1,947 research outputs found

    Reinforcement Learning for the Unit Commitment Problem

    Full text link
    In this work we solve the day-ahead unit commitment (UC) problem, by formulating it as a Markov decision process (MDP) and finding a low-cost policy for generation scheduling. We present two reinforcement learning algorithms, and devise a third one. We compare our results to previous work that uses simulated annealing (SA), and show a 27% improvement in operation costs, with running time of 2.5 minutes (compared to 2.5 hours of existing state-of-the-art).Comment: Accepted and presented in IEEE PES PowerTech, Eindhoven 2015, paper ID 46273

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods

    A hybrid CFGTSA based approach for scheduling problem: a case study of an automobile industry

    Get PDF
    In the global competitive world swift, reliable and cost effective production subject to uncertain situations, through an appropriate management of the available resources, has turned out to be the necessity for surviving in the market. This inspired the development of the more efficient and robust methods to counteract the existing complexities prevailing in the market. The present paper proposes a hybrid CFGTSA algorithm inheriting the salient features of GA, TS, SA, and chaotic theory to solve the complex scheduling problems commonly faced by most of the manufacturing industries. The proposed CFGTSA algorithm has been tested on a scheduling problem of an automobile industry, and its efficacy has been shown by comparing the results with GA, SA, TS, GTS, and hybrid TSA algorithms

    Optimization methods for electric power systems: An overview

    Get PDF
    Power systems optimization problems are very difficult to solve because power systems are very large, complex, geographically widely distributed and are influenced by many unexpected events. It is therefore necessary to employ most efficient optimization methods to take full advantages in simplifying the formulation and implementation of the problem. This article presents an overview of important mathematical optimization and artificial intelligence (AI) techniques used in power optimization problems. Applications of hybrid AI techniques have also been discussed in this article

    A Comparative Study of Fuzzy Logic, Genetic Algorithm, and Gradient-Genetic Algorithm Optimization Methods for Solving the Unit Commitment Problem

    Get PDF
    Due to the continuous increase of the population and the perpetual progress of industry, the energy management presents nowadays a relevant topic that concerns researchers in electrical engineering. Indeed, in order to establish a good exploitation of the electrical grid, it is necessary to solve technical and economic problems. This can only be done through the resolution of the Unit Commitment Problem. Unit Commitment Problem allows optimizing the combination of the production units’ states and determining their production planning, in order to satisfy the expected consumption with minimal cost during a specified period which varies usually from 24 hours to one week. However, each production unit has some constraints that make this problem complex, combinatorial, and nonlinear. This paper presents a comparative study between a strategy based on hybrid gradient-genetic algorithm method and two strategies based on metaheuristic methods, fuzzy logic, and genetic algorithm, in order to predict the combinations and the unit commitment scheduling of each production unit in one side and to minimize the total production cost in the other side. To test the performance of the optimization proposed strategies, strategies have been applied to the IEEE electrical network 14 busses and the obtained results are very promising

    Neural Based Tabu Search method for solving unit commitment problem with cooling-banking constraints

    Get PDF
    This paper presents a new approach to solve short-term unit commitment problem (UCP) using Neural Based Tabu Search (NBTS) with cooling and banking constraints. The objective of this paper is to find the generation scheduling such that the total operating cost can be minimized, when subjected to a variety of constraints. This also means that it is desirable to find the optimal generating unit commitment in the power system for next H hours. A 7-unit utility power system in India demonstrates the effectiveness of the proposed approach; extensive studies have also been performed for different IEEE test systems consist of 10, 26 and 34 units. Numerical results are shown to compare the superiority of the cost solutions obtained using the Tabu Search (TS) method, Dynamic Programming (DP) and Lagrangian Relaxation (LR) methods in reaching proper unit commitment

    A Comparative Representation Approach to Modern Heuristic Search Methods in a Job Shop

    Get PDF
    The job shop problem is among the class of NP- hard combinatorial problems. This Research paper addresses the problem of static job shop scheduling on the job-based representation and the rule based representations. The popular search techniques like the genetic algorithm and simulated annealing are used for the determination of the objectives like minimizations of the makespan time and mean flow time. Various rules like the SPT, LPT, MWKR, and LWKR are used for the objective function to attain the results. The summary of results from this paper gives a conclusion that the genetic algorithm gives better results in the makespan time determination on both the job based representation and the rule based representation and the simulated annealing algorithm gives the better results in the mean flow time in both the representations

    Genetic Algorithms Application to Electric Power Systems

    Get PDF

    Unit Commitment Problem in Electrical Power System: A Literature Review

    Get PDF
    Unit commitment (UC) is a popular problem in electric power system that aims at minimizing the total cost of power generation in a specific period, by defining an adequate scheduling of the generating units. The UC solution must respect many operational constraints. In the past half century, there was several researches treated the UC problem. Many works have proposed new formulations to the UC problem, others have offered several methodologies and techniques to solve the problem. This paper gives a literature review of UC problem, its mathematical formulation, methods for solving it and Different approaches developed for addressing renewable energy effects and uncertainties
    • 

    corecore