for i← 0 to int(p/2)− 1 do
3: depth ← int(2 ∗ i ∗ d/p)
4: pop[2 ∗ i] ← Full(depth)
5: pop[2 ∗ i+ 1] ← Grow(depth)
6: return pop

7: function Full(d)
8: if d = 0 then
9: node ← choose_random_element(A)

10: else
11: inner ← choose_random_element(C)
12: for i← 1 to arity(inner) do
13: arg.i ← Full(d− 1)
14: node ← (inner, arg.1, arg.2, ..)

15: return node
16: function Grow(d)
17: if d = 0 or rand() < |A|

|A|+|C| then
18: node ← choose_random_element(A)
19: else
20: inner ← choose_random_element(C)
21: for i← 1 to arity(inner) do
22: arg.i ← Grow(d− 1)
23: node ← (inner, arg.1, arg.2, ..)

24: return node

frisbee placed in the right hand half of the arena, with x > 0.2. The experiment was
started, and data was collected for 60 seconds starting at the point the robots start
to execute their behaviour tree controllers.

The data collected was analysed by capturing the position of the frisbee at the
time that controller execution started, and again 60 seconds later. Two runs were
discarded due to battery failure during the run. Table 7.8 summarises the real robot
runs, showing the start and finish positions of the frisbee and the fitness of the
swarm. It is worth noting that in two of the runs, 9 and 15, the end position of
the frisbee is at −0.88 m. Given the radius of the frisbee, this is its maximum −x
location, suggesting that the fitness of these two runs could potentially have been
higher if the arena was longer or the start position more negative. Examining these
runs further, in Run 9 the frisbee reached the arena boundary at 57 s and in Run 15
at 39 s, implying that we have reached a ceiling in performance and that the fitness
function needs to modified to account for this. We revisit this in the next chapter.

177

Table 7.7: Results of ten evolutionary runs, showing the fitness and parsimony of the fittest
individual, together with the mean fitness of the entire population.

Run Fitness Mean fitness Parsimony
1 0.069 0.009 0.933
2 0.049 -0.001 0.555
3 0.068 0.007 0.838
4 0.057 0.008 0.963
5 0.068 0.001 0.925
6 0.081 0.006 0.873
7 0.100 0.020 0.798
8 0.044 0.009 0.883
9 0.049 0.007 0.704
10 0.089 0.003 0.501

0 200 400 600 800 1000
Generation

0.00

0.02

0.04

0.06

0.08

0.10

Fi
tn

es
s (

no
rm

al
ise

d
to

 m
ax

im
um

 X
pu

ck
 v

el
oc

ity
)

Fittest individual over 10 evolutionary runs

Figure 7.7: Evolutionary trajectory over ten runs, showing the fittest individual in each
population. Blue line highlights the final fittest individual and the one transferred to the
real robots.

In Figure 7.8 we show the results of simulating the fittest controller 500 times, and
the results of running the same controller in real robots 18 times. We can see that
the controller has transferred well from simulation to reality, with no significant loss
in performance. This is also shown using independent two sample t-test; the null
hypothesis of identical fitness cannot be rejected, p = 0.36.

7.4.5 Conclusion

In this chapter, we discuss controller transferability, or how to minimise the reality
gap.

178

1 2

0.00

0.05

0.10

0.15

0.20

Fi
tn

es
s (

no
rm

al
ise

d
to

 m
ax

im
um

 X
pu

ck
 v

el
oc

ity
)

Simulation (500 trials) vs reality (18 trials)

Figure 7.8: Fitness of fittest controller in simulation (500 trials) versus in reality (18 trials).
There is no significant difference in controller performance.

In order to achieve this, we used multiple methods. Firstly, following Francesca et al.
[2014a], we designed the behaviour tree architecture with a coarser granularity of
possible behaviours than might exist with a neutral network controller. Reducing
the representational power of the controller reduces the freedom of the automatic
design process to exploit infidelities in the simulation. We also carefully tuned the
simulator such that differences between it and reality were minimised as much as
possible. We added noise to the simulation to mask infidelities. Finally, for the par-
ticularly problematic area of modelling collisions, we used the hierarchical structure
of behaviour trees to impose collision avoidance as a default high priority behaviour,
minimising time spent in these hard-to-model areas.

The results show that we have achieved a system which is capable of evolving con-
trollers that then transfer successfully to the swarm of real robots, with no significant
reality gap.

179

Table 7.8: Results from runs on real robots, showing the start and finish position of
the frisbee, the distance moved and subsequent fitness. 20 runs were conducted, two were
discarded due to battery failure during the run. Simulation mean and standard deviation
also shown.

Run Start (x) Finish (x) Distance Fitness
1 0.638 -0.166 0.804 0.103
2 0.394 -0.109 0.502 0.064
3 0.469 -0.517 0.986 0.126
4 0.509 0.358 0.151 0.019
5 0.513 -0.588 1.101 0.141
6 0.458 -0.484 0.941 0.121
7 0.463 -0.698 1.161 0.149
8 0.692 -0.360 1.052 0.135
9 0.574 -0.884 1.458 0.187
10 0.430 -0.787 1.217 0.156
11 0.534 -0.650 1.185 0.152
12 0.562 -0.003 0.566 0.073
13 0.701 -0.357 1.058 0.136
14 0.295 -0.059 0.353 0.045
15 0.528 -0.881 1.409 0.181
16 0.559 -0.810 1.369 0.176
17 0.537 -0.015 0.552 0.071
18 0.590 -0.285 0.875 0.112

x̄ 0.119
σ 0.047
Simulation x̄ 0.129
Simulation σ 0.046

180

Chapter 8

In-swarm evolution

This chapter contains work that was published as Onboard Evolution of Understand-
able Swarm Behaviors in Advanced Intelligent Systems [Jones et al. , 2019].

A central aim of this work is to move towards the idea of an autonomous swarm. By
this, we mean a swarm of robots performing useful tasks in the real world that is not
reliant on exterior computational resources, and can potentially adapt to a changing
environment. Much conventional swarm robotics relies on the discovery of controllers,
for example by evolution, in a computationally expensive offline reality simulation
process. We now move this offline process into the swarm, taking advantage of the
processing power available in the Xpuck robot platform, and create a swarm system
capable of generating a variety of complex behaviours autonomously and rapidly,
with no external computing resources.

In the previous chapters, we have described the behaviour tree architecture we will
use for our swarm robotics experiments, and the design of the Xpuck robot, which
makes up the swarm of robots. We have talked about the design of the parallel robot
simulator capable of running on the robots and detailed some results demonstrating
the processing power of the swarm, both for running a distributed evolutionary algo-
rithm, and for running a tag-tracking image processing task. We then looked at the
reality gap and methods to overcome it, calibrating the simulator and mitigating ar-
eas of low fidelity to achieve good transference of evolved controllers from simulation
to reality.

In this chapter we describe a system consisting of a swarm of Xpucks that is capable
of evolving successively fitter controllers in simulation within the swarm that then
run on the real robots for their collective transport task. Over the course of 15
minutes the swarm goes from having zero fitness to performing effectively in the real
world. We then demonstrate one of the advantages of behaviour trees as a control
architecture, that of human readability, by analysing some of the evolved trees,

181

explaining how they work, and modifying them for performance improvements.

The structure of this chapter is as follows; firstly, we outline the collective task we aim
to have the swarm perform. Since evolutionary algorithms are critically dependent
on simulator speed, we look at possible alternatives to the conventional approaches
used in the presence of noisy fitness functions, and devise a modified evolutionary
algorithm that more effectively uses the available simulation budget. We next de-
scribe the incorporation of this modified algorithm into a distributed island model
evolutionary algorithm, running on the robots of the swarm. The performance of
this in-swarm evolutionary approach is evaluated, with successive controllers evolved
in simulation being instantiated to run the real robots. Particular behaviour trees
are analysed for understanding, and the implications of the heterogeneous swarm
controllers is examined.

8.1 Benchmark task

The benchmark task is as described in the previous chapter, in Section 7.1.

8.2 Evolution with a noisy objective function

A major difficulty with evolving controllers for swarm robotics tasks are the twin
problems of robustness and noise. Consider the scenario above, where the task is to
move the frisbee to the −x end of the arena. The objective function is noisy, in that
slightly different starting conditions may result in quite different distances moved by
the frisbee. The standard approach to combat this during the evolutionary process is
by averaging over multiple simulation runs with different starting conditions, which
we do. But a related issue is robustness; a robust controller solution will produce
similar fitnesses over different starting conditions. This motivates some measure to
grade the quality of the solution based on the variance of fitness, for example. But
what if the solutions with high variability contain useful proto-behaviour that we do
not wish to see prematurely optimised out of the population?

Observing many evolutionary runs, an early type of controller which produces non-
zero fitnesses (both positive and negative) , and thus bootstraps into a regime where
selection pressure can lead to better solutions, is simply to move forward. Combined
with the default collision avoidance (sel2 avoiding) master tree, this inevitably
leads to an xpuck eventually colliding with the frisbee and moving it, either in the
+x or −x direction. These simple controllers show very high variability in fitness,
but it is a prerequisite of any fitter controller that it does indeed move the robots.

At later stages, when fitter controllers have evolved, high variability seems to denote
an overfitted controller; if the starting conditions are just right, we might get very

182

performant behaviour, but the response to environmental perturbations is poor.

It would seem, then, that a modified evolutionary algorithm that was robust to noise
and aware of variability may make better use of the available simulation budget. Jin
& Branke [2005] survey approaches to the problem of evolution in uncertain environ-
ments. They divide uncertainty into four areas, noisy fitness functions, robustness
of solutions1, fitness approximation, and time-varying fitness functions. Clearly, we
have a noisy fitness function, it is non-deterministic due to environmental noise and
also depends on the starting conditions. But we are also using a fitness approxi-
mation; the true fitness function is that evaluated on the real swarm of robots, the
fitness in simulation is an approximation that we use because it is much cheaper to
evaluate than the impractical case of running millions of real robot experiments.

Common approaches to noisy fitness use explicit averaging, as we do in Chapters 4
and 7, increased population size, consideration of variance as an objective, modifica-
tions to the selection process to consider the effects of noise. We take inspiration from
these, considering the particular characteristics of the simulator, which performs at
its fastest when executing many (at least 256) simulations in parallel.

8.2.1 Comparison

The standard approach in evolutionary swarm robotics to dealing with the noisiness
of the fitness function is to conduct multiple fitness evaluations of each individual in
the solution population and taking the mean. But is this the best use of the simu-
lation budget? Note that we use powers-of-two for repeats and population numbers
because the parallel simulator described elsewhere runs most efficiently in this way.
We compare two approaches using the benchmark problem fitness function which
both use the same number of simulations, ntotsim = 153600, in total.

8.2.2 Modified evolutionary algorithm

The motivation for this algorithm was to increase the population as much as pos-
sible such that noise in the fitness function was implicitly averaged [Jin & Branke,
2005]. But to avoid potentially useful individuals being prematurely removed from
the population due to a single poor evaluation, we reduce the replacement ratio to
about 20% compared to the 95% for the old algorithm. This allows the accumula-
tion of multiple fitness evaluations, increasing the confidence of the measure. We
also introduce a modified tournament selector that is variance-aware.

We use the parameters in Table 8.1. The algorithm proceeds as follows. An initial
population is created using Ramped half-and-half with a depth of ndepth. The fitness
of the entire population is evaluated once and sorted. To form the new population,

1This is a different usage of robustness than above, applying to perturbations of the solution,
rather than the environment.

183

the top relite · npop = 64 are copied across untouched. The remaining individuals are
either copied across unchanged, or with probability preplace = 0.25 replaced with an
individual generated either by crossover using a modified tournament selector from
two elite parents with probability pxover followed by the three mutation operators,
or by a freshly generated individual. So, on average, the new population will have
25% elites, 56% non-elite but unchanged, 9.4% crossover and mutation, and 9.4%
newly generated.

The fitness of the entire population is now evaluated. Many of these individuals will
be unchanged from the previous generation, 81% in fact. We track the number of
times an individual has been evaluated and maintain statistics of average fitness and
variance over those multiple evaluations.

As the algorithm starts, the fittest individuals sometimes have only a single or a few
evaluations, their high fitness due to chance in the noisy evaluation process, but as
the algorithm proceeds, individuals with multiple evaluations and high average fitness
tend to dominate. For a fair comparison with the old algorithm, when reporting the
fittest individual within a generation, if the number of accumulated evaluations is
below the old algorithm neval = 8 we scale the fitness by

f ′ = f · number_of_evaluations
neval

(8.1)

The modified tournament selector uses instead of the average fitness, the 95% likeli-
hood fitness, or if there is only one fitness evaluation of an individual chosen for the
tournament, we halve the fitness. This exerts some selection pressure towards lower
variability fit individuals.

The values of parameters for the comparison between the old and new algorithms
are kept the same where this makes sense, for example the mutation, depth, and
tournament size, and the values chosen are broadly what was used for the experiments
in Chapter 7. As noted, population, evaluations and generations are kept to the
same total simulation budget for a fair comparison. The values for the three new
parameters relite, preplace, and pxover were chosen to ensure the replacement ratio
was quite low and an average individual will accumulate at least several fitness
evaluations.

We conducted ten evolutionary runs of each algorithm, with different starting seeds.
Figure 8.1 shows the mean fitness across the ten runs for each algorithm. Because the
new algorithm uses half as many simulations per generation, we show simulations
as the x-axis for a fair comparison, since we want higher performance, and each
simulation is approximately constant time. The new algorithm clearly performs

184

Table 8.1: Evolutionary algorithm comparison parameters

Parameter Old New Description
ntotsim 153600 Total simulation budget
tsim 30 s Simulated time
npop 64 256 Population
neval 8 1 Evaluations per generation
ngen 300 600 Generations
relite 0.25 Ratio of elite
nelite 3 (64)1 Number of elite
preplace 0.25 Probability of non-elite replacement
pxover 0.5 Probability of replacement by crossover
ntsize 3 Tournament size
ndepth 6 Tree depth
pmutparam 0.05 Probability of parameter mutation
pmutpoint 0.05 Probability a node may be replaced by a node of the

same arity
pmutsubtree 0.05 Probability an individual may have a node replaced

by a new subtree
1Controlled by relite

better in this case, reaching the same fitness faster, with a higher final mean fitness
across the runs after the complete simulation budget is used.

8.3 In-swarm evolution

We now have most of the necessary components to perform in-swarm evolution. We
have a swarm of Xpuck robots, together with a simulator capable of running on
the robot, using the GPU for performance acceleration. We have an evolutionary
algorithm that can use the simulator to evolve controllers that transfer effectively to
the real robots.

In this section, we describe how we turn the evolutionary algorithm into a distributed
Island Model algorithm that runs on the whole swarm of nine Xpucks, previously
touched on in Chapter 5. We use the island model in order that each robot can have
a separate population, loosely coupled by limited migration of individuals between
these separate populations. We then describe the experimental setup and protocol
whereby the swarm evolves controllers in simulation in a distributed fashion, and
periodically instantiates fit controllers to run the real robots. We modify the fitness
function to better deal with the boundary conditions of the ends of the arena, to
allow longer continuous runs to have meaningful measures of performance. By these
means, after a short period of time (within 15 minutes) the real swarm has often
evolved to perform well in the required task, with no external computation required.

A large variety of different evolved behaviours are observed. We examine some of

185

0 20000 40000 60000 80000 100000 120000 140000 160000
Simulations

0.00

0.05

0.10

0.15

0.20

Fi
tn

es
s

Old vs new evolutionary algorithm
alg1_old
alg2_256

Figure 8.1: Old vs new evolutionary algorithm. In each case, ten evolutionary runs were
conducted, with different starting seeds, plotting the mean of the fittest individuals in each
of the ten runs. The old algorithm used a population of 64, with 8 evaluations per generation
over 300 generations. The new algorithm used a population of 256 over 600 generations. In
each case, the total number of simulations was identical.

the evolved controllers, using analysis techniques outlined in Chapter 3 and consider
questions arising from the Island Model algorithm, such as the impact of heterogene-
ity on the swarm performance.

8.3.1 Island Model evolutionary algorithm

An Island Model evolutionary algorithm takes inspiration from theoretical biology
[Wright, 1943] and investigations into the trajectory of natural evolution on islands,
say, in the Pacific [Benzie & Williams, 1997]. Each island hosts a population of
evolving individuals with its own evolutionary trajectory. In addition, there is some
degree of interchange of genetic material between the island, a migration rate. The
separation into sub-populations can result in higher performance than a single pan-
mictic population of the same size due to niching effects and the maintenance of
diversity [Whitley et al. , 1997]. In addition, by separating the total population
into sub-populations with only a small amount of communication between then, we
enable coarse-grained parallelism.

By hosting a sub-population on each Xpuck robot, we achieve scalable parallelism

186

of the evolutionary algorithm; as the size of the swarm increases, so does the size of
population hosted and thus performance.

We use the modified evolutionary algorithm with a population npop = 256. This
is converted into an Island Model form in the following way. Within the Hub PC
that logs experimental data and constructs the virtual senses based on the Vicon
tracking data, we run a program called the geneserver. This mediates the migration
of individuals between islands, or Xpucks. We can construct whatever connection
topology we desire using the geneserver, for example physically based, so that indi-
viduals can only migrate between closely located Xpucks. For these runs, we use a
fully connected topology so migration can occur between any two Xpucks.

GPGPU
Simulation

Select
Mutate

Combine

1
2

253

251

248

250
249

252

256
255
254

 Sort
1
2

256
255

Real robot control

Every 2
minutes

Broadcast fittest individual
to other robots

Receive 8 fit individuals
from other robots

New
population

9 robots

Figure 8.2: Illustration of the island model algorithm. A population of 256 individuals
is maintained on each of the nine robots. This is evaluated for fitness in simulation and
sorted. The fittest individual is broadcast, and the least fit eight individuals are replaced
by fit individuals received from other robots. This population is then used to create a
new population by selection, mutation, and combination. Every two minutes, the fittest
individual is copied to take control of the real robot.

Once the experimental run has started, each Xpuck is running its own evolutionary
algorithm. After each generation has been tested for fitness and sorted, the Xpuck
broadcasts its fittest individual. This is the fittest individual with neval = 8 within
the top half of the elite, or failing that, with neval = 7 and so on until a fittest
has been found. This individual is kept within the geneserver. In return, from the
geneserver, it receives eight fit individuals from the other Xpucks, which are used to
replace the eight least fit individuals in its sub-population. This process of broadcast
and replacement occurs just before the next generation is generated. In order that
the process does not fluctuate too rapidly, the geneserver maintains a list of the

187

eight most recently broadcast individuals from each Xpuck, and it is from these lists,
excluding the originator, that the migrating eight fittest individuals are selected.
Thus, the inward migration to an Xpuck will not necessarily contain individuals
from all the other Xpucks. The complete cycle is illustrated in Figure 8.2.

The total population over the swarm is 9 × npop = 2304. The migration rate is the
proportion of the individuals in the population that are replaced by migration each
generation:

rmigration =
8

npop
(8.2)

= 0.031

It should be noted that the process is asynchronous, each node or island broadcasts
and receives individuals at the rate at which it completes generations, they do not
run in lockstep. Also should be noted that migration does not remove individuals
from their source, but instead copies them. This is common in implementations of
Island Model evolutionary algorithms.

8.3.2 Fitness function

The fitness function encodes the benchmark foraging task, given in Section 8.1. In
some of the earlier sections, we have referred to the task of the swarm pushing the
blue frisbee in the −x direction. For initial experiments and development of the
evolutionary algorithms, what happened if or when the frisbee reached the border of
the arena was not considered. In Section 7.4.4, this actually occurred in two of the
18 real-life runs.

The benchmark describes that if the frisbee reaches either the +x or −x boundary of
the arena, i.e. the far right or left walls respectively, the robots will be temporarily
halted2 and the frisbee relocated to approximately the middle of the arena, before
restarting the robots. The accumulated distance moved, not counting relocations, is
used to calculate a normalised frisbee velocity.

Measuring fitness in this way means it is not dependent on the length of time the sim-
ulation or real experiment runs for, so fitnesses can be compared. But more impor-
tantly, we want to run long-lasting experiments, certainly longer than the 30 seconds

or 1 minute experiments run so far. During the initial experiments, one particular
failure mode was observed multiple times. If the frisbee ended up (by chance) at the
+x end of the arena, it was very difficult for the swarm to recover, even if it had
a generally performant controller, the frisbee would often end up jammed in one of

2Including all evolutionary processes.

188

the corners of the arena surrounded by Xpucks ineffectually trying to get behind the
frisbee. This didn’t really matter when the test duration was limited to a minute
or less, but for long lasting tests, this attractor, which is also at a point of large
differences between simulation and reality (collisions between Xpucks, friction with
floor and walls, many bodies physically interacting at the same time), made it hard
to get reasonable behaviours. As with the solution to the problem of poor fidelity
in Xpuck collision modelling, we adopted the approach of essentially removing this
situation from the experiment.

By relocating the frisbee to the centre the instant it contacts one of the +x or −x
boundary walls, we effectively transform the arena into an endless surface in the x
direction, 1.5 m wide in the y direction. Analogously, the problem could be viewed
as collective transport of objects within a pipe or corridor of which we can see a
small segment.

The fitness function then becomes:

fraw = −
∑

∆xfrisbee
tsim · vmax

kpenalty =

1 if
∑

∆xfrisbee = 0

0 otherwise

rderate =

2 · rparsimony if rparsimony < 0.5

1 otherwise

fevo = rderate · (fraw − kpenalty) (8.3)

With the raw fitness value modified as described above. It is penalised for zero
frisbee motion and derated to control bloat when the resource usage exceeds 50%.

One interesting problem emerged when we first started to use controllers evolved over
a short period of simulation time (e.g. 1 minute) in runs that lasted long enough for
the frisbee to be relocated. Apparently fit controllers were unable to respond to the
relocation of the frisbee, seeming to ‘lose’ sight of it. This seemed to occur mostly
when the Xpucks were more spread out than the initial configuration of all robots
within xyxpuck : ([−0.5,−0.9], [−0.6, 0.6]). For this reason, during the evolution of
controllers, the initial configuration was randomly varied between the above, Scenario
A, and Scenario B, with the robots spread over the whole arena: xyxpuck ∈ ([−0.8,

0.8], [−0.6, 0.6]. Controllers evolved using this mix of starting scenarios were able to
respond to relocations more effectively.

189

8.3.3 Behaviour tree architecture

The behaviour tree architecture is as used in the previous experiments. The set
of leaf nodes L and blackboard registers B′ we make available to the evolutionary
algorithm are given in Table 8.2. Compared to the previous experiments, we have
simplified it further, we no longer make available the blackboard registers associated
with colours other than blue, and we remove the subtrees explore, neighbour,

fixedprob, and avoiding. This was motivated by a desire to simplify, and we
conducted some simple evolutionary tests with and without these subtrees with no
clear difference in apparent evolutionary trajectories.

We create one new subtree, called bsearch, which returns success if there is blue
visible in the central segment of the camera, otherwise moves slowly in a way con-
trolled by the parameter i. The tree is shown in Figure 8.3. As well, we now have
the rotav action node.

?

movcv vscr, i

×

→

mulav vgoal, 0, 0.3, vscr

ifsect vblue, 0, 20

Figure 8.3: bsearch subtree. Move slowly in direction controlled by i until blue visible in
central camera segment.

8.3.4 Experimental protocol

The nine Xpucks are placed in the arena at the left hand (−x) end with random
orientation and with position as described in Section 8.3.2 scenario A. The blue
frisbee is placed approximately in the centre of the arena. From the Hub PC, we
monitor the state of the Xpucks and trigger the upload of an experiment file. At this
point, the experimental run can be started. During the run, we can manually set the
command state scmd of the swarm of robots to PAUSE and RUN in order to relocate
the frisbee from either end of the arena back to the centre. During the PAUSE state,
the robots do not move and the evolutionary algorithm does not advance.

While in the RUN state, the evolutionary algorithm proceeds on each Xpuck, with
the fittest individual of each generation being advertised via the geneserver, and the

190

Table 8.2: Behaviour tree architecture subset. Blackboard registers addressed by index.
Scalar instructions can access components of vector registers. d destination, s source, f
float, i,j 8 bit signed, k,l 5.3 fixed

Name Parameters Description
Blackboard
vzero 0 (R) Zero. This register will always read as zero
vgoal 2 (RW) Goal velocity. Move in direction of vector when

written
vprox 4 (R) Proximity. Returns the vector sum of all the

proximity sensors. vprox =
∑

i∈{1,...,8}(Pi,∠qi)
vup 6 (R) Upfield. Point to +x end of the arena.
vattr 8 (R) Attraction. Points to the nearest concentration of

neighbouring robots. vattr =
∑n

i=1(rmin
ri
,∠bi)

vblue 10 (R) Blue. Points to blue blobs within the camera FOV.
vblue =
(Bleft,∠18.7) + (Bcentre,∠0) + (Bright,∠− 18.7)

sn 12 (R) Number of neighbours
sscr 13 (RW) Scalar scratch register
vscr 14 (RW) Vector scratch register
Action nodes
movcs d, i Set d scalar to constant d← i
movcv d, i Set d vector to unit vector constant d← (1,∠π i

128)
mulas d, s1, f, s2 Scalar scale and add d← s1 + f × s2
mulav d, s1, f, s2 Vector scale and add d← s1 + f × s2
rotav d, s1, i, s2 Vector rotate and add d← s1 +R(π i

128)× s2
ifprob s, k, l S with probability governed by location of s on

logistic curve defined by k, l. Psuccess = 1
1+ek(l−bb[src])

ifsect s, i, j S if the vector s is in sector defined by angle of
centre of sector i and sector width j and length >
0.1

successl S always
failurel F always
Subtrees
upfield g Move towards or away from the +x end of the

arena at depending on sign of g
attract g Move towards or away from the nearest group of

robots, depending on the sign of g
bleft1 S if blue in left of visual field
bright1 S if blue in right of visual field,
bfront S if blue in centre of visual field

ifsect vblue,∠0◦,∠14◦
bsearch i Turn at speed and direction based on i if there is

no blue visible in centre of field of view. success if
blue seen

1 As noted in Section 7.4.2, due to an error, these subtrees are equivalent to failurel

least fit 8 individuals being replaced by the fittest eight individuals from the other
Xpucks that are currently on the generserver. Every two minutes, the behaviour

191

tree execution engine of each Xpuck loads the latest, fittest controller that the local
evolutionary algorithm has generated. This controller takes over the running of the
robot in the real world from that point until the next controller is loaded. After
16 minutes, the experiment is complete and the Xpucks are halted. During that 16
minutes, seven different controllers have run on each Xpuck.

All Vicon data, telemetry, and evolutionary algorithm data are logged for analysis.
This includes the heritage and measured simulation fitness of every single individual
within the whole island model evolutionary system, and the full behaviour trees
of the fittest individuals of each island for every generation. Because the power
consumption when running the simulator for the EA is high, the Xpuck battery life
is about 1.5 hours, sufficient for about five runs.

As well as the control software synthesising the virtual senses and logging positional,
telemetry and sensory data, we also run the geneserver on the Hub PC. This main-
tains a list of the eight most recent BT controllers sent by each Xpuck, and uses
this set of lists to return back the eight fittest to each Xpuck after they send. As
well as this migration function supporting the Island Model, each Xpuck sends ab-
breviated information about its entire population, which the geneserver logs. This
makes it possible to reconstruct the entire lineage of any controller over the entire
experimental run.

8.4 Data analysis

Data was processed in the following way. The files containing the position, telemetry,
and geneserver logs are read in. Each line has a timestamp, quantised at 25 Hz. The
lines of data are used to fill in fields of a large Pandas3 dataframe, with one row for
each discrete timestamp, and multiple columns for the frisbee and each Xpuck. the
frisbee columns describe the pose tuple (x, y, θ), and the Xpuck columns describe
the pose (x, y, θ), the command state scmd, the message round trip time tping, and
a tuple giving some information on the currently fittest controller within the local
island (f, igen, ieval, uid); fitness in simulation, generation, number of evaluations in
simulation, and unique identifier.

We performed a total of 29 runs. Three runs suffered robot failure due to battery
exhaustion and were dropped. Because virtual sense data is supplied over the WiFi
connection and interference was present at some times of the day, we applied a quality
test of no more than 5% of telemetry packets having a round trip time > 100 ms.
Seven runs failed this test, one of which also suffered battery failure, leaving 20 runs
which we analysed. The overall performance of the swarm is summarised in Table
8.3, which shows the final average fitness of the island model evolutionary algorithm,

3https://pandas.pydata.org/

192

https://pandas.pydata.org/

the real fitness of the swarm in each two minute segment that it was running an
evolved controller. It also shows the average round trip telemetry ping times and
number of dead robots.

Table 8.3: Summary of all in-swarm evolutionary runs. D is number of dead robots during
run, P is 1 if disqualified for more than 5% of ping times above 100 ms. tping is the mean
ping time over the whole run in ms, %BP is the percentage of bad pings in the run. fEA is
the average final fitness across the swarm of the island model evolutionary algorithm, and
freal1..freal7 are the real fitnesses of the swarm over each two minute segment of the run.

Run D P tping %BP fEA freal1 freal2 freal3 freal4 freal5 freal6 freal7
1 0 0 27.60 0.29 0.219 0.001 -0.113 0.152 0.098 -0.004 -0.081 0.174
2 0 0 58.17 3.43 0.163 0.023 0.036 -0.035 0.016 0.020 0.043 0.028
3 0 0 28.08 0.22 0.220 0.048 -0.086 0.106 -0.024 0.141 0.123 0.116
4 2 0 55.32 3.01 0.184 0.027 0.034 0.077 0.002 -0.030 -0.015 -0.017
5 0 0 27.95 0.15 0.233 0.034 0.017 0.038 0.042 0.039 -0.023 0.085
6 0 0 28.15 0.13 0.203 0.065 -0.063 0.040 0.108 0.148 -0.077 0.097
7 0 0 28.81 0.76 0.259 -0.025 0.030 -0.031 -0.019 0.015 0.125 0.240
8 0 0 28.32 0.27 0.266 -0.080 -0.032 0.175 0.188 0.110 0.073 0.204
9 0 0 27.92 0.23 0.213 -0.005 0.172 0.072 0.126 0.079 0.015 0.171

10 0 1 46.29 7.96 0.221 0.042 -0.018 -0.080 -0.023 0.028 0.032 -0.017
11 0 1 73.44 12.81 0.189 -0.039 0.052 0.105 -0.003 0.054 0.056 -0.013
12 0 1 46.87 7.31 0.155 -0.050 0.030 -0.019 0.087 -0.002 0.029 0.074
13 1 0 49.49 2.93 0.187 -0.047 0.044 0.027 0.076 0.000 0.090 0.120
14 0 0 27.76 0.49 0.154 0.093 0.014 0.092 0.039 0.000 0.062 0.038
15 0 0 28.17 0.51 0.221 -0.043 -0.015 0.191 0.132 0.062 0.059 0.005
16 0 0 34.25 1.56 0.299 -0.004 0.043 -0.025 0.105 0.114 0.194 0.200
17 0 0 37.04 3.16 0.227 0.009 0.038 -0.096 0.121 0.089 0.146 0.154
18 0 0 37.45 3.75 0.180 -0.036 -0.016 -0.139 -0.001 0.101 -0.017 0.199
19 0 1 66.79 9.80 0.190 -0.063 0.027 -0.021 0.003 0.055 0.012 -0.014
20 0 0 31.49 2.36 0.164 0.070 -0.009 0.074 0.097 0.085 0.028 0.108
21 0 0 35.87 3.60 0.167 0.054 -0.061 -0.023 0.127 -0.055 0.063 -0.069
22 0 1 43.83 6.31 0.183 -0.100 -0.049 -0.003 0.048 0.072 0.088 0.113
23 0 0 31.24 2.51 0.184 -0.104 0.048 0.107 0.075 0.049 0.076 -0.082
24 0 0 28.22 2.18 0.189 0.022 -0.024 0.082 -0.069 0.098 -0.035 0.160
25 0 0 27.81 2.07 0.183 -0.047 0.013 0.022 0.053 0.063 0.004 0.124
26 0 0 28.19 2.23 0.180 -0.056 -0.026 0.038 -0.025 -0.021 -0.088 -0.197
27 0 1 37.40 6.34 0.212 0.058 0.053 0.086 0.062 0.018 0.016 0.084
28 0 0 27.40 1.84 0.182 0.064 0.086 0.085 0.008 0.094 -0.035 -0.061
29 1 1 79.94 6.95 0.183 0.022 0.157 0.115 0.094 -0.013 0.097 0.063

Table 8.4 summarises the results for all good runs.

8.4.1 Island model

The distributed island model evolutionary algorithm running on the swarm com-
pleted an average of 84, σ = 11.1 generations per run giving a mean generation time
of 11.4 s. The swarm ran a total of 3.9 million simulations4. Figure 8.4 shows the
mean fitness of the island model genetic algorithm running on the swarm for each
of the 20 good runs. This is calculated by taking the fitness of the fittest individual
on each island, or Xpuck, at a particular time, derating the fitness if there had been
less than 8 evaluations, and taking the average across the swarm.

The runs that ended with the highest and lowest mean fitness are highlighted, as is
the average over all runs. What is noteworthy is the high effectiveness of the island
model, the average final fitness is 0.20 in 84 generations, compared to the single node

420 good runs x 84 generations x 9 robots x 256 simulations per generation

193

Table 8.4: The 20 good runs, showing fEA is mean fitness of the island model evolutionary
algorithm, and frealx the real fitness for each segment of the 16 minute runs. Mean and
standard deviation over all runs shown at bottom of table. Real fitness values f > 0.1 shown
bolded.

Run fEA freal1 freal2 freal3 freal4 freal5 freal6 freal7
1 0.219 0.001 -0.113 0.152 0.098 -0.004 -0.081 0.174
2 0.163 0.023 0.036 -0.035 0.016 0.020 0.043 0.028
3 0.220 0.048 -0.086 0.106 -0.024 0.141 0.123 0.116
5 0.233 0.034 0.017 0.038 0.042 0.039 -0.023 0.085
6 0.203 0.065 -0.063 0.040 0.108 0.148 -0.077 0.097
7 0.259 -0.025 0.030 -0.031 -0.019 0.015 0.125 0.240
8 0.266 -0.080 -0.032 0.175 0.188 0.110 0.073 0.204
9 0.213 -0.005 0.172 0.072 0.126 0.079 0.015 0.171
14 0.154 0.093 0.014 0.092 0.039 0.000 0.062 0.038
15 0.221 -0.043 -0.015 0.191 0.132 0.062 0.059 0.005
16 0.299 -0.004 0.043 -0.025 0.105 0.114 0.194 0.200
17 0.227 0.009 0.038 -0.096 0.121 0.089 0.146 0.154
18 0.180 -0.036 -0.016 -0.139 -0.001 0.101 -0.017 0.199
20 0.164 0.070 -0.009 0.074 0.097 0.085 0.028 0.108
21 0.167 0.054 -0.061 -0.023 0.127 -0.055 0.063 -0.069
23 0.184 -0.104 0.048 0.107 0.075 0.049 0.076 -0.082
24 0.189 0.022 -0.024 0.082 -0.069 0.098 -0.035 0.160
25 0.183 -0.047 0.013 0.022 0.053 0.063 0.004 0.124
26 0.180 -0.056 -0.026 0.038 -0.025 -0.021 -0.088 -0.197
28 0.182 0.064 0.086 0.085 0.008 0.094 -0.035 -0.061
x 0.205 0.004 0.003 0.046 0.060 0.061 0.033 0.085
σ 0.037 0.053 0.062 0.084 0.066 0.054 0.076 0.113

shown in Figure 8.1 which only reaches a similar average fitness after 600 generations.
This should be expected with the much larger population of 2304 (9× 256) vs 256,
but does demonstrate that the island model partitioning into a parallel system with
low migration rate has scaled quite effectively. We define a scaling coefficient β as:

β =
fisland · ngen_single · nsim_single

fsingle · ngen_island · nsim_island · nnodes
=

0.20 · 600 · 256

0.21 · 84 · 256 · 9
= 0.76 (8.4)

Which is a measure of the ratio of achieved fitness per simulation between the single
node and the island model. With perfect scaling, β would be 1.

8.4.2 Real life behaviour

The behaviour of the swarm in real life shows a clear increase in fitness over the runs.
As Figure 8.5 shows, in the early stages of the experimental runs, the two segments
starting at 2 minutes and 4 minutes, the fitness is not significantly above zero, and

194

2 4 6 8 10 12 14 16
Minutes

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Fi

tn
es

s
Island model GA mean fitness across runs

Lowest final fitness
Highest final fitness
Mean fitness over all runs

Figure 8.4: Mean fitness of the island model evolutionary algorithm over each of the 16
runs. Boxplot whiskers cover full range

in the final segment starting at 14 minutes, the fitness at a mean of about 0.085 is
significantly above zero. There is an overall gain in fitness between the first segment
starting at 2 minutes and the final segment starting at 14 minutes (independent T-
test null hypothesis p = 0.008).

But there are very large variations in the fitness between runs. One problem with
analysing the data is that, conventionally, evaluating a swarm controller in a real
swarm involves multiple runs with the same controller. Here each run has a different,
heterogeneous, and varying mix of controllers. We don’t know whether the variation
in fitness is due to chance, some property of the controllers affecting transference, or
some effect of heterogeneity. We return to this in Section 8.7.

8.5 Behavioural analysis

When watching videos of the real swarm over multiple runs, it is apparent that
there is a rich variety of behaviours that solve the problem of collective movement
of the frisbee, not captured by the bottom line fitness measure. The approach we
take to analyse and gain insight is as follows. Firstly, we define several behavioural
metrics, which we can automatically calculate from the captured trajectory data of
the swarm. We then associate these metrics with individual two-minute segments

195

2 4 6 8 10 12 14
Start time of segment (minutes)

0.2

0.1

0.0

0.1

0.2

Fi
tn

es
s

Real fitness over all runs, each two minute segment

Figure 8.5: Real fitness of the swarm over time across all runs. Violin plots show dis-
tribution of fitnesses over runs, with ticks at median and extrema. Red line is 5th-order
polynomial fitted to medians of each segment

during which the swarm is executing a fixed set of behaviour tree controllers. In
general, the segments near to the end of an experimental run will have greater real
fitness, but we have already seen that there is wide variance in this measure. Some of
this may be due to chance, some may be due to discovery then loss of high-performing
behavioural traits.

We take all the segments that have a reasonable segment fitness, defined here to be
f > 0.1, and shown bolded in Table 8.4, and perform a behavioural cluster analysis
motivated by the subjective impression of quite different solution strategies. From
different clusters, representing a different solution style, we can then analyse the
behaviour tree controllers themselves, using the identities defined in Chapter 3 to
simplify the trees such that we can gain understanding of their functionality. In
doing this, we hope to discover useful or interesting behavioural traits, or subtrees,
of the behaviour tree controllers.

The metrics we define are:

1. Energy menergy =
∑

i∈robots |vmleft(i)|+ |vmright(i)|. The total use of the mo-
tors.

2. Pushing mpush, the average proportion of the robots that are within 1 frisbee

196

radius plus 1.5 robot radii of the centre of the frisbee.

3. Loitering mloit, the average proportion of robots that are within 3 frisbee radii
but not in the pushing zone.

4. Cooperation mcoop = 1
n·rpushing

|∑i∈pushing (1,∠θi)|, the degree to which the
robots in close proximity to the frisbee are facing in the same direction, thus
can push cooperatively.

5. Acceleration macc =
∑ |∆vmleft

∆t |+ |
∆vmleft

∆t |. The sum of all motor absolute
motor accelerations, a measure of how jerky the motion is.

A total of 33 segments in the good runs have a fitness f > 0.1. We cluster these
using a Self Organising Map [Kohonen, 1982] which tries to arrange the data in cells
such that topological relations in the high dimensional feature space are somewhat
preserved in the two-dimensional representation.

9 10 11 12

5 6 7 8

1 2 3 4

Behaviour metric visualisation

 energy
 push

 loit coop accel

0.12

0.14

0.16

0.18

0.20

0.22

Fi
tn

es
s

Figure 8.6: Self Organised Map of the 33 segments of swarm behaviour with fitness f > 0.1.
Each segment is clustered into a cell with other segments with similar behaviour. Background
colour shows the average fitness of the cell. The wedges within the cells shows the relative
values of the five different behavioural metrics, with larger radii representing higher values.
The metrics are menergy the total motor use, mpush robots close to the frisbee, mloit robots
near the frisbee, mcoop alignment of robots close to frisbee, and maccel the jerkiness of
motion.

197

Table 8.5: Cell map, showing which segments are present in each cell. Segments are
denoted r, s where r is run number, s is segment, from 1 to 7.

Cell Segments
1 7,6 9,2 15,4 17,4 24,7
2 7,7 9,4 16,4 18,7
3 18,5 23,3
4 3,3 6,4 6,5 25,7
5 15,3
6 16,5
7 1,7 9,7 17,6 17,7
8 3,5 3,6 20,7
9 8,3 16,7 21,4
10 8,4 8,7 16,6
11 1,3 3,7
12 8,5

Figures 8.6 shows the map and Table 8.5 the experimental run segments associated
with each cell in the map. The background colour of the Cells shows the fitness,
ranging from dark green in Cell 4 representing f = 0.11 to light yellow in cell 2,
representing f = 0.24. The radii of the segments within the cells show the values of
each of the behavioural metrics. The three fittest runs in real life are Run 7, Run 8,
and Run 16. Run 8 and Run 16 are in adjacent cells, so would be expected to have
more similar behaviour than to Run 7. Run 16 is interesting for another reason, that
its final population of controllers is dominated by a single controller.

For these reasons of interestingness and potentially different solution styles, we will
examine behaviour trees from Run 16 final segment, present in Cell 9, and from Run
7 final segment, present in Cell 2.

8.6 Analysis of trees

We have previously stated that one advantage of behaviour trees is their human
readability, and thus the potential to analyse an evolved behaviour tree to see how
it works and gain inspiration and understanding. In this section, we perform this
analysis. In the previous section, we used a number of behaviour metrics to cluster
the numerous segments of runs in order to select behaviour trees which we wish to
analyse and potentially gain insight from. We will examine Run 16 final segment,
and Run 7 final segment. From the clustering, we might expect that Run 7 would
have more jerky movement with more clustering around the frisbee, while Run 16
would have smoother, more spread-out behaviour.

Table 8.6 shows the unique identifiers of the behaviour trees controlling each robot
in the final segment of each run. These are integers in the form rriiiii where rr

is the robot index where it was created, and iiiii is the monotonically increasing

198

index of individuals created on a given island, or robot.

Table 8.6: All behaviour tree unique IDs in the final segment of each run. Least significant
five digits are a monotonically increasing ID on each island, most significant one or two
digits are the host ID where the tree originated. R is the run number, U is the number of
unique behaviour trees in the swarm

R U xp03 xp04 xp05 xp06 xp07 xp08 xp09 xp11 xp15
1 9 308064 1506821 507640 1105859 707946 807872 907786 1108289 1508281
2 9 305755 406009 505113 605148 704998 805299 905512 800225 1502169
3 5 504991 504991 506545 504991 706215 902792 504991 504991 405581
4 9 307807 408586 507203 608188 707639 808227 908015 1108614 1507138
5 9 308324 306624 508080 307405 707717 808170 908240 307405 505420
6 8 302593 302593 1106509 607880 1105527 807734 908185 1106442 1505266
7 8 308016 408292 905166 1506491 707625 905166 908257 305404 1507078
8 9 307600 407477 507291 306004 707923 1506320 908505 1108214 505628
9 9 307683 407955 507595 706960 708113 807513 1106746 1107776 1508083
10 9 306608 407092 605935 606461 705612 807112 1106288 1107194 1506976
11 7 903272 606246 903272 608503 806366 606246 401770 906612 906484
12 8 307462 306185 306272 606982 305341 807244 907772 306185 1507621
13 9 306001 605230 507214 606792 707513 404924 906577 1107160 1506860
14 9 307169 706805 507372 306008 707259 705436 704194 1107182 1507469
15 8 307974 407849 603515 606957 708261 603515 908100 1107788 1507850
16 3 906737 806768 806768 906737 806768 807914 806768 806768 806768
17 7 305274 1506957 706956 1506957 307278 606884 1506957 1108241 1507591
18 9 805433 407752 1106209 606027 707490 1505063 907057 1107408 804212
19 9 306400 406626 507422 607151 1503917 804932 906282 1107006 1506660
20 7 803974 407398 508277 608033 803974 808233 803974 803974 507386
21 8 702114 606104 506235 505572 702114 705968 1105525 705968 1507265
22 9 307557 408022 508100 404458 707508 1106431 907640 1506587 1507577
23 9 306817 407149 506735 606893 603987 806397 907093 1107085 1506847
24 5 502488 403680 502488 502488 1503399 803837 502488 1103697 502488
25 5 803424 803253 902478 902426 803253 803621 803253 803424 803253
26 8 304226 403850 503810 503384 703634 1503195 904215 503384 403644
27 7 1503270 1502624 504096 702823 1503270 1502624 904529 1103852 302326
28 9 403614 404053 504186 604074 1503664 803867 602348 1103811 1503957
29 8 1500868 502233 502233 603296 703586 803703 903506 1103408 1503275

We start with Run 16, which has the highest final fitness in the EA of 0.299, and a
final segment fitness in reality of 0.2, with steadily increasing real fitness over most
of experimental run. From Table 8.6 we can see that there are only three unique
behaviour trees; 806768, 906737, 807914. BT 806768 is interesting because it is fit
enough to have migrated from its origin on robot xp08 to robots xp04, xp05, xp07,
xp09, and xp11, which we can see from the prefix 8, and then to have survived and
remained the fittest in those destination robots. This suggests that it is consistently
fit.

We then move on to Run 7 final segment, which has the third highest fitness in the
EA and the highest in reality of 0.259 and 0.24 respectively. This segment has one
repeated tree, so there are eight unique trees, numbered 308016, 408292, 905166,

1506491, 707625, 908257, 305404, 1507078.

199

8.6.1 Automatic tree reduction

Recall from Section 3.1.7, we state a series of identities that apply to behaviour trees.
These require that subtrees are classified as containing only query leaf nodes Q, that
is, node that do not alter the state of the blackboard, or subtrees containing action
leaf nodes C that can affect the state of the blackboard. We also need to know
whether we can guarantee that a subtree will return success or failure.

Table 8.7 shows the node types, expressed using the notation from Section 3.1.7.
Trees are expressed as recursive functions. C is a subtree that may change the state
of the blackboard, Q is a subtree or node that does not. Action nodes may change
blackboard state and can be regarded as a subtree C. Success may be a leaf node
S returning success and not changing state, or a function enclosing a subtree S(t)

returning success. Similarly for failure F and F (t). A tree C with a known value of
success or failure is denoted S(C) or F (C) respectively.

Table 8.7: Node types and side effects

Node Type Side effect
movcs S(C) yes
movcv S(C) yes
mulas S(C) yes
mulav S(C) yes
rotav S(C) yes
ifprob Q no
ifsect Q no
successl S(Q) no
failurel F (Q) no
upfield S(C) yes
attract S(C) yes
bleft Q no
bright Q no
bfront Q no
bsearch C yes

The reduction rules are summarised below and are applied in a depth-first recursive
manner. Any rule applying to a subtree C also applies to Q:

1. Replace decorated queries S(Q)→ S and F (Q)→ F

2. Replace decorated known trees S(S(C))→ S(C) and F (F (C))→ F (C)

3. For seq nodes, remove any children to the right of F (C) because they will
never be ticked

4. For sel nodes, remove any children to the right of S(C) because they will never
be ticked

200

5. For seq nodes, remove any S(Q) child that is not the rightmost since it cannot
affect the result

6. For sel nodes, remove any F (Q) child that is not the rightmost since it cannot
affect the result

7. seq or sel with a single child are replaced by the child

8. Collapse multiple levels of seq and sel nodes to a single wide level

Sometimes one pass through the list of transformations exposes further opportunities
for reductions. We therefore repeat the transformations until there are no more
changes to the tree. Also, Rule 8 is useful for producing clearer diagrams but can
result in trees that cannot be executed, due to the fixed arity sizes that are supported
for seq* and sel* in the behaviour tree interpreter code. We disable this rule for
the purpose of generating executable reduced trees.

Since the reduction rules are identities, the execution of a correctly reduced tree
must result in identical behaviour, anything else indicating bugs in the process. To
validate our reductions, we run a simulation with nine robots executing the original
and reduced tree for 60 simulated seconds, in each case producing a log file containing
the poses of all objects at every timestep, together with all sensor inputs and actuator
outputs. Any differences in the logfiles indicates non-equivalence.

8.6.2 Run 16 overview

Before analysing the trees 806768, 807914, 906737, we first perform a pairwise
functional comparison between trees to eliminate those which are differently labelled
but functionally identical. This shows that tree 807914 is functionally identical to
806768. There are differences in the tree, but these are in never triggered branches.
Tree 806768 is present in seven of the nine robots, and tree 906737 in the remaining
two. Table 8.8 summarises the unique trees of Run 16 and their characteristics.

Table 8.8: Run 16 tree characteristics. Fitness evaluated over 1000 runs of 60 s with
different starting conditions.

Tree 806768 906737

Original nodes 134 235
Reduced nodes 20 36
Reduction 85% 85%
Fitness x̄ 0.27 0.23
Fitness σ 0.044 0.093

201

8.6.3 Analysis of Run 16 tree 806768

Behaviour tree reduction

We apply the reduction algorithm to tree 806768. The original and reduced versions
are shown in Figure 8.7. It is clear that there is a large amount of redundancy. The
original has 134 nodes and the reduced form has 20, an 85% reduction. Even so, it
is not immediately obvious what the tree does. Let us analyse it. From here, we
refer to the listing form in Listing 8.1. The left-most5 subtrees are more significant
to behaviour, so we start there.

?
.
?

→

×

→ ×

.
?

→

X

→

×

.→

X

?

X

.→.
? X

.→

?

?

×

→ →

X

?

57?

X ?

→

! .→

→ .
?

.→ .→

?→

→

.→

X.
?

.
?

.
?45

?

?

×

X

.
?

?

.→

→

.
?

×

.→

avoiding

?

cfront failurel

?

!

cfront

sgl.x←sb.y−20.7sup.x

vsc←28

vsc←vup+∠−3, vn

vsc←−115

→

cfront sgl.y←spr.x+6.55sup.y

vgl←vsc+12.3vb

57 vsc←0+∠−100, vat

.→

Figure 8.7: Tree 806768 shown in the original and automatically reduced form.

5or top-most in the listing

202

Listing 8.1: Reduced behaviour tree 806768

1 sel

2 avoiding

3 invert

4 sel

5 seq

6 movcv vscr 28

7 bfront

8 movcv vscr -115

9 bfront

10 mulas vgoal.y vprox.x 6.545845 vup.y

11 seqm4

12 mulas vgoal.x vblue.y -20.683918 vup.x

13 bfront

14 failurel

15 mulav vgoal vscr 12.297516 vblue

16 seqm

17 repeati 57

18 rotav vscr vup -3 (sn, sscr)

19 rotav vscr 0 -100 vattr

The sel avoiding is the standard prefix that we use for all evolved trees to perform
basic collision avoidance before any other behaviours. If the robot is not performing
the avoiding action, then the subsequent trees to the right are ticked. There are
two further subtrees of the top level sel, starting at lines 3 and 16 of the listing. The
invert subtree will always fail, although it will produce side effects in the process.
We can see this by noting that the sel clause below the invert has a final child of
mulav, which will always return running or success.

If we look at the third subtree, starting at line 16, we can see that it only affect the
scratch blackboard register vscr. But if we look at the second subtree, starting at
line 3, vscr is always written, at line 6. Thus the third subtree is redundant and
we can remove it. By removing that subtree, the invert become redundant, since
it makes no difference what the return values of the last subtree of the entire tree
is. Also, note that seqm only behaves differently from seq if it has children that
can return running. This is not the case here, since the write to the blackboard
goal register component sgoal.x is the first such within the tree. The multiple bfront
queries are redundant after the first. Finally, the second movcv at line 8 targeting
vscr is redundant, since the goal vector vgoal will be busy after the writes in lines
10 and 12, meaning the mulav at line 18 will not take effect (will return running)
if bfront is success. This also makes the failurel at line 14 redundant. We can
therefore further simplify the tree, verified as behaviourally identical, and shown in
Listing 8.2.

203

Listing 8.2: Reduced simplified behaviour tree 806768

1 sel

2 avoiding

3 sel

4 seq

5 movcv vscr (1,∠39◦)
6 bfront

7 mulas vgoal.y vprox.x 6.55 vup.y

8 mulas vgoal.x vblue.y -20.7 vup.x

9 mulav vgoal vscr 12.3 vblue

Single robot behaviour

We can now see that there are two behaviours, depending on whether the blackboard
register vblue is non-zero and pointing forwards, that is, there is something blue in
the centre of the field of vision of the robot. If the robot is directly facing something
blue, it will perform one behaviour (lines 7 and 8) labelled B1, otherwise it will
perform the behaviour of lines 5 and 9, labelled B2. We can restate this as:

vgoal =


vblue.y −20.7 · vup.x
vprox.x +6.5 · vup.y

 if directly facing frisbee (B1)

(1,∠39◦) + 12.3 · vblue otherwise (B2)

(8.5)

If not directly facing the frisbee, the behaviour B2 is quite simple to state; the robot
will move forward in an anticlockwise circular fashion until something blue enters the
visual field, at which point it will move forward while turning in that direction until
the frisbee is in the centre of the visual field, at which point the other behaviour B1
takes control. Figure 8.8 visualises a simulation of the behaviour tree with the robot
starting at pose (0.3, 0, 0), so facing in the +x direction away from the frisbee.The
location of the robot is shown for each timestep of 100 ms over a period of 3 s. The
colour of the trail indicates which behaviour is executing, yellow indicating B2 and
green B1. We can see that the robot circles in an anticlockwise direction until the
blue frisbee comes into view, at which point the robot heads more towards the frisbee.
Finally the behaviour switches to B1.

If robot is directly facing the frisbee, triggering behaviour B1, the goal vector is
formed of several components and the meaning is not immediately clear. By ob-
serving that the components of the vup vector dominate the maximum values that
might be seen from sprox.x and sblue.y of ≈ 2 and ±0.32 respectively, the majority of
vgoal is formed from the vup vector reflected in the robot y-axis and anisotropically
scaled. If the pose angle θ of the robot is in the range |θ| < π/2 this will cause the
robot to rotate to face in the +x direction and stop. With angles greater than this,

204

0.1 0.0 0.1 0.2 0.3
X position (m)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Y
po

sit
io

n
(m

)

Start with B2

Blue in view
Switch to B1

Positions over time

Figure 8.8: Visualisation of the path of a single Xpuck following behaviour B2 then B1.
The robot starting pose is (0.3, 0, 0), facing in the +x direction away from the frisbee. Colour
of trail is yellow for B2 and green for B1, each plot of trail is one control cycle of 100 ms

|θ| > π/2, i.e. facing in the −x direction, the robot will move forward while turning
to face the +x direction. The rate of turning is dependent on the angle of the robot,
so at an angle of exactly π the robot will move forward with no turning, but any
deviation will result in an accelerating turn towards the +x direction.

Consider two scenarios, both with the frisbee at (0, 0), and the robot with pose
(0.2, 0, π) in the first, and (−0.2, 0, 0) in the second, shown in the diagram in Figure
8.9. In the first scenario, the robot will move forwards until it contacts the frisbee,
then pushing the frisbee in the −x direction. In the second scenario, the robot will
not move. We can see that randomly choosing between these two scenarios will on
average result in an increase in fitness, since the frisbee will only ever move in the
−x direction. If we perturb the first scenario slightly, with a robot starting pose of
(0.2, 0, π−0.1), the robot will move forward while turning clockwise. The frisbee will
again be pushed in the −x direction, but as the robot continues to rotate, it will reach
the situation where the vector vblue no longer has zero angle (from the possible angles
of −18.7,−9.35, 0, 9.35, 18.7) and thus bfront will return failure and behaviour B2
will occur. This will tend to make the robot move forward and turn anticlockwise
towards the frisbee, while pushing it. If the turning rate is fast enough then the
robot will end up fully facing the frisbee again, such that the first behaviour is again

205

activated. We can see that we might have a switching of behaviours of clockwise and
anticlockwise forward movement such that the frisbee is on average moved in the −x
direction.

0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.25
X position (m)

0.10

0.05

0.00

0.05

0.10

Y
po

sit
io

n
(m

)

Positions over time

0.25 0.20 0.15 0.10 0.05 0.00 0.05 0.10
X position (m)

0.10

0.05

0.00

0.05

0.10

Y
po

sit
io

n
(m

)

Positions over time

Figure 8.9: Visualisation of the path of a single Xpuck following behaviour B1 in two
scenarios

In actual fact, a single robot does not reliably turn far enough that the frisbee
becomes centred in the field of view, so sometimes the frisbee will get pushed in a
circular path and sometimes on an erratic path towards −x depending on the exact
starting condition. Figure 8.10 shows the evolution of the perturbed first scenario,
with B1 resulting in a slow clockwise turn intially, then a period of rapid switching
between B1 and B2, a further period of B1 turning anticlockwise this time, then
finally a stable situation running B2 with the robot pushing the frisbee in a circular
path.

Interaction of two robots

What is interesting is if we change the scenario to have two robots in contact with
the frisbee. In this case, although neither individually can stably push the frisbee,
with two robots their interactions produce an emergent stable pushing behaviour.
It is important to realise that these interactions now include the default collision
avoidance behaviour, not shown in Equation 8.6.3. This usually causes a robot to
turn on the spot away from the object detected with the IR proximity sensors and
is visible on the trail visualisation as denser outlines at points where the robots are
not moving forwards.

Figure 8.11 shows an example of this. The initial configuration of the system was the
frisbee at location (0.65, 0) and the robots at poses (0.8, 0.05, π) and (0.8,−0.05, π).
The track of the frisbee is not straight, but never degenerates into a stable orbit.
The two robots use varying amounts of B1 and B2, depending on the system state.
By inspection, when the frisbee path is tending upwards too much, the top xpuck
starts spending more time in B2 and the less in B1, causing the system of frisbee and
robots to turn back downwards, and likewise in the opposite situation, with collision

206

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2
X position (m)

0.4

0.3

0.2

0.1

0.0

0.1

Y
po

sit
io

n
(m

)

Start with B1

Mixture of B1 and B2B1 only

Switch to B2 only

Positions over time

Figure 8.10: Visualisation of the path of a single Xpuck following behaviour B1 at the
start, then combinations until ending in a stable orbit in behaviour B2.

avoidance ensuring that the other robot is turned to maintain some separation.

To show that this behaviour is active, rather than a chance interaction, we compare
what happens with a simple tree that performs forward movement with collision
avoidance, shown in Listing 8.3.

Listing 8.3: Tree for forward motion with collision avoidance: forward

1 sel

2 avoiding

3 movcv vgoal (1,∠0)

Figure 8.12 shows the initial configuration and the results for trees 806768 and
forward. The starting configuration was frisbee at (0.65, 0.5) and the robots at
(0.6, 0.65,−π/2) and (0.7, 0.65,−π/2). This is the same relative positions and poses
as previously, but rotated so the Xpucks are starting out facing in the −y direction.
The simple forward movement behaviour tree quite successfully pushes the frisbee,
because they stay relatively aligned, but in the wrong, −y, direction. The tree 806768
on the other hand actively corrects its heading such that the frisbee is pushed in the
−x direction.

207

0.75 0.50 0.25 0.00 0.25 0.50 0.75
X position (m)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Y
po

sit
io

n
(m

)

Frisbee turning downwards,
more B2 on low side to correct

Collision avoidance

Collision avoidance

Frisbee turning upwards,
more B2 on high side to correct

Positions over time

Figure 8.11: Visualisation of the path of two Xpucks with a starting position close to the
right of the frisbee

Resilience to perturbation

We want swarm controllers to be resilient, because they will be more general, and
able to perform well whatever the starting conditions. How resilient is this system
to perturbations in the starting poses? We approach this in the following way,
comparing the performance of the tree 806768 with the simple forward tree described
above. We start with the frisbee at position (0, 0) and the two robots are placed with
random poses centred on (0, 0, 0) with added Gaussian noise of standard deviations
(0.2, 0.2, 1.5). The robots and frisbee are not allowed to overlap. Valid configurations
are simulated for a time of 8 s, just less than the time for a perfect attempt to push
the frisbee to an x boundary. A total of 100000 simulations were run for each tree.
Each tree has a best configuration, that having the highest fitness. The mean starting
distance of the robots from this configuration is measured for each run and this data
is binned and plotted against the fitness of that run.

Figure 8.13 shows the results. there are clearly two quite different types of behaviour
here. As you might expect, if you run a lot of trials of essentially a random walk
(move forward with collision avoidance), there will be some that are quite fit, but
the majority will not be. The data shows this, with the forward tree having most
runs clustering around a zero fitness. The 806768 tree, on the other hand, maintains

208

Figure 8.12: Visualisations of the path of two Xpucks. The starting configuration is shown
on the left, the centre shows the effect of a simple behaviour tree performing just collision
avoidance and forward movement, and figure on the right shows tree 806768 actively steering
towards the correct −x direction.

a consistent median fitness, which falls gradually as the mean starting distance from
the frisbee increases, as you would expect since the robots have to reach the frisbee
before pushing it. The important indicator of an effective controller is that the
median fitness is maintained even over a quite large increase in the distance away
from the frisbee, implying the active movement towards and then pushing of the
frisbee.

Effect of swarm size

One interesting question about swarm controllers is whether they produce emergent
behaviour. It is not obvious how to answer this, but one approach would be to
measure the fitness of the controller when running in different sized swarms. If there
was no emergent behaviour, we would expect a single agent to have a certain degree of
fitness f = fagent, then n agents to have a higher fitness f = k ·fagent but with k < n

since multiple agents with no cooperation or emergent behaviour may interfere, and
for our task there is a physical limit on how many agents can actually interact with
the frisbee. We expect sublinear scaling, in other words. Conversely, with emergent
cooperation in the swarm we may see superlinear scaling when cooperation outweighs
interference. Superlinear performance scaling has been observed in swarm robotics
systems, [Mondada et al. , 2005], and [Hamann, 2012] develop a simple model of
swarm performance comprising two components of cooperation and interference.

We simulated the tree 806768 at different swarm sizes up to n = 16. Figure 8.14
shows the results. There is clearly superlinear performance scaling up to a swarm
size of n = 7. Above seven robots, the performance scaling is sublinear as the system

209

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75
Mean starting distance to frisbee (m)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fi
tn

es
s (

no
rm

al
ise

d
to

 ro
bo

t v
el

oc
ity

)
Fitness with increasing distance from frisbee

BT806768
BTforward

Figure 8.13: Distribution of fitness of two robots over 100000 runs of each of two trees
against mean starting distance from frisbee. Ticks show extrema and medians.

performance reaches a plateau of around f = 0.3. Above a certain number of robots,
there can be no improvement in performance, since there is only a single frisbee and
the robots have a maximum velocity. We regard the superlinear scaling as evidence
of emergent collective behaviour.

8.6.4 Analysis of Run 16 tree 906737

We have looked in detail at the single tree 806768 because it dominates the swarm,
being present as the controller in seven out of the nine robots. But what of the other
tree? Is it a small variation on 807678 or does it have have quite different behaviours?
What is the effect of this heterogeneity on the performance of the swarm?

Tree 906737 is present in two of the nine robots. We apply the reduction algorithm
and similar manual transformations as used above to give thhe tree shown in Listing
8.4, verified as functionally identical.

210

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of robots in swarm

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fi
tn

es
s (

no
rm

al
ise

d
fri

sb
ee

 v
el

oc
ity

)

Fitness of 806768 vs size of swarm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of robots in swarm

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fi
tn

es
s p

er
 ro

bo
t (

no
rm

al
ise

d
fri

sb
ee

 v
el

oc
ity

)

Fitness per robot of 806768 vs size of swarm

Figure 8.14: Scalability of swarm performance with increasing swarm size. Each point
measured with 60 s simulated time over 1000 simulations with different starting conditions.

Listing 8.4: Reduced simplified behaviour tree 906737

1 sel2

2 avoiding

3 sel2

4 seq2

5 seq2

6 movcv vscr (1,∠− 162◦)

7 bfront

8 seqm4

9 mulas vgoal.y vprox.x 30.8 vup.y

10 mulas vgoal.x vblue.y -31.1 vscr.x

11 mulas vgoal.x vscr 12.6 vgoal.x

12 failurel

13 mulav vgoal vscr 11.1 vblue

Single robot behaviour

There are some interesting subtleties to understanding this tree. We can see similar-
ities with the previous tree in that the bfront node at line 7 controls the behaviour.
If the robot is directly facing the frisbee we get one behaviour we will again call B1,
and if not, we get behaviour B2, governed by lines 6 and 13. B2 causes a clockwise
rotation until there is blue within the field of view, then movement towards the direc-
tion of the blue. This is similar to tree 806767 except that the direction of rotation
is reversed.

When directly facing the frisbee, the following occurs. In the first control cycle the
nodes on lines 9 and 10 result in successful writes to both components of the vgoal
vector. As a result, the node in line 11, which also wants to write to a component
of the vgoal vector cannot complete and returns running. Because this node is the
child of a seqm, a node with memory, at the next control step the nodes at lines 9
and 10 are ignored and the node at 11 is ticked. This time the node can succeed,

211

and a write to vgoal occurs. Subsequently, the failurel means that the node at line
13 is ticked, which attempts to write to vgoal again. Ordinarily, this should return
running, since a previous node has already written to it in this cycle.

Here, the effect of an implementation choice of the behaviour tree interpreter is
exposed. In order to tell if the vgoal register has been written in a cycle, it is
initialised to NaN6 (Not-a-Number) at the beginning of a tick update. The code of
any writing node checks if the destination contents are still NaN, and if they are, this
flags that an update is still allowed in this cycle. However, the node at line 11 reads
from this register to form the result to write back into it. Any arithmetic operation
involving a NaN as one of the operands will result in a NaN, meaning that a NaN
is written back into vgoal, giving it the appearance of not having been written this
cycle. Hence, in this case, the node at line 13 will succeed in writing.

vgoal =


 1

2(vblue.y +26.7 + 11.1 · vblue.x)

1
2(vprox.x +6.5 · vup.y + 11.1 · vblue.y − 0.3)

 if directly facing frisbee (B1)

(1,∠− 162◦) + 11.1 · vblue otherwise (B2)

(8.6)

The overall effect of this is that any time directly facing the frisbee (behaviour B1)
results in cycle-by-cycle alternation between writes from lines 9 and 10, and writes
from line 13. We show this in Eqn 8.6.4 as the linear combination of the two. We
can further simplify this by noting that the only values of vblue.x that can occur in
behaviour B1 are 1, 1.89, 2.95. The x component of vgoal will therefore always be
18.9 or higher. vblue.y will always be zero in behaviour B1, and vprox will be low,
otherwise collision avoidance will have been triggered. A simplified approximation
is thus:

vgoal =


 20

3.3 · vup.y)

 if directly facing frisbee (B1)

(1,∠− 162◦) + 11.1 · vblue otherwise (B2)

(8.7)

Behaviour B1 then becomes essentially moving forward, with a maximum deviation
from that of about 10◦ (tan−1 3.3

20), controlled by the vup vector. When the Xpuck
is facing in the −x direction, the effect is positive feedback causing the robot to
turn increasingly away from the frisbee, until behaviour B2 is triggered, causing it
to turn back towards the frisbee again. So we expect to see quite similar behaviour
to 806768 when facing the frisbee in the −x direction, but in the +x direction we

6The behaviour of NaN is defined in the floating point standard IEEE754-2008, followed by
compliant OpenCL implementations.

212

will instead see forward movement, tending to push the frisbee the wrong way.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of robots in swarm

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fi
tn

es
s (

no
rm

al
ise

d
fri

sb
ee

 v
el

oc
ity

)
Fitness of 906737 vs size of swarm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of robots in swarm

0.00

0.05

0.10

0.15

0.20

0.25

Fi
tn

es
s p

er
 ro

bo
t (

no
rm

al
ise

d
fri

sb
ee

 v
el

oc
ity

)

Fitness per robot of 906737 vs size of swarm

Figure 8.15: Tree 906737 scalability of swarm performance with increasing swarm size.
Each point measured with 60 s simulated time over 1000 simulations with different starting
conditions.

When looking at simulations of different swarm sizes, we see that the single robot
performance of 906737 is significantly better than 806768 but as the swarm size
increases, performance does not scale nearly as well, plateauing earlier and with
much higher variance. There is no superlinear scaling, due to the high performance
of a single robot.

8.6.5 Effect of heterogeneity

An inevitable effect of the distributed island model evolutionary algorithm is a het-
erogeneous set of controllers running the swarm. We see from this analysis that in
Run 16 there are only two trees present. Tree 806768 on seven of the nine robots,
and tree 906737 on the remaining two. Tree 806768 has better performance in larger
swarms, whereas tree 906737 performs well at an individual level. How do they be-
have in a mixed swarm? We measured the fitness of each possible mixture of the two
trees in simulation for 60 s, with 1000 simulations at each point. Figure 8.16 shows
the results. On the left, all the robots are running 806768 and on the right 906737.
We can see a smooth variation between the characteristics of the two. On the left,
there is higher fitness and smaller variance. As we introduce greater numbers of tree
906737 the fitness falls and the variability rises.

8.6.6 Analysis of Run 7

Run 7 final segment consists of the trees 305404, 308016, 408292, 707625, 905166,

908257, 1506491, 1507078. We first conducted pairwise functional comparisons be-
tween all trees to eliminate duplicates. This showed that 305404 and 707625 were
identical, leaving seven unique trees. The overall characteristics of these trees are
shown in Table 8.9

Six of the seven trees have fundamentally the same structure. This is shown in

213

0 1 2 3 4 5 6 7 8 9
Number of tree 906737 in swarm

0.1

0.0

0.1

0.2

0.3

0.4

Fi
tn

es
s (

no
rm

al
ise

d
to

 ro
bo

t v
el

oc
ity

)
Fitness with varying mix of 806768 and 906737

Figure 8.16: Effect on fitness of a variable mixture of trees 806768 and 906737. 1000
simulations, each of 60 seconds per boxplot.

Table 8.9: Run 7 tree characteristics. Fitness evaluated over 1000 runs of 60 s with different
starting conditions.

Tree 305404 308016 408292 905166 908257 1506491 1507078

Original nodes 74 68 67 68 74 56 112
Reduced nodes 13 15 15 15 15 15 46
Reduction 82% 78% 78% 78% 80% 73% 60%
Fitness x̄ 0.20 0.21 0.20 0.20 0.20 0.20 0.21
Fitness σ 0.090 0.090 0.093 0.090 0.085 0.094 0.099

Listing 8.5, with the particular values of a, b, c, d shown in Table 8.10.

Listing 8.5: Common tree structure

1 sel

2 avoiding

3 sel

4 seq

5 bfront

6 rotav vgoal vblue a vup (B1)

7 seq

8 rotav vscr b c (sn, 0) (B2)

9 mulav vgoal vscr d vblue (B2)

214

Table 8.10: Variations on common structure

Tree a b c d

305404 7◦ vup −90◦ 23.4
308016 24◦ (sn, 0) 148◦ 23.4
408292 24◦ vup 148◦ 30.1
905166 24◦ vup 148◦ 23.4
1506491 −20◦ vup 148◦ 23.4
1507078 24◦ vup 148◦ 23.4

As with Run 16, we see major behaviours, B1 and B2, depending on whether the
Xpuck is directly facing the frisbee or not (line 5). If it is, line 6 is triggered,
otherwise, lines 8 and 9 are. The structure is slightly different to that of Run 16,
where the individual elements of the vgoal vector are written. Here, there are two
separate and complete writes to vgoal, depending on behaviour.

When the frisbee is directly in front of the robot (B1), the robot will move forward,
but with some tendency to turn towards the +x end of the arena. Behaviour B2
has several sub-behaviours, depending on whether there is any blue visible, and if
not, whether and how many neighbours it has. If there is blue visible, the robot will
move towards it. This combined with the B1 behaviour will tend to push the frisbee
towards −x

With B2 and no visible frisbee, the robot will move to the +x end of the arena if it
has no neighbours. If there is a single neighbour, the robot will turn until its angle
is 180◦ − c, except for 308106 which will continue to turn. With more neighbours
it will continue to turn. From a global perspective, this should result in a tendency
for the swarm members that cannot see anything blue to congregate towards the +x

end of the arena and rotate to search for blue.

We can see these behaviours illustrated in Figure 8.17, which visualises a robot
running tree 905166. At the right of the figures are one or two robots that are
stationary7. As the active robot approaches +x, it is executing B2 until it comes
within range-and-bearing range of the stationary robots, that is 0.5 m. With a single
neighbour, shown in the top figure, the robot just turns slightly and stops. With
two neighbours, it continues turning until the blue frisbee becomes visible, at which
point a blend of B1 and B2 behaviours causes the robot to reach and then actively
push the frisbee in the −x direction.

The seventh tree, 908257 has a slightly different structure. This is shown in Listing
8.6.

7Executing a null behaviour tree

215

0.4 0.2 0.0 0.2 0.4
X position (m)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Y
po

sit
io

n
(m

)

In range of single neighbour,
turns and stops

Positions over time

0.8 0.6 0.4 0.2 0.0 0.2 0.4
X position (m)

0.2

0.0

0.2

0.4

0.6

Y
po

sit
io

n
(m

)

In range of two neighbours,
turns until frisbee visible

Heads towards frisbee

Pushes frisbee

Positions over time

Figure 8.17: Visualisation of tree 905166 in the presence of one and two neighbours

Listing 8.6: Tree 908257

1 sel

2 avoiding

3 failured

4 sel

5 seq

6 bfront

7 movcv vscr −169◦
8 rotav vgoal vblue 24◦ vup

9 seq

10 mulas sscr vblue.y −23.1 vup.y

11 mulav vgoal vscr 23.4 vblue

12 seqm

13 rotav vscr (sn, sscr) 11◦ vprox

14 rotav vgoal vprox −56◦ vprox

216

This again behaves in a similar way to the trees described above, with the presence
of blue directly ahead controlling execution of lines 7 and 8 if yes, and lines 10 and
11 if not.

Once only execution What is interesting is the seqm construct at line 12. Due
to the failured decorator at line 3, whatever the results of the check for blue, it will
always be executed. Due to both seq clauses at lines 5 and 9 ending in a write to
vgoal, any second write to vgoal in an update cycle will return running. The first ever
update cycle will result in the node at line 13 executing, followed by that at line 14,
which returns running. Since we are in a memoried sequence, and vgoal has always
previously been written, all subsequent updates cycles resume at line 14, meaning
that line 13 is guaranteed to only ever execute once.

8.6.7 Engineering higher performance

Given the ability we now have to deconstruct evolved behaviour trees and understand
how they work, can we use this knowledge to engineer higher performance? We
observed in Section 8.6.3 that a single robot using tree 806768 was unable to reliably
push the frisbee, while more than one robot could. We also saw that tree 906737 was
better at stably pushing the frisbee with a single robot, motivating the possibility of
improving the single robot performance of 806768. The tree is shown in Listing 8.7
with particular parameters denoted a, b, c, and d. We decided to try and hand tune
the parameters to optimise single robot pushing stability and overall fitness.

Listing 8.7: Tree 806768

1 sel

2 avoiding

3 sel

4 seq

5 bfront

6 mulas vgoal.y vprox.x a vup.y

7 mulas vgoal.x vblue.y b vup.x

8 seq

9 movcv vscr c

10 mulav vgoal vscr d vblue

Table 8.11: Hand tuned parameters for tree 806768

Original Optimised
a 6.55 2
b −20.7 −48
c 39◦ 70.3◦

d 12.3 48

Fitness x̄ 0.27 0.30
Fitness sigma 0.044 0.041

217

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of robots in swarm

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fi
tn

es
s (

no
rm

al
ise

d
fri

sb
ee

 v
el

oc
ity

)
Fitness of engineered 806768 vs size of swarm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of robots in swarm

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Fi
tn

es
s p

er
 ro

bo
t (

no
rm

al
ise

d
fri

sb
ee

 v
el

oc
ity

)

Fitness per robot of engineered 806768 vs size of swarm

Figure 8.18: Scalability of swarm performance with increasing swarm size. Each point
measured with 60 s simulated time over 1000 simulations with different starting conditions.

We can see from the data in Table 8.11 that we have achieved a useful performance
improvement of about 10% from what was already a quite fit controller. But this
has been achieved at the cost of superlinear scaling in performance as the swarm size
increases. Figure 8.18 shows that the single agent performance has increased consid-
erably from the unaltered tree (from 0.039 to 0.12) as we intended when optimising
for more stable single robot pushing behaviour.

8.7 Explaining the difference between simulated and real
fitness

Some runs produced fit behaviours in reality and some did not, despite having evolved
fit controllers within simulation in the distributed evolutionary algorithm. This could
be the result of several causes; firstly, it could just be a sampling problem. Each
evolutionary run is unique, rather than multiple trials in reality of a particular swarm
controller or controllers, we only have a single trial. Whereas multiple trials of the
controller has been carried out in simulation, variability will sometimes result in
large differences in fitness when transferred. There could also be certain controllers
that are more susceptible to reality gap effects. One intriguing possibility though, is
that we are seeing the effects of heterogeneity in the swarm.

8.7.1 Effect of sampling

To investigate whether sampling error could explain the differences, we have to make
some assumptions. We carried out an independent two sample T-test for each run,
where one sample was the simulated heterogeneous controller mix of a run, with 1000
observations, and the second sample was the real measured fitness of that controller
mix. This gives a second sample size of one, which means we cannot say anything
about the variance. We make the assumption that the variance is the same as the first
sample, justified by reference to the results in Table 7.8 showing virtually identical

218

σ when evaluating the same controller in simulation and reality. The T-test also
assumes that the samples are normally distributed, although this is less important
for large samples. The simulated data fails the Shapiro-Wilk normality test, so these
results should thus be treated with caution.

Table 8.12: Independent two sample T-test on each run between simulated heterogeneous
fitness over 100 simulations and the real measured fitness. Only in runs 26 and 28 (bolded)
does the real fitness differ significantly from the simulated fitness (p < 0.05).

Run Sim x̄ Sim σ freal T-test p
1 0.171 0.084 0.174 0.977
2 0.118 0.077 0.028 0.243
3 0.184 0.063 0.116 0.276
5 0.162 0.083 0.085 0.355
6 0.148 0.090 0.097 0.568
7 0.186 0.099 0.240 0.582
8 0.202 0.098 0.204 0.983
9 0.158 0.078 0.171 0.874
14 0.102 0.075 0.038 0.399
15 0.162 0.086 0.005 0.067
16 0.258 0.056 0.200 0.306
17 0.174 0.070 0.154 0.778
18 0.060 0.130 0.199 0.284
20 0.113 0.081 0.108 0.950
21 0.075 0.125 -0.069 0.252
23 0.077 0.129 -0.082 0.217
24 0.084 0.128 0.160 0.555
25 0.114 0.068 0.124 0.882
26 0.071 0.127 -0.197 0.035
28 0.134 0.068 -0.061 0.004

The results are shown in Table 8.12. With the caution above in mind, we can
see that, except for runs 26 and 28, so in 90% of the runs, we cannot reject the
hypothesis (p < 0.05) that the samples are the same. In most cases, therefore, there
is no difference between simulated fitness and performance in reality that needs to
be explained.

8.7.2 Effect of controller heterogeneity in real swarm

We have seen above in the two runs that we analysed in detail that many trees that
appeared different at first were actually functionally similar. In Run 16, we had two
different trees, simulating a heterogeneous mix of the two at different ratios resulted
in a smooth variation of performance of the swarm between the two homogeneous
performances. But is that always the case? We can imagine scenarios where two
or more styles of solution could conflict, resulting in worse performance than either
type alone, or even the opposite, with synergistic interactions resulting in better
performance.

219

From the statistical argument above, showing that the differences between simulation
and real results are explainable from sampling error, we hypothesise that we should
see little difference due to heterogeneity. To test this, we take each heterogeneous
mixture of controllers that were present in the last segment of each run and simulate
them to measure the mixture fitness. We then measure the fitness of each controller
of the mixture individually in homogeneous simulation and take the average over the
controllers. For each data point, we use the same simulation budget; 1000 simulations
for each heterogeneous mix and 111 simulations for each of the nine trees present in
the mix. Figure 8.19 shows the results.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Mean of homogeneous fitness fhom

0.00

0.05

0.10

0.15

0.20

0.25

0.30

He
te

ro
ge

ne
ou

s f
itn

es
s f

he
t

Heterogeneous mixture vs homogeneous fitness
Best fit fhet = 1.02fhom 0.01

Figure 8.19: Effect of heterogeneity within runs on performance. Each point is a run. We
measure the homogeneous performance of each controller within a run and take the average,
and plot this against the heterogeneous performance of that set of controllers. There is little
effect from heterogeneity.

The correspondence is remarkably high and there appears to be virtually no perfor-
mance loss due to the heterogeneity of the controllers in a given run. This implies
that, like the two runs examined in detail above, the trees of a given run are all quite
similar in actual behaviour. This confirms the statistical argument of Section 8.7.1.
We should expect if the island model evolutionary algorithm has a sufficient degree
of migration to ensure good mixing. The actual migration level is rmigration = 0.031

(Eqn 8.3.1), so this raises the question of how low we can take the migration level
before we start to see performance loss due to heterogeneity.

220

8.7.3 Effect of unrelated controller heterogeneity

In the previous section, we show that the heterogeneous mix of controllers in the real
swarm does not cause a performance degradation compared to a homogenous swarm.
We attribute this to the island model having a high enough migration rate to ensure
good mixing. But we can test the effect of a zero rate by running simulations of het-
erogeneous swarms composed of controllers randomly from different runs. Although
the fitness function in each case is the same, there will be no common lineage.

We performed 100 tests where the nine controllers for the heterogeneous swarm were
selected randomly with replacement from the set of controllers present in the final
segment of all runs. Each test was simulated 1000 times. We plotted the average of
the individual trees homogenous fitness, as measured in the previous section, against
the heterogeneous fitness. Because selection was random with replacement, with no
knowledge of duplicates, some tests will contain multiple trees from the same run,
but most will have trees from a mixture of runs.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Mean of homogeneous fitness fhom

0.00

0.05

0.10

0.15

0.20

He
te

ro
ge

ne
ou

s f
itn

es
s f

he
t

Unrelated heterogeneous mix vs homogeneous fitness
Best fit fhet = 1.14fhom 0.04

Figure 8.20: Effect of heterogeneity with unrelated trees on performance. We randomly
select trees from across all runs and measure the heterogeneous fitness and plot this agains
the mean homogeneous fitness. There is a cost to heterogeneity since the fitness reaches
zero when the homogeneous fitness is still positive.

The results are shown in Figure 8.20. We can now see that there is a cost to het-
erogeneity, since the best fit line intersects the x-axis at a positive point. What is
interesting is that the cost is relatively small - we are taking completely unrelated
trees and mixing them in a swarm, and it is still performing reasonably.

221

8.8 Conclusions

In this chapter, we have demonstrated a swarm that is capable of evolving new
controllers within the swarm itself, removing the tie to offline processing power. The
in-swarm computational power is able to run an island model evolutionary algorithm
that can produce fit and effective swarm controllers within 15 realtime minutes,
far faster than has been possible previously. This is due to careful attention to
several elements; the writing of a fast simulator that makes maximal use of the
GPU processing power available, tuning the simulator parameters and controller
architecture to minimise and mitigate reality gap effects, using the available simulator
budget more effectively by improving the evolutionary algorithm, and finally using
the island model to scale the evolutionary performance with the size of the swarm.

One overarching theme of this work has been the desirable properties of behaviour
trees as a controller architecture, particularly as the target of evolutionary algorithm.
The modularity, human understandability, and natural extendability should mean
that we can analyse and understand evolved controllers for insight. In this chapter,
we demonstrate this by using automatic methods to simplify evolved trees, then
further human analysis to describe in detail how a selection of trees actually function.
The understandability, or explainability, is an important characteristic for future
systems created by machine learning in order that they can be verified to be safe.

Due to the decentralised nature of the island model, the real swarm is running an
heterogeneous mixture of controllers. We explore the effect that this has on perfor-
mance, and find that, in this case, the effect is low. There are further interesting
questions to answer about how much we could reduce the current migration rate
before diversity of behaviour produced much degraded performance, given how rel-
atively well unrelated heterogeneous mixtures perform. Indeed, it may be the case
that the objective function, the design of the robots, and the design of the behaviour
tree architecture is constraining the solution space such that we have convergent
behaviours.

222

Chapter 9

Conclusions

9.1 Overview

In this work, we have been concerned with moving swarm robotics as a discipline out
of the laboratory and into the real world. There is tremendous potential for robot
swarms in the wild to solve such problems as disaster recovery, mapping, pollution
control, and exploration but there are so far are no real world examples. We identified
two impediments to this.

Firstly, the limited computational power of existing swarms means that the au-
tomatic discovery of swarm controllers that produce a desired emergent collective
behaviour has to take place outside the swarm. This means that the swarm is re-
liant on outside infrastructure, such as computers and communications links, making
swarms difficult to deploy where these are not easily available, for example, in space,
or remote areas.

Secondly, the usual controller architectures are opaque and hard to understand. In
order to deploy swarm robots in the real world, we have to confront issues of under-
standability, explainability and safety. Without the ability to analyse the automati-
cally discovered controllers, we cannot be confident on how a swarm will behave in
a given situation, and cannot give guarantees of safety.

9.1.1 Behaviour trees

In Chapter 2 we looked at commonly used controller architectures for swarm robotics.
We saw that there are difficulties with the commonly used approaches. Neural net-
works are fundamentally black boxes, only understandable by actually running them.
Finite state machines suffer from scalability issues, as the number of nodes increases,
the number of connections increases exponentially, making them either limited or
hard to understand. The desire to tackle the disadvantages of both of these architec-

223

tures lead us to consider behaviour trees. Because they are modular and hierarchical,
they can be easily extended without exponential explosion of connections; a tree can
encapsulate a complete useful sub-behaviour, that can be reused as a component
within a larger tree. This hierarchical character also makes them amenable to anal-
ysis by decomposition; we can descend the tree hierarchy until the size of subtree is
understandable. It could be argued that a very large tree would compromise this un-
derstandability, and it is true that the task would be harder. But the task is harder
still for a neural network or state machine of similar complexity, e.g number of nodes
or neurons. The ability to subdivide the problem, provided by the hierarchical struc-
ture, is unique among these three architectures and suggests that a behaviour tree
will always be easier to analyse than either a neural network or state machine of
comparable complexity.

We examined the theory of behaviour trees and described in detail their semantics.
Various works have slightly differing terminologies and ambiguities, we have spec-
ified the exact behaviour and given a complete algorithm for their interpretation.
We described various identities which can be used to transform trees in order to au-
tomatically simplify them. Behaviour trees have two components; the inner nodes,
common across different works and applications, and the leaf nodes of a behaviour
tree that interact with the environment as abstracted in the blackboard. We have
shown that behaviour trees and finite state machines are equivalent and can be me-
chanically transformed from one to the other. We have also shown that behaviour
trees can be Turing complete, by implementing the RASP Universal Turing Ma-
chine. The common subsumption robot control architecture was shown to be easily
implementable using behaviour trees.

Since we used behaviour trees as the controller architecture, we designed a simple
experiment to demonstrate the feasibility of using artificial evolution to discover
fit controllers. We used a swarm of kilobots and an off-line evolutionary process
to generate controllers for a simple foraging problem. The tree structure makes
behaviour trees more amenable to the techniques of Genetic Programming [Koza,
1992], we discussed the various crossover and mutation operators required. The
resultant evolved controllers transferred well from simulation to real robots, and
were possible to analyse and understand. This showed that the evolvable behaviour
tree approach was viable, and was published in Jones et al. [2016].

Finally, we looked in detail at the design of a behaviour tree architecture suitable
for the Xpuck robots that constitute our swarm. We abstracted the sensor and
actuator capabilities of the robot into a robot reference model, that defines both the
requirements any robot simulator must fulfil, and the interface that was used in the
design of the behaviour tree leaf nodes and blackboard. By making this as simple
as possible, but no simpler, we eased the design of a fast simulator. By considering

224

useful swarm behaviours that should be simple to describe in the behaviour tree
architecture, we motivated the design of the leaf nodes and the blackboard entries.

9.1.2 Xpuck design

In Chapter 5 we covered the design of the robots that make up our custom-built
swarm. The two primary motivators for the design were cost and processing perfor-
mance. It is obviously important that cost per robot is minimised when building a
swarm, where larger numbers are better. We based our robot on the e-puck, of which
we had many available to the Bristol Robotics Laboratory. On top of that, we added
an additional Single Board Computer that gave us the increased processing power
we needed. Surveying the available platforms, we chose the Odroid XU4 for the very
high computational power available from its Samsung Exynos 5422 SoC due to the
on-chip GPU and the ability to use OpenCL for GPGPU, and for its low cost. The
requirements for battery life of several hours, and full use of the e-puck VGA camera
constrained the system design. We detailed that design, the trade-offs required and
the process of tuning the operating points of the CPU and GPU that gave the best
power and performance points.

The ability of the Xpuck robot to make good use of the e-puck VGA camera was
demonstrated by implementing the ArUco tag image tracking library and testing
the tracking accuracy in multiple scenarios with high success. The original e-puck
processor, and even the Linux Extension Board were not capable of running this
image processing application, showing the need for the extra processing power of our
design.

Because evolutionary algorithms are dependent on large numbers of simulations, we
looked next at the construction of a fast simulator. By using GPGPU techniques and
carefully constraining the design to only the minimal required capability, we built
a fast parallel 2D physics simulator capable of an aggregate robot simulation speed
more than 50000 times faster than reality. We combined this with a behaviour tree
interpreter and an evolutionary algorithm to demonstrate the processing performance
of the swarm. By distributing the evolutionary algorithm over the swarm using the
island model, we showed scalable and fast in-swarm evolution.

Some of this chapter was published in Jones et al. [2015].

9.1.3 Controller transferability

One important problem that affects robot controllers that have been discovered au-
tomatically in simulation is how well they transfer to reality. Known as the reality
gap, or the sim-to-real problem, this is a consequence of the lack of fidelity of the sim-
ulated reality compared to the actual. Because evolutionary approaches will exploit

225

any feature of the environment in order to effect fitness improvements, the con-
trollers can become overfitted to the simulated environment. Chapter 7 introduced
the benchmark task we used for the rest of this work and discussed the approaches
we used to tackle this issue.

Firstly, we injected noise into the simulation to mask its deficiencies [Jakobi et al.
, 1995]. The real robot motion noise was measured and much greater levels are
injected into the simulation. Secondly, we carefully measured physical properties of
the real robots and frisbee within the arena, such as the mass and coefficients of
friction. This only took us so far though, due to the simulator being 2D and objects
composed of perfect circles and lines, we could never truly reflect the complexities of
actual collisions. We staged multiple collisions between the robots and the frisbee,
recording the trajectories of each, then constructed identical scenarios within the
simulator and optimised various simulator parameters to minimise the differences in
the object trajectories.

The third aspect of the strategy was encapsulated in the robot reference model. Here
we abstracted the sensor capabilities of the robot, but we did so in such a way as to
both simplify the simulator modelling and minimise the difference between simulated
senses and conditioned senses in the real robot. For example, the camera sensor in
the reference model was abstracted as simply the presence of blue in the left, centre,
or right third of the field of vision. An image with 300k pixels was represented as
3 bits. In the real robot, we classified the colour of pixels and count them. In the
simulation model, we performed a low resolution ray-tracing operation to identify
visible objects. We measured the actual sensor data after this abstraction for each
sense in both real robots and in simulated robots in identical scenarios, adjusting
the simulator to reduce the difference.

Finally, some aspects of reality are particularly difficult to model well in a 2D sim-
ulation, principally collisions between robots, and between robots and arena walls.
The simulator has robots and walls as ideal surfaces, the real robots are rough, with
protrusions and imperfections. The point of collision between two robots is above
ground level, resulting in moments that reduce the wheel friction in non-linear and
unmodelled ways. Our solution was to try and avoid these situations at the be-
havioural level, with collision avoidance as a default base level behaviour, taking
priority over the evolved controller. The hierarchical structure of behaviour trees
made this example of subsumption architecture trivial to implement.

We demonstrated the effectiveness of our mitigation strategies by evolving a be-
haviour tree controller for the benchmark task and measuring its fitness many times
in simulation, and 19 times in reality. There was no difference between simulation
and reality.

226

9.1.4 In-swarm evolution

In Chapter 8 we brought all the different components of the work together, run-
ning the evolution of new controllers entirely within the swarm in a distributed and
autonomous way. As fitter controllers were generated in simulation, they were peri-
odically instantiated to run the real robots of the swarm, resulting in a real swarm
that after only 15 minutes was good at the task of pushing the frisbee.

Firstly we modified the evolutionary algorithm used in Chapter 7 to make better use
of the available simulation budget in the context of a noisy fitness function. Rather
than performing a fixed number of simulations per individual, we used a much larger
population with accumulating fitness evaluations and a tournament selector that has
a bias towards high fitness with low variance. This reached a higher fitness with
the same simulation budget. We then extended this to an island model distributed
evolutionary algorithm by having each robot evolve its own population and allowing
a small amount of migration of the fittest individuals between the subpopulations.
This showed good scaling in performance, compared to a single node.

Given this distributed in-swarm evolutionary system, we performed a set of 16 minute
runs where, every two minutes, each robot instantiated its local fittest controller to
run itself in the real world. The controllers of the swarm thus followed the discretised
trajectory of the evolutionary system. In many cases, after only 10 minutes, the real
swarm was performing the benchmark task with high fitness.

A central theme of this work has been the desirability of behaviour trees as a con-
troller architecture, because automatically generated trees can be analysed and ex-
plained. We took the many evolutionary runs performed and cluster them by be-
havioural metrics in order to highlight interesting controllers to analyse. We looked
at several different controllers, automatically simplifying them and then applying
further simplifications by hand. The behaviour was explained in detail with vi-
sualisations of the different sub-behaviours. We characterised the swarm scaling
performance. Using the insight gained, we engineered higher performance in one
controller.

Finally, we looked at the difference in performance between the swarm in reality
and in simulation, examining the effects of a heterogeneous but related mixture
of controllers, a completely heterogeneous mixture of controllers, and the effect of
sampling. We concluded that most of the difference in our set of runs from simulation
was due to sampling, and there was no significant controller transference performance
loss.

227

9.2 Conclusions and future work

We have successfully built a computationally powerful swarm of robots and demon-
strated the autonomous in-swarm evolution of fit behaviour tree controllers in short
periods of time. The controllers could be, and some were, analysed, explained and
even improved. These are necessary conditions to move swarm robots into the real
world.

Clearly, though, there is further work that can be done. The following sections sketch
some of the areas we are particularly interested in pursuing.

9.2.1 Adaptivity

Firstly, and perhaps most importantly, the system as described was not adaptive
to changes in the environment. By adaptivity, we mean the quality of the system
being able to adapt its behaviour automatically in response to change, rather than
adaptability, the quality of the system being easily adapted by some external actor
to suit a change in the environment [Oppermann & Rasher, 1997; Reinecke et al. ,
2010]. Controller solutions were evolved entirely in simulation on the robots, then
transferred to run them in reality. The flow of control was one-way only. We have
sketched out a tentative way forward; consider a changeable element E of the envi-
ronment that can affect the fitness of the swarm. To be adaptive, the swarm has to a)
detect the current state of E, and b) has to evolve new controllers within a simulated
environment incorporating the new value of E. One approach is the co-evolution of
simulator parameters and controllers, used by O’Dowd et al. [2014], with real-world
fitness used as a proxy for simulator alignment with the environment. Another is the
more direct measurement of the environment. We assume that after sufficient run-
ning time in an unchanged environment, the distributed evolutionary system reaches
a plateau of performance. If we are at this quasi steady-state and a change in E is
detected in the real world, we alter the simulated environment similarly. This should
cause a drop in the fitness within the evolutionary system, followed by a recovery as
new innovations are produced in response to the perturbation.

These new adapted controllers are eventually instantiated to run the real robots,
making the swarm adaptive to the changed environment. The detection of the state
of some element E of the environment could be called reality probing. The are many
possible ways this could be done. For example, suppose the change was the mass of
frisbee. A heavy frisbee is harder to push, and the driving wheels slip more. The
difference between the commanded velocity vs the actual velocity when pushing the
frisbee is one form for reality probe.

In accordance with swarm principles, this reality probe information is local, but we
want the entire swarm evolutionary system to have access to the measured value of

228

E. Here we could use some form of distributed decision making, as used by bees,
for example, when choosing a nest site, to arrive at a consensus value for E based
on local knowledge and agent interactions [Crosscombe et al. , 2017]. At this point,
we have detected an environmental change and altered the simulation environment
used by the evolutionary algorithm in an entirely distributed way.

9.2.2 Reality gap and the effect of architecture

The central thesis of Francesca et al. [2014a] is that the high representational power
of neural networks makes them prone to overfitting the simulation environment of an
automatic discovery process and thus such controllers perform poorly when trans-
ferred to the real world. By reducing the representational power, by limiting available
behaviours to a larger granularity, the reality gap could be reduced. Their work was
one inspiration for our use of behaviour trees, and their modular and hierarchical
structure make it convenient to test this thesis. We can define useful sub-behaviours
that perform similarly both in simulation and reality and encapsulate them. If the
evolutionary algorithm is only allowed to use these robust sub-behaviours as leaf
nodes in evolved controllers, we hypothesise that such controllers will be more ro-
bust themselves to reality gap effects than if the evolutionary algorithm is allowed to
use the full range of much lower level leaf nodes. Of course, by limiting the range of
behaviours available to the evolutionary algorithm, we may also limit the ultimate
level of performance we can reach, but the shape of this trade-off is not known and
merits further investigation.

On a related note, we have discussed in detail the design of the behaviour tree
architecture. What impact does this have on evolved solutions? One choice we made
which in retrospect might be worth revisiting is the form of the blackboard vectors.
They are currently (x, y) pairs of real numbers. What if they were represented in
polar form (r, θ)? Because of other decisions, the individual elements of the vector
are accessible to scalar leaf nodes, indeed this capability is exploited in one of the
trees we examine in Chapter 8. Would the polar form produce easier to understand
evolved controllers? Or different behaviour styles? It should always be possible
to represent a controller that performs identically with either vector style, but the
search space is differently shaped, so we could expect different results.

9.2.3 Moving into three dimensions

This work was focussed entirely on robots operating on a 2D surface. The reasons for
this were the previous experience of the author in writing fast 2D physics simulators,
and the availability within the lab of a large supply of e-puck robots that could be
enhanced at relatively low cost in order to build the Xpuck swarm. There is, however,
no reason why the methodology used here could not be applied to a swarm of robots
working in three dimensions, flying drones, for example.

229

The current system is capable of evolving fit solutions within 15 minutes. This is
within the flying time of current drones. The XU4 single board computer is small
and light, weighing only 60 g, and drones have large capacity batteries to power the
propeller motors, so the power requirements should be easy to meet. It seems quite
feasible to equip a swarm of drones with the same computational capacity as the
Xpuck swarm. Given such a swarm, the question then is how to go about designing
the robot reference model, and, given that abstraction, the associated blackboard
and suitable BT leaf nodes. In order to run the evolutionary algorithm, it would also
be necessary to write an appropriately fast simulator. We argue that it is important
to construct the reference model in a minimalistic way; abstracting away as much
detail as possible without compromising the ability to perform the required tasks.
This simplification makes possible a sufficiently performant simulator and motivates
granular behaviours, potentially helping reduce the reality gap. It would be very
interesting to test the methodology of this work in such a way.

230

Appendix A

Additional Material

A.1 Xpuck Open Source

We make the hardware and software design of the Xpuck robot and associated sim-
ulator freely available with a permissive MIT licence:

Copyright (c) 2019 Simon Jones simon.jones@brl.ac.uk

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHER-
WISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

All files necessary to build the Xpuck hardware and run OpenCL accelerated simula-
tions are available at the repository https://bitbucket.org/siteks/xpuck_open_

231

https://bitbucket.org/siteks/xpuck_open_source
https://bitbucket.org/siteks/xpuck_open_source

source.

A.2 Videos

Some videos of the experiments are available. Each run has a visualisation of the
telemetry and Vicon data and some runs have actual videos. They are available at
https://www.youtube.com/user/simonj23/videos.

232

https://bitbucket.org/siteks/xpuck_open_source
https://bitbucket.org/siteks/xpuck_open_source
https://www.youtube.com/user/simonj23/videos

References

Abiyev, Rahib H, Bektaş, ŞENOL, Akkaya, Nurullah, & Aytac, Ersin. 2013. Be-
haviour Trees Based Decision Making for Soccer Robots. Page 102 of: Kanarachos,
Andreas (ed), Recent Advances in Mathematical Methods, Intelligent Systems and
Materials: (mamectis ’13)(materials ’13). Mathematics and computers in science
and engineering. Wseas LLC.

Bäck, Thomas. 1996. Evolutionary algorithms in theory and practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford university
press.

Bäck, Thomas, Fogel, David B, & Michalewicz, Zbigniew. 2000. Evolutionary Com-
putation 1. Basic Algorithms and Operators, chapter Permutations.

Bagnell, J Andrew, Cavalcanti, Felipe, Cui, Lei, Galluzzo, Thomas, Hebert, Mar-
tial, Kazemi, Moslem, Klingensmith, Matthew, Libby, Jacqueline, Liu, Tian Yu,
Pollard, Nancy, et al. . 2012. An integrated system for autonomous robotics ma-
nipulation. Pages 2955–2962 of: 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Vilamoura, Portugal: IEEE, for IEEE.

Baldassarre, Gianluca, Nolfi, Stefano, & Parisi, Domenico. 2003. Evolving mobile
robots able to display collective behaviors. Artificial life, 9(3), 255–267.

Bedau, Mark A. 1997. Weak emergence. Noûs, 31, 375–399.

Benzie, John AH, & Williams, Suzanne T. 1997. Genetic structure of giant clam
(Tridacna maxima) populations in the west Pacific is not consistent with dispersal
by present-day ocean currents. Evolution, 51(3), 768–783.

Beyer, Hans-Georg, & Schwefel, Hans-Paul. 2002. Evolution Strategies - A compre-
hensive introduction. Natural computing, 1(1), 3–52.

Birattari, Mauro, Stützle, Thomas, Paquete, Luis, Varrentrapp, Klaus, et al. . 2002.
A Racing Algorithm for Configuring Metaheuristics. In: Gecco, vol. 2.

Birattari, Mauro, Delhaisse, Brian, Francesca, Gianpiero, & Kerdoncuff, Yvon. 2016.
Observing the effects of overdesign in the automatic design of control software for

233

robot swarms. Pages 149–160 of: Dorigo, Marco, Birattari, Mauro, Li, Xiaodong,
López-Ibáñez, Manuel, Ohkura, Kazuhiro, Pinciroli, Carlo, & Stützle, Thomas
(eds), International Conference on Swarm Intelligence (ANTS 2016). Brussels,
Belgium: Springer.

Birattari, Mauro, Ligot, Antoine, Bozhinoski, Darko, Brambilla, Manuele, Francesca,
Gianpiero, Garattoni, Lorenzo, Garzón Ramos, David, Hasselmann, Ken,
Kegeleirs, Miquel, Kuckling, Jonas, Pagnozzi, Federico, Roli, Andrea, Salman,
Muhammad, & Stützle, Thomas. 2019. Automatic Off-Line Design of Robot
Swarms: A Manifesto. Frontiers in Robotics and AI, 6, 59.

Bjerknes, Jan Dyre, & Winfield, Alan FT. 2013. On fault tolerance and scalability
of swarm robotic systems. Pages 431–444 of: Martinoli, A., Mondada, F., Correll,
N., Mermoud, G., Egerstedt, M., Hsieh, M.A., Parker, L.E., & Støy, K (eds), Dis-
tributed Autonomous Robotic Systems. The 10th International Symposium (DARS
2010). Springer.

Blum, Christian, Winfield, Alan FT, & Hafner, Verena V. 2018. Simulation-Based
Internal Models for Safer Robots. Frontiers in Robotics and AI, 4, 74.

Bohr, Mark. 2007. A 30 year retrospective on Dennard’s MOSFET scaling paper.
IEEE Solid-State Circuits Society Newsletter, 12(1), 11–13.

Bongard, Josh, Zykov, Victor, & Lipson, Hod. 2006. Resilient machines through
continuous self-modeling. Science, 314(5802), 1118–1121.

Bongard, Josh C. 2013. Evolutionary robotics. Communications of the ACM, 56(8),
74–83.

Brambilla, Manuele, Ferrante, Eliseo, Birattari, Mauro, & Dorigo, Marco. 2013.
Swarm robotics: a review from the swarm engineering perspective. Swarm Intel-
ligence, 7(1), 1–41.

Bredeche, Nicolas, Montanier, Jean-Marc, Liu, Wenguo, & Winfield, Alan FT. 2012.
Environment-driven distributed evolutionary adaptation in a population of au-
tonomous robotic agents. Mathematical and Computer Modelling of Dynamical
Systems, 18(1), 101–129.

Bredeche, Nicolas, Haasdijk, Evert, & Prieto, Abraham. 2018. Embodied Evolution
in Collective Robotics: A Review. Frontiers in Robotics and AI, 5, 12.

Brooks, Rodney. 1986. A robust layered control system for a mobile robot. IEEE
journal on robotics and automation, 2(1), 14–23.

Brooks, Rodney A. 1991. Intelligence without representation. Artificial intelligence,
47(1-3), 139–159.

234

Cantú-Paz, Erick. 1998. A survey of parallel genetic algorithms. Calculateurs paral-
leles, reseaux et systems repartis, 10(2), 141–171.

Cao, Y Uny, Fukunaga, Alex S, Kahng, Andrew B, &Meng, Frank. 1995. Cooperative
mobile robotics: Antecedents and directions. Pages 226–234 of: Intelligent Robots
and Systems 95.’Human Robot Interaction and Cooperative Robots’, Proceedings.
1995 IEEE/RSJ International Conference on, vol. 1. IEEE.

Catto, Erin. 2009. Box2D: A 2D Physics Engine for Games. World Wide Web
electronic publication, http://box2d.org/about/.

Champandard, Alex. 2007. Behavior trees for next-gen game AI. In: Game developers
conference, audio lecture.

Clancy, Daniel J, & Kuipers, BJ. 1993. Behavior abstraction for tractable simulation.
Pages 57–64 of: Proceedings of the Seventh International Workshop on Qualitative
Reasoning about Physical Systems. Citeseer.

Clune, Jeff, Mouret, Jean-Baptiste, & Lipson, Hod. 2013. The evolutionary origins
of modularity. Proceedings of the Royal Society of London B: Biological Sciences,
280(1755), 20122863.

Colledanchise, Michele. 2017. Behavior Trees in Robotics.

Colledanchise, Michele, & Ogren, Petter. 2014. How Behavior Trees modularize
robustness and safety in hybrid systems. Pages 1482–1488 of: Burgard, Wol-
fram (ed), IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2014). IEEE, Chicago, Illinois, USA.

Colledanchise, Michele, Parasuraman, Ramviyas, & Ögren, Petter. 2015. Learning
of Behavior Trees for Autonomous Agents. arXiv preprint arXiv:1504.05811.

Cook, Stephen A, & Reckhow, Robert A. 1973. Time bounded random access ma-
chines. Journal of Computer and System Sciences, 7(4), 354–375.

Crosscombe, Michael, Lawry, Jonathan, Hauert, Sabine, & Homer, Martin. 2017.
Robust distributed decision-making in robot swarms: Exploiting a third truth
state. Pages 4326–4332 of: Maciejewski, Tony (ed), 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, Vancouver, Canada.

Cutumisu, Maria, & Szafron, Duane. 2009. An Architecture for Game Behavior
AI: Behavior Multi-Queues. In: Darken, Christian J., & Youngblood, G. Michael
(eds), Fifth Artificial Intelligence for Interactive Digital Entertainment Conference
(AIIDE 2009). Palo Alto, California, USA: AAAI.

Davis, Lawrence. 1991. Handbook of genetic algorithms.

235

De Wolf, Tom, & Holvoet, Tom. 2004. Emergence versus self-organisation: Different
concepts but promising when combined. Pages 1–15 of: International workshop
on engineering self-organising applications. Springer.

Deneubourg, Jean-Louis, & Goss, Simon. 1989. Collective patterns and decision-
making. Ethology Ecology & Evolution, 1(4), 295–311.

Dennard, Robert H, Gaensslen, Fritz H, Rideout, V Leo, Bassous, Ernest, & LeBlanc,
Andre R. 1974. Design of ion-implanted MOSFET’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits, 9(5), 256–268.

Dill, Kevin, & Lockheed Martin. 2011. A game AI approach to autonomous control of
virtual characters. In: Interservice/Industry Training, Simulation, and Education
Conference (I/ITSEC).

Doncieux, Stephane, Bredeche, Nicolas, Mouret, Jean-Baptiste, & Eiben, Agoston
E Gusz. 2015. Evolutionary robotics: what, why, and where to. Frontiers in
Robotics and AI, 2, 4.

Dorigo, Marco, Tuci, Elio, Groß, Roderich, Trianni, Vito, Labella, Thomas Halva,
Nouyan, Shervin, Ampatzis, Christos, Deneubourg, Jean-Louis, Baldassarre, Gi-
anluca, Nolfi, Stefano, et al. . 2004. The swarm-bots project. Pages 31–44
of: Şahin, Erol, & Spears, William M. (eds), International Workshop on Swarm
Robotics. Springer, Santa Monica, CA, USA.

Dorigo, Marco, Floreano, Dario, Gambardella, Luca Maria, Mondada, Francesco,
Nolfi, Stefano, Baaboura, Tarek, Birattari, Mauro, Bonani, Michael, Brambilla,
Manuele, Brutschy, Arne, et al. . 2013. Swarmanoid: a novel concept for the study
of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine, 20(4),
60–71.

Došilović, Filip Karlo, Brčić, Mario, & Hlupić, Nikica. 2018. Explainable artificial
intelligence: A survey. Pages 0210–0215 of: 2018 41st International convention
on information and communication technology, electronics and microelectronics
(MIPRO). IEEE.

Dromey, R Geoff. 2003. From requirements to design: Formalizing the key steps.
Pages 2–11 of: First International Conference on Software Engineering and For-
mal Methods. IEEE, Brisbane, Queensland, Australia.

Duarte, Miguel, Oliveira, Sancho Moura, & Christensen, Anders Lyhne. 2014. Hybrid
control for large swarms of aquatic drones. Pages 785–792 of: Proceedings of the
14th International Conference on the Synthesis & Simulation of Living Systems
(ALIFE 2014). New York, NY, USA: MIT Press.

Duarte, Miguel, Gomes, Jorge, Costa, Vasco, Oliveira, Sancho Moura, & Chris-

236

tensen, Anders Lyhne. 2016. Hybrid Control for a Real Swarm Robotics System
in an Intruder Detection Task. Pages 213–230 of: Squillero, Giovanni, & Burelli,
Paolo (eds), Applications of Evolutionary Computation: 19th European Conference
(EvoApplications 2016). Porto, Portugal: Springer, Cham.

Dyckhoff, Max, & Bungie LLC. 2008. Decision making and knowledge representation
in Halo 3. In: Presentation at the Game Developers Conference. GDC.

Fajen, Brett R, & Warren, William H. 2003. Behavioral dynamics of steering, ob-
stable avoidance, and route selection. Journal of Experimental Psychology: Human
Perception and Performance, 29(2), 343.

Fletcher, Desmond, & Goss, Ernie. 1993. Forecasting with neural networks: an
application using bankruptcy data. Information & Management, 24(3), 159–167.

Floreano, Dario, Mitri, Sara, Magnenat, Stéphane, & Keller, Laurent. 2007. Evolu-
tionary conditions for the emergence of communication in robots. Current biology,
17(6), 514–519.

Floreano, Dario, Dürr, Peter, & Mattiussi, Claudio. 2008. Neuroevolution: from
architectures to learning. Evolutionary intelligence, 1(1), 47–62.

Fortin, Félix-Antoine, Rainville, De, Gardner, Marc-André Gardner, Parizeau, Marc,
Gagné, Christian, et al. . 2012. DEAP: Evolutionary algorithms made easy. The
Journal of Machine Learning Research, 13(1), 2171–2175.

Francesca, Gianpiero, & Birattari, Mauro. 2016. Automatic Design of Robot Swarms:
Achievements and Challenges. Frontiers in Robotics and AI, 3, 29.

Francesca, Gianpiero, Brambilla, Manuele, Brutschy, Arne, Trianni, Vito, & Birat-
tari, Mauro. 2014a. AutoMoDe: A novel approach to the automatic design of
control software for robot swarms. Swarm Intelligence, 8(2), 89–112.

Francesca, Gianpiero, Brambilla, Manuele, Brutschy, Arne, Garattoni, Lorenzo,
Miletitch, Roman, Podevijn, Gaëtan, Reina, Andreagiovanni, Soleymani, Touraj,
Salvaro, Mattia, Pinciroli, Carlo, et al. . 2014b. An experiment in automatic design
of robot swarms. Pages 25–37 of: Swarm Intelligence. Springer.

Francesca, Gianpiero, Brambilla, Manuele, Brutschy, Arne, Garattoni, Lorenzo,
Miletitch, Roman, Podevijn, Gaëtan, Reina, Andreagiovanni, Soleymani, Touraj,
Salvaro, Mattia, Pinciroli, Carlo, et al. . 2015. AutoMoDe-Chocolate: automatic
design of control software for robot swarms. Swarm Intelligence, 9(2-3), 125–152.

Fujita, Masahiro, Kuroki, Yoshihiro, Ishida, Tatsuzo, & Doi, Toshi T. 2003. Au-
tonomous behavior control architecture of entertainment humanoid robot SDR-

237

4X. Pages 960–967 of: Proceedings 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), vol. 1. IEEE.

Garrido-Jurado, Sergio, Munoz-Salinas, Rafael, Madrid-Cuevas, Francisco J., &
Marin-Jimenez, Manuel J. 2014. Automatic generation and detection of highly
reliable fiducial markers under occlusion. Pattern Recognition, 47(6), 2280 – 2292.

Gaul, Randy. 2012. Impulse Engine 2D physics simulator. World Wide Web electronic
publication.

Gonzalez-Perez, Cesar, Henderson-Sellers, Brian, & Dromey, Geoff. 2005. A meta-
model for the behavior trees modelling technique. Pages 35–39 of: Third Interna-
tional Conference on Information Technology and Applications (ICITA’05), vol. 1.
IEEE.

Gorges-Schleuter, Martina. 1990. Explicit parallelism of genetic algorithms through
population structures. Pages 150–159 of: International Conference on Parallel
Problem Solving from Nature. Springer.

Grasso, Ivan, Radojkovic, Petar, Rajovic, Nikola, Gelado, Isaac, & Ramirez, Alex.
2014. Energy Efficient HPC on Embedded SoCs: Optimization Techniques for
Mali GPU. Pages 123–132 of: Parallel and Distributed Processing Symposium,
2014 IEEE 28th International. IEEE, Phoenix, AZ, USA.

Gronqvist, Johan, & Lokhmotov, Anton. 2014. Optimising OpenCL kernels for the
ARM Mali-T600 GPUs. GPU Pro 5: Advanced Rendering Techniques, 327–357.

Gurrum, Siva P, Edwards, Darvin R, Marchand-Golder, Thomas, Akiyama, Jotaro,
Yokoya, Satoshi, Drouard, Jean-Francois, & Dahan, Franck. 2012. Generic thermal
analysis for phone and tablet systems. Pages 1488–1492 of: IEEE 62nd Electronic
Components and Technology Conference (ECTC 2012). IEEE, San Diego, USA.

Gutiérrez, Álvaro, Tuci, Elio, & Campo, Alexandre. 2009a. Evolution of neuro-
controllers for robots’ alignment using local communication. International Journal
of Advanced Robotic Systems, 6(1), 6.

Gutiérrez, Álvaro, Campo, Alexandre, Dorigo, Marco, Donate, Jesus, Monasterio-
Huelin, Félix, & Magdalena, Luis. 2009b. Open e-puck range & bearing minia-
turized board for local communication in swarm robotics. Pages 3111–3116 of:
Robotics and Automation, 2009. ICRA’09. IEEE International Conference on.
IEEE, Kobe, Japan.

Hamann, Heiko. 2012. Towards swarm calculus: Universal properties of swarm per-
formance and collective decisions. Pages 168–179 of: Dorigo, Marco, Birattari,
Mauro, Blum, Christian, Christensen, Anders Lyhne, Engelbrecht, Andries P.,

238

Groß, Roderich, & Stützle, Thomas (eds), International Conference on Swarm
Intelligence (ANTS 2012). Springer, Brussels, Belgium.

Hauert, Sabine, Winkler, Laurent, Zufferey, Jean-Christophe, & Floreano, Dario.
2008. Ant-based swarming with positionless micro air vehicles for communication
relay. Swarm Intelligence, 2(2), 167–188.

Hauert, Sabine, Zufferey, Jean-Christophe, & Floreano, Dario. 2009. Evolved swarm-
ing without positioning information: an application in aerial communication relay.
Autonomous Robots, 26(1), 21–32.

Hauert, Sabine, Leven, Severin, Varga, Maja, Ruini, Fabio, Cangelosi, Angelo, Zuf-
ferey, J-C, & Floreano, Dario. 2011. Reynolds flocking in reality with fixed-wing
robots: communication range vs. maximum turning rate. Pages 5015–5020 of:
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on. IEEE.

Haykin, Simon. 1994. Neural networks: a comprehensive foundation. Prentice Hall
PTR.

Hintjens, Pieter. 2013. ZeroMQ: Messaging for Many Applications. O’Reilly Media,
Inc.

Ho, Joshua, & Smith, Ryan. 2015. NVIDIA Tegra X1 Preview and Architecture
Analysis. AnandTech.

Hoff, Nicholas, Wood, Robert, & Nagpal, Radhika. 2013. Distributed colony-level
algorithm switching for robot swarm foraging. Pages 417–430 of: Distributed
Autonomous Robotic Systems. Springer.

Holland, John Henry, et al. . 1975. Adaptation in natural and artificial systems:
an introductory analysis with applications to biology, control, and artificial intelli-
gence. MIT press.

Hoshino, Yukiko, Takagi, Tsuyoshi, Di Profio, Ugo, & Fujita, Masahiro. 2004. Behav-
ior description and control using behavior module for personal robot. Pages 4165–
4171 of: IEEE International Conference on Robotics and Automation (ICRA’04),
vol. 4. IEEE, New Orleans, LA, USA.

Huang, Wesley H, Fajen, Brett R, Fink, Jonathan R, &Warren, William H. 2006. Vi-
sual navigation and obstacle avoidance using a steering potential function. Robotics
and Autonomous Systems, 54(4), 288–299.

Hutchison, David C. 2005. Introducing BrilliantColorTM Technology. Texas Instru-
ments white paper.

239

Isla, Damian. 2005. Handling complexity in the Halo 2 AI. In: Game Developers
Conference (GDC 2005), vol. 12. GDC.

Jakobi, Nick. 1998. Running across the reality gap: Octopod locomotion evolved in
a minimal simulation. Pages 39–58 of: Evolutionary Robotics. Springer.

Jakobi, Nick, Husbands, Phil, & Harvey, Inman. 1995. Noise and the reality gap:
The use of simulation in evolutionary robotics. Pages 704–720 of: Advances in
artificial life. Springer.

Jin, Yaochu. 2011. Surrogate-assisted evolutionary computation: Recent advances
and future challenges. Swarm and Evolutionary Computation, 1(2), 61–70.

Jin, Yaochu, & Branke, Jürgen. 2005. Evolutionary optimization in uncertain
environments-a survey. IEEE Transactions on evolutionary computation, 9(3),
303–317.

Jones, Simon, Studley, Matthew, & Winfield, Alan FT. 2015. Mobile GPGPU Ac-
celeration of Embodied Robot Simulation. In: Headleand C., Teahan W., Ap
Cenydd L. (ed), Artificial Life and Intelligent Agents: First International Sympo-
sium (ALIA 2014). Bangor, UK: Springer.

Jones, Simon, Studley, Matthew, Hauert, Sabine, & Winfield, Alan FT. 2016. Evolv-
ing behaviour trees for swarm robotics. In: Groß, Roderich, Kolling, Andreas,
Berman, Spring, Frazzoli, Emilio, Martinoli, Alcherio, Matsuno, Fumitoshi, &
Gauci, Melvin (eds), 13th International Symposium on Distributed Autonomous
Robotic Systems (DARS 2016). London, UK: Springer.

Jones, Simon, Studley, Matthew, Hauert, Sabine, & Winfield, Alan FT. 2018. A Two
Teraflop Swarm. Frontiers in Robotics and AI, 5, 11.

Jones, Simon, Winfield, Alan FT, Hauert, Sabine, & Studley, Matthew. 2019. On-
board Evolution of Understandable Swarm Behaviors. Advanced Intelligent Sys-
tems, 1.

Keckler, Stephen W, Dally, William J, Khailany, Brucek, Garland, Michael, &
Glasco, David. 2011. GPUs and the future of parallel computing. IEEE Micro,
31(5), 7–17.

Khronos OpenCL Working Group, et al. . 2010. The OpenCL Specification, Version
1.1.

Klöckner, Andreas. 2013a. Behavior Trees for UAV Mission Management. Pages 57–
68 of: INFORMATIK 2013 Informatik angepasst an Mensch, Organisation und
Umwelt. Koblenz, Germany: Springer.

Klöckner, Andreas. 2013b. Interfacing behavior trees with the world using description

240

logic. In: AIAA conference on Guidance, Navigation and Control. AIAA, Boston,
MA, inUSA.

Kohonen, Teuvo. 1982. Self-organized formation of topologically correct feature
maps. Biological cybernetics, 43(1), 59–69.

Konfrst, Zdenek. 2004. Parallel genetic algorithms: Advances, computing trends,
applications and perspectives. Page 162 of: 18th International Parallel and Dis-
tributed Processing Symposium, 2004. Proceedings. IEEE.

Koos, Sylvain, Mouret, J-B, & Doncieux, Stéphane. 2013. The transferability ap-
proach: Crossing the reality gap in evolutionary robotics. Evolutionary Computa-
tion, IEEE Transactions on, 17(1), 122–145.

Koza, John R. 1992. Genetic programming: on the programming of computers by
means of natural selection. Vol. 1. MIT press.

Koza, John R. 1994. Genetic programming as a means for programming computers
by natural selection. Statistics and Computing, 4(2), 87–112.

Kushleyev, Alex, Mellinger, Daniel, Powers, Caitlin, & Kumar, Vijay. 2013. Towards
a swarm of agile micro quadrotors. Autonomous Robots, 35(4), 287–300.

Langdon, William B. 2000. Size fair and homologous tree crossovers for tree genetic
programming. Genetic programming and evolvable machines, 1(1-2), 95–119.

Lehman, Joel, Clune, Jeff, & Misevic, Dusan. 2018a. The Surprising Creativity of
Digital Evolution. Pages 55–56 of: Ikegami, Takashi, Virgo, Nathaniel, Witkowski,
Olaf, Oka, Mizuki, Suzuki, Reiji, & Iizuka, Hiroyuki (eds), The 2018 Conference
on Artificial Life (ALIFE 2018). MIT Press, Tokyo, Japan.

Lehman, Joel, Clune, Jeff, Misevic, Dusan, Adami, Christoph, Beaulieu, Julie, Bent-
ley, Peter J, Bernard, Samuel, Belson, Guillaume, Bryson, David M, Cheney, Nick,
et al. . 2018b. The surprising creativity of digital evolution: A collection of anec-
dotes from the evolutionary computation and artificial life research communities.
arXiv preprint arXiv:1803.03453.

Lim, Chong-U, Baumgarten, Robin, & Colton, Simon. 2010. Evolving behaviour
trees for the commercial game DEFCON. Pages 100–110 of: Applications of
evolutionary computation. Springer.

Lipovski, G Jack. 1976. The architecture of a simple, effective control processor.
Microprocessing and Microprogramming.

Liu, Wenguo, & Winfield, Alan FT. 2011. Open-hardware e-puck Linux extension
board for experimental swarm robotics research. Microprocessors and Microsys-
tems, 35(1), 60–67.

241

Liu, Wenguo, Winfield, Alan FT, & Sa, Jin. 2007. Modelling swarm robotic systems:
A case study in collective foraging. Towards Autonomous Robotic Systems (TAROS
07), 25–32.

Luke, Sean, & Panait, Liviu. 2006. A comparison of bloat control methods for genetic
programming. Evolutionary Computation, 14(3), 309–344.

Mack, Chris A. 2011. Fifty years of Moore’s law. IEEE Transactions on semicon-
ductor manufacturing, 24(2), 202–207.

Manocha, Dinesh. 2005. General-purpose computations using graphics processors.
Computer, 38(8), 85–88.

Marques, Hugo Gravato, & Holland, Owen. 2009. Architectures for functional imag-
ination. Neurocomputing, 72(4), 743–759.

Marzinotto, Alejandro, Colledanchise, Michele, Smith, Colin, & Ogren, Petter. 2014.
Towards a unified behavior trees framework for robot control. Pages 5420–5427 of:
IEEE International Conference on Robotics and Automation (ICRA 2014). IEEE,
Hong Kong, China.

Mataric, Maja J. 1993. Designing emergent behaviors: From local interactions to
collective intelligence. Pages 432–441 of: Proceedings of the Second International
Conference on Simulation of Adaptive Behavior.

Mateas, Michael, & Stern, Andrew. 2002. A behavior language for story-based be-
lievable agents. IEEE Intelligent Systems, 17(4), 39–47.

McLurkin, James, Lynch, Andrew J, Rixner, Scott, Barr, Thomas W, Chou, Alvin,
Foster, Kathleen, & Bilstein, Siegfried. 2013. A low-cost multi-robot system for
research, teaching, and outreach. Pages 597–609 of: Martinoli, A., Mondada, F.,
Correll, N., Mermoud, G., Egerstedt, M., Hsieh, M.A., Parker, L.E., & Støy, K
(eds), Distributed Autonomous Robotic Systems. The 10th International Sympo-
sium (DARS 2010). Springer.

Menzel, Randolf, & Giurfa, Martin. 2001. Cognitive architecture of a mini-brain:
the honeybee. Trends in cognitive sciences, 5(2), 62–71.

Millard, Alan G, Timmis, Jon, & Winfield, Alan FT. 2013. Towards exogenous
fault detection in swarm robotic systems. Pages 429–430 of: Natraj, Ashutosh,
Cameron, Stephen, Melhuish, Chris, & Witkowski, Mark (eds), Towards Au-
tonomous Robotic Systems (TAROS 2013). Springer, Oxford, UK.

Millard, Alan G, Timmis, Jon, & Winfield, Alan FT. 2014. Run-time detection of
faults in autonomous mobile robots based on the comparison of simulated and
real robot behaviour. Pages 3720–3725 of: Burgard, Wolfram (ed), IEEE/RSJ

242

International Conference on Intelligent Robots and Systems (IROS 2014). IEEE,
Chicago, Illinois, USA.

Millard, Alan G, Joyce, Russell Andrew, Hilder, James Alan, Fleseriu, Cristian, New-
brook, Leonard, Li, Wei, McDaid, Liam, & Halliday, David Malcolm. 2017. The
Pi-puck extension board: a Raspberry Pi interface for the e-puck robot platform.
In: Maciejewski, Tony (ed), IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2017). IEEE, Vancouver, Canada.

Minkovich, Kirill, Thibeault, Corey M, O’Brien, Michael John, Nogin, Aleksey, Cho,
Youngkwan, & Srinivasa, Narayan. 2014. HRLSim: a high performance spiking
neural network simulator for GPGPU clusters. IEEE transactions on neural net-
works and learning systems, 25(2), 316–331.

Mitri, Sara, Floreano, Dario, & Keller, Laurent. 2009. The evolution of information
suppression in communicating robots with conflicting interests. Proceedings of the
National Academy of Sciences, 106(37), 15786–15790.

Mondada, Francesco, Bonani, Michael, Guignard, André, Magnenat, Stéphane,
Studer, Christian, & Floreano, Dario. 2005. Superlinear physical performances
in a SWARM-BOT. Pages 282–291 of: Capcarrere, M., Freitas, A.A., Bentley,
P.J., Johnson, C.G., & Timmis, J (eds), The 8th European Conference on Artificial
Life (ECAL 2005). Springer, Canterbury, UK.

Mondada, Francesco, Bonani, Michael, Raemy, Xavier, Pugh, James, Cianci,
Christopher, Klaptocz, Adam, Magnenat, Stéphane, Zufferey, Jean-Christophe,
Floreano, Dario, & Martinoli, Alcherio. 2009. The e-puck, a robot designed for ed-
ucation in engineering. Pages 59–65 of: Gonçalves, P.J.S., Torres, Paulo, & Alves,
C.M.O. (eds), Proceedings of the 9th conference on autonomous robot systems and
competitions (ROBOTICA 2009), vol. 1.

Mouret, Jean-Baptiste, & Chatzilygeroudis, Konstantinos. 2017. 20 Years of Reality
Gap: a few Thoughts about Simulators in Evolutionary Robotics. In: Workshop
"Simulation in Evolutionary Robotics", Genetic and Evolutionary Computation
Conference (GECCO 2017). ACM, Berlin, Germany.

Nelson, Andrew L, Barlow, Gregory J, & Doitsidis, Lefteris. 2009. Fitness func-
tions in evolutionary robotics: A survey and analysis. Robotics and Autonomous
Systems, 57(4), 345–370.

Niiranen, Jouko. 1999 (09). Fast and accurate symmetric Euler algorithm for elec-
tromechanical simulations NOTE: The method became later known as "Sym-
plectic Euler". Pages 71–78 of: Proceedings of the 6th International Conference
ELECTRIMACS ’99: Modelling and Simulation of Electric Machines, Converters
and Systems, vol. 1.

243

Nolfi, Stefano, Floreano, Dario, & Floreano, Director Dario. 2000. Evolutionary
robotics: The biology, intelligence, and technology of self-organizing machines. MIT
press.

Nvidia. 2007. NVIDIA CUDA, Compute Unified Device Architecture Programming
Guide. NVIDIA.

O’Dowd, Paul J, Studley, Matthew, & Winfield, Alan FT. 2014. The distributed
co-evolution of an on-board simulator and controller for swarm robot behaviours.
Evolutionary Intelligence, 7(2), 95–106.

Ogren, Petter. 2012. Increasing modularity of UAV control systems using computer
game behavior trees. In: AIAA Guidance, Navigation and Control Conference.
AIAA, Minneapolis, MN, USA.

Olfati-Saber, Reza. 2006. Flocking for multi-agent dynamic systems: Algorithms
and theory. IEEE Transactions on automatic control, 51(3), 401–420.

Oppermann, Reinhard, & Rasher, R. 1997. Adaptability and adaptivity in learning
systems. Knowledge transfer, 2, 173–179.

Park, Jong Jin, & Kuipers, Benjamin. 2011. A smooth control law for graceful
motion of differential wheeled mobile robots in 2d environment. Pages 4896–4902
of: IEEE International Conference on Robotics and Automation (ICRA 2011).
IEEE, Shanghai, China.

Peng, Xue Bin, Andrychowicz, Marcin, Zaremba, Wojciech, & Abbeel, Pieter. 2018.
Sim-to-real transfer of robotic control with dynamics randomization. Pages 1–8 of:
IEEE International Conference on Robotics and Automation (ICRA 2018). IEEE,
Brisbane, Australia.

Perez, Diego, Nicolau, Miguel, O’Neill, Michael, & Brabazon, Anthony. 2011. Evolv-
ing behaviour trees for the mario ai competition using grammatical evolution.
Pages 123–132 of: Applications of evolutionary computation. Springer.

Pinciroli, Carlo, Trianni, Vito, O’Grady, Rehan, Pini, Giovanni, Brutschy, Arne,
Brambilla, Manuele, Mathews, Nithin, Ferrante, Eliseo, Di Caro, Gianni,
Ducatelle, Frederick, et al. . 2011. ARGoS: a modular, multi-engine simulator
for heterogeneous swarm robotics. Pages 5027–5034 of: Amato, Nancy M. (ed),
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2011(. IEEE, San Francisco, USA.

Poli, Riccardo, Langdon, William B, McPhee, Nicholas F, & Koza, John R. 2008.
A field guide to genetic programming. Published via http://lulu.com and freely
available at http://www.gp-field-guide.org.uk.

244

Polilov, Alexey A. 2012. The smallest insects evolve anucleate neurons. Arthropod
structure & development, 41(1), 29–34.

Quigley, Morgan, Conley, Ken, Gerkey, Brian, Faust, Josh, Foote, Tully, Leibs,
Jeremy, Wheeler, Rob, & Ng, Andrew Y. 2009. ROS: an open-source Robot
Operating System. Page 5 of: IEEE International Conference on Robotics and
Automation (ICRA 2009) Workshop on Open Source Robotics, vol. 3. IEEE, Kobe,
Japan.

Reinecke, Philipp, Wolter, Katinka, & Van Moorsel, Aad. 2010. Evaluating the
adaptivity of computing systems. Performance Evaluation, 67(8), 676–693.

Reynolds, Craig W. 1987. Flocks, herds and schools: A distributed behavioral model.
Pages 25–34 of: ACM SIGGRAPH Computer Graphics, vol. 21. ACM.

Rodeh, Ohad, Bacik, Josef, & Mason, Chris. 2013. BTRFS: The Linux B-tree filesys-
tem. ACM Transactions on Storage (TOS), 9(3), 9.

Rostedt, Steven, & Hart, Darren V. 2007. Internals of the RT Patch. Pages 161–172
of: Lockhart, John W., Ozen, Gurhan, Feeney, John, DiMaggio, Len, & Poelstra,
John (eds), Ottawa Linux Symposium, vol. 2.

Rubenstein, Michael, Ahler, Christian, & Nagpal, Radhika. 2012. Kilobot: A low
cost scalable robot system for collective behaviors. Pages 3293–3298 of: Parker,
Lynne (ed), IEEE International Conference on Robotics and Automation (ICRA
2012). IEEE, St. Paul, MN, USA.

Rusu, Andrei A, Vecerik, Mel, Rothörl, Thomas, Heess, Nicolas, Pascanu, Razvan, &
Hadsell, Raia. 2016. Sim-to-real robot learning from pixels with progressive nets.
arXiv preprint arXiv:1610.04286.

Şahin, Erol. 2005. Swarm robotics: From sources of inspiration to domains of appli-
cation. Pages 10–20 of: Şahin E., Spears W.M. (ed), International Workshop on
Swarm robotics (SR 2004). Santa Monica, CA, USA: Springer.

Samek, Wojciech, Wiegand, Thomas, & Müller, Klaus-Robert. 2017. Explainable
artificial intelligence: Understanding, visualizing and interpreting deep learning
models. arXiv preprint arXiv:1708.08296.

Scheper, Kirk YW, Tijmons, Sjoerd, de Visser, Cornelis C, & de Croon, Guido CHE.
2016. Behavior Trees for Evolutionary Robotics. Artificial life, 22(1), 23–48.

Schwefel, Hans-Paul Paul. 1993. Evolution and optimum seeking: the sixth genera-
tion. John Wiley & Sons, Inc.

Shoulson, Alexander, Garcia, Francisco M, Jones, Matthew, Mead, Robert, & Badler,

245

Norman I. 2011. Parameterizing behavior trees. Pages 144–155 of: International
Conference on Motion in Games. Springer.

Siegwart, Roland, Nourbakhsh, Illah Reza, & Scaramuzza, Davide. 2011. Introduc-
tion to autonomous mobile robots. Cambridge, MA: MIT press.

Stanley, Kenneth O, & Miikkulainen, Risto. 2002. Evolving neural networks through
augmenting topologies. Evolutionary computation, 10(2), 99–127.

Tabak, Daniel, & Lipovski, G. Jack. 1980. MOVE architecture in digital controllers.
IEEE Journal of Solid-State Circuits, 15(1), 116–126.

Texas Instruments. 2013. INA231 High- or Low-Side Measurement, Bidirectional
Current and Power Monitor With 1.8-V I2C Interface.

Thrun, Sebastian, Burgard, Wolfram, & Fox, Dieter. 2005. Probabilistic Robotics.
Intelligent robotics and autonomous agents. MIT Press.

Tobin, Josh, Fong, Rachel, Ray, Alex, Schneider, Jonas, Zaremba, Wojciech, &
Abbeel, Pieter. 2017. Domain randomization for transferring deep neural net-
works from simulation to the real world. Pages 23–30 of: Maciejewski, Tony (ed),
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2017). IEEE, Vancouver, Canada.

Trianni, Vito. 2008. Evolutionary swarm robotics: evolving self-organising behaviours
in groups of autonomous robots. Vol. 108. Springer.

Trianni, Vito, Tuci, Elio, Ampatzis, Christos, & Dorigo, Marco. 2014. Evolutionary
Swarm Robotics: a theoretical and methodological itinerary from individual neuro-
controllers to collective behaviours. The Horizons of Evolutionary Robotics, 153.

Usui, Yukiya, & Arita, Takaya. 2003. Situated and embodied evolution in collec-
tive evolutionary robotics. Pages 212–215 of: 8th International Symposium on
Artificial Life and Robotics (AROB 8th 2003). ACM, Beppu, Oita, Japan.

Vanderelst, Dieter, & Winfield, Alan. 2018. An architecture for ethical robots in-
spired by the simulation theory of cognition. Cognitive Systems Research, 48,
56–66.

Vargas, Patricia A, Di Paolo, Ezequiel A, Harvey, Inman, & Husbands, Phil. 2014.
The horizons of evolutionary robotics. MIT press.

Vásárhelyi, Gábor, Virágh, Cs, Somorjai, Gergo, Tarcai, Norbert, Szörényi, Tamás,
Nepusz, Tamás, & Vicsek, Tamás. 2014. Outdoor flocking and formation flight
with autonomous aerial robots. Pages 3866–3873 of: Burgard, Wolfram (ed),
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2014). IEEE, Chicago, Illinois, USA.

246

Vaughan, Richard. 2008. Massively multi-robot simulation in Stage. Swarm Intelli-
gence, 2(2-4), 189–208.

Wang, F. 1994. The use of artificial neural networks in a geographical information
system for agricultural land-suitability assessment. Environment and planning A,
26(2), 265–284.

Wang, Minghui, Ma, Shugen, Li, Bin, Wang, Yuechao, He, Xinyuan, & Zhang,
Liping. 2005. Task planning and behavior scheduling for a reconfigurable planetary
robot system. Pages 729–734 of: IEEE International Conference Mechatronics and
Automation, 2005, vol. 2. IEEE.

Watson, Richard A, Ficici, Sevan G, & Pollack, Jordan B. 2002. Embodied evolution:
Distributing an evolutionary algorithm in a population of robots. Robotics and
Autonomous Systems, 39(1), 1–18.

Weber, Ben G, Mawhorter, Peter, Mateas, Michael, & Jhala, Arnav. 2010. Reactive
planning idioms for multi-scale game AI. Pages 115–122 of: IEEE Conference on
Computational Intelligence and Games (CIG 2010). IEEE, Copenhagen, Denmark.

Whitley, Darrell. 1994. A genetic algorithm tutorial. Statistics and computing, 4(2),
65–85.

Whitley, Darrell. 2001. An overview of evolutionary algorithms: practical issues and
common pitfalls. Information and software technology, 43(14), 817–831.

Whitley, Darrell, & Starkweather, Timothy. 1990. Genitor II: A distributed genetic
algorithm. Journal of Experimental & Theoretical Artificial Intelligence, 2(3),
189–214.

Whitley, Darrell, Rana, Soraya, & Heckendorn, Robert B. 1997. Island model genetic
algorithms and linearly separable problems. Pages 109–125 of: Corne, David, &
Shapiro, Jonathan L. (eds), AISB International Workshop on Evolutionary Com-
puting. Springer, Manchester, United Kingdom.

Whitley, Darrell, Rana, Soraya, & Heckendorn, Robert B. 1999. The island model
genetic algorithm: On separability, population size and convergence. CIT. Journal
of computing and information technology, 7(1), 33–47.

Williams, Robert L, Carter, Brian E, Gallina, Paolo, & Rosati, Giulio. 2002. Dynamic
model with slip for wheeled omnidirectional robots. IEEE transactions on Robotics
and Automation, 18(3), 285–293.

Wilson, Sean, Gameros, Ruben, Sheely, Michael, Lin, Matthew, Dover, Kathryn,
Gevorkyan, Robert, Haberland, Matt, Bertozzi, Andrea, & Berman, Spring. 2016.

247

Pheeno, a versatile swarm robotic research and education platform. IEEE Robotics
and Automation Letters, 1(2), 884–891.

Winfield, Alan FT. 2009a. Foraging robots. Pages 3682–3700 of: Encyclopedia of
Complexity and Systems Science. Springer.

Winfield, Alan FT. 2009b. Towards an engineering science of robot foraging. Pages
185–192 of: Asama, H, Kurokawa, H, Ota, J, & Sekiyama, K (eds), 9th Inter-
national Symposium on Distributed Autonomous Robotic Systems (DARS 2008).
Tsukuba, Japan: Springer.

Winfield, Alan FT. 2015. Robots with internal models: a route to self-aware and
hence safer robots. Pages 237–252 of: The computer after me: Awareness and
self-awareness in autonomic systems. World Scientific.

Winfield, Alan FT, Liu, Wenguo, Nembrini, Julien, & Martinoli, Alcherio. 2008.
Modelling a wireless connected swarm of mobile robots. Swarm Intelligence, 2(2-
4), 241–266.

Winfield, Alan FT, Blum, Christian, & Liu, Wenguo. 2014. Towards an ethical robot:
internal models, consequences and ethical action selection. Pages 85–96 of: Mistry,
Michael, Leonardis, Aleš, Witkowski, Mark, & Melhuish, Chris (eds), Towards
Autonomous Robotic Systems (TAROS 2014). Birmingham, UK: Springer.

Wright, Sewall. 1943. Isolation by distance. Genetics, 28(2), 114.

Xianyi, Zhang, Qian, Wang, & Yunquan, Zhang. 2012. Model-driven level 3
BLAS performance optimization on Loongson 3A processor. Pages 684–691 of:
IEEE 18th International Conference on Parallel and Distributed Systems (ICPADS
2012). IEEE, Singapore.

Zagal, Juan Cristóbal, Ruiz-del Solar, Javier, & Vallejos, Paul. 2004. Back to reality:
Crossing the reality gap in evolutionary robotics. In: 5th IFAC Symposium on
Intelligent Autonomous Vehicles (IAV 2004).

248

	Contents
	Acronyms
	List of Figures
	List of Tables
	List of Equations
	Introduction and motivation
	Overview
	Motivation
	Hypotheses
	Structure
	Contributions to swarm robotics

	Background and related work
	Swarm robotics
	Controllers for evolutionary swarm robotics
	Neural Networks
	Finite State Machines

	Behaviour trees as understandable controllers
	Robot design
	Reality gap

	Behaviour trees
	Behaviour tree theory
	Composition nodes
	Leaf nodes
	Blackboard
	Behaviour tree semantics
	Complete algorithm for behaviour tree evaluation
	Memory nodes as syntactic sugar
	Manipulation
	Equivalence of BT and FSM
	Turing completeness of a BT
	Subsumption robot controller architecture
	Classes of behaviour tree

	Applying evolutionary methods to behaviour trees
	Grammatical generation
	Genetic Programming
	Conclusion on BT representation

	Conclusion

	Evolving behaviour trees for swarm robotics
	Kilobots
	Materials and methods
	Controller
	Evolutionary algorithm and simulator

	Results and discussion
	Conclusions

	Xpuck design
	Xpuck electronics design
	Survey of available platforms
	High performance computing
	Operating point tuning
	Interface board
	Physical design

	Software and infrastructure
	Real time kernel
	Resilient filesystem
	Arena integration

	GPGPU robot simulator
	Simulation model
	Implementation of simulator on GPU
	Implementation of behaviour tree interpreter on GPU
	Results: Performance of simulator

	Image processing demonstration: ArUco tag detection
	Results: Performance of image processing task

	In-swarm evolution demonstration
	Implementation of island model
	Results: Performance of island model evolution

	Experimental procedure
	Conclusion

	Designing a behaviour tree architecture
	Robot reference model
	Constituent behaviours and conditions
	Constituent behaviours
	Constituent conditions

	Blackboard and action nodes
	Goal velocity, physically linked registers
	Steering
	Sensors
	Zero and scratchpad

	Action (leaf) nodes
	Behaviours and conditions expressed as subtrees
	Behaviour stop
	Behaviours upfield and downfield
	Conditions red, green, and blue
	Conditions neighbour and invneighbour
	Condition fixedprob

	Conclusion

	Controller transferability
	Benchmark task
	Simulator physics calibration
	Simulator physical parameters
	Choosing appropriate parameter values
	Observations and mitigation

	Sensor calibration
	IR proximity sensors
	Camera
	Virtual Senses

	Testing controller transferability
	Detailed task
	Behaviour tree nodes and allowed parameters
	Evolutionary algorithm
	Transfer to reality
	Conclusion

	In-swarm evolution
	Benchmark task
	Evolution with a noisy objective function
	Comparison
	Modified evolutionary algorithm

	In-swarm evolution
	Island Model evolutionary algorithm
	Fitness function
	Behaviour tree architecture
	Experimental protocol

	Data analysis
	Island model
	Real life behaviour

	Behavioural analysis
	Analysis of trees
	Automatic tree reduction
	Run 16 overview
	Analysis of Run 16 tree 806768
	Analysis of Run 16 tree 906737
	Effect of heterogeneity
	Analysis of Run 7
	Engineering higher performance

	Explaining the difference between simulated and real fitness
	Effect of sampling
	Effect of controller heterogeneity in real swarm
	Effect of unrelated controller heterogeneity

	Conclusions

	Conclusions
	Overview
	Behaviour trees
	Xpuck design
	Controller transferability
	In-swarm evolution

	Conclusions and future work
	Adaptivity
	Reality gap and the effect of architecture
	Moving into three dimensions

	Additional Material
	Xpuck Open Source
	Videos

	References

