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Due to the continuous increase of the population and the perpetual progress of industry, the energymanagement presents nowadays
a relevant topic that concerns researchers in electrical engineering. Indeed, in order to establish a good exploitation of the electrical
grid, it is necessary to solve technical and economic problems.This can only be done through the resolution of theUnitCommitment
Problem. Unit Commitment Problem allows optimizing the combination of the production units’ states and determining their
production planning, in order to satisfy the expected consumptionwithminimal cost during a specified periodwhich varies usually
from 24 hours to one week. However, each production unit has some constraints that make this problem complex, combinatorial,
and nonlinear.This paper presents a comparative study between a strategy based on hybrid gradient-genetic algorithmmethod and
two strategies based on metaheuristic methods, fuzzy logic, and genetic algorithm, in order to predict the combinations and the
unit commitment scheduling of each production unit in one side and to minimize the total production cost in the other side. To
test the performance of the optimization proposed strategies, strategies have been applied to the IEEE electrical network 14 busses
and the obtained results are very promising.

1. Introduction

According to human activities, the electrical energy con-
sumption is still increasing. Indeed, during one day the
electricity demand is higher compared to the end of the
night and this change is not related only to the day but
also to the change of seasons, weekends, and so forth. In
addition, the production of electricity must be compatible
with the consumption considering the impossibility to store
electricity. For this reason, the electric company must plan
the operations of the production units and organize their
moments of connection to the network and the duration
of each operation. The unit commitment (UC) is the best
solution in the field of modern power systems planning since
the main objective is to schedule the production units to
respond to the consumers demand with minimum cost. In

fact, it allows both the optimization of the daily operational
planning of electrical grids and the reduction of the total
production cost through improving units while guaranteeing
the continuity of service. The generation scheduling involves
the determination of the commissioning and the quantity
of power that should be generated by each unit during a
specified planning period. Moreover, as each unit has its
own production limits and its minimum start-up and shut-
down times, it is the case of a complex, combinatorial, and
nonlinear optimization problem [1]. Generally, the unit com-
mitment problem depends directly on the unit production
scheduling and on the economic dispatch, knowing that
our system is subject to several constraints: power balance,
spinning reserve, generation limits, and minimum start-up
and shut-down times. Nevertheless, this problem concedes
a multitude of problems such as the big size of the studied
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grid, the presence of coupling constraints, the presence of the
operational constraints, and the time constraint which have
to be low with respect to the size of the problem [2].

In this context, unit commitment scheduling has been
established in order to make the best choice of production
units that will be available to supply the forecasted load over a
future period.Therefore, a study of the literature onmethods,
which focus on unit commitment (UC) problem resolu-
tion, shows that various numerical optimization techniques
have examined this subject such as dynamic programming
[3, 4], Lagrangian relaxation method [5–8], mixed integer
programming [9], and branch-and-boundmethod [10–12]. It
is worth mentioning that the dynamic programming method
is simple but the calculation time required to converge to
the optimal solution is quite long. Regarding the branch-
and-bound method, it adopts a linear function to represent
the fuel and start-up costs during a time horizon. The
disadvantage of this method is that the required execution
time increases rapidly for UC problem having larger scales.
The mixed integer programming uses linear programming
to attain optimal solution. Nevertheless, this method was
applied to small problems of unit commitment and they
required major assumptions [9] that limit the margin of
solutions. For the Lagrangian relaxation method, we note
that the convergence time is an advantage, but the obtained
solution is not ideal because of the complexity of the problem
especially when the optimization problem contains a great
number of production units.

In addition to the methods previously mentioned, there
is another category of digital techniques applied to the
UC problem. Specifically, there are the fuzzy logic [13, 14],
the artificial neural network [15], the simulated annealing
[16–18], the Tabu search [19], and the genetic algorithm
[20–23]. These methods which can take into account more
complex constraints are claimed to improve the quality of
solutions. In this context, the works [24, 25] have presented
a new strategy based on genetic algorithm to determine the
priority order of the production units. The proposed strategy
has presented an optimized unit commitment scheduling
and the computation time taken through this strategy is
promising. According to our study, we found that it is
possible to use genetic algorithms to optimize the production
cost while providing effective results. In fact, solving the
unit commitment problem by genetic algorithm promotes
the dynamic operation scheduling of each unit taking into
account the system parameters, the operating constraints,
and the requested load during a definite time horizon. We
examined the works of Victoire and Jeyakumar [1] which
consist of the integration of a hybrid optimization strategy to
solve the unit commitment problem. This strategy is based
on the combination of particle swarm optimization (PSO)
method, the technique of sequential quadratic programming
(SQP), and Tabu search (TS) method.The combinatorial part
of the UC problem was solved using the TS method. More-
over, [16, 17, 26] proposed a new technique using simulated
annealing method. This technique increases the probability
of generating feasible solutions and reduces significantly the
time to research unfeasible solutions. With regard to [27],
the adopted method is based on fuzzy logic approach to

produce a logical and feasible solution for each horizon time
and to take into account many uncertainties involved in
the power systems planning. Indeed, the load demand and
reserve margin are treated as fuzzy variables in order to
estimate the required generated power in the electrical grid
and to schedule this quantity among the production units
considering the reserve margin and the power production
limits.

We have proposed three strategies applied to IEEE electri-
cal network 14 buses to solve the UCP in general and in par-
ticular to find the optimized combination scheduling of the
produced power for each unit production.The first strategy is
based on the use of fuzzy logic approach, the second one relies
on the use of genetic algorithm, and the third strategy uses
a hybrid optimization method, gradient-genetic algorithm.
Throughout these three strategies, we arrived to develop an
optimized scheduling plan of the generated power allowing a
better exploitation of the production cost in order to bring the
total operating cost to possible minimumwhen it is subjected
to a series of constraints. A comparison was made to test the
performances of the proposed strategies and to prove their
effectiveness in solving unit commitment problems.

The paper is organized as follows; Section 2 is reserved
to formulating the unit commitment problem. Next, in
Section 3, methodologies of resolution through fuzzy logic,
genetic algorithm, and gradient-genetic algorithm methods
are presented. Section 4 deals with the discussion of simula-
tion results and the main improvements of adopted strategies
are highlighted. Finally, Section 5 resumes the main conclu-
sions followed by references.

2. Problem Formulation

The objective of the UCP is the minimization of total
production costs while determining the on/off states of each
unit 𝑈

𝑖ℎ
over a period of time 𝐻. The problem is given

according to the following function [28]:
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ST
𝑖
= {

HSC
𝑖

if MDT
𝑖
≤ 𝜏

OFF
𝑖

≤ MDT
𝑖
+ SC
𝑖

CSC
𝑖

if 𝜏OFF
𝑖

≻ MDT
𝑖
+ SC
𝑖
,

(3)

where 𝑎
𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
: coefficients of the production cost,

𝑃
𝑖ℎ
: active power generated by the 𝑖th unit ℎth hour, 𝑖 =

1, 2, 3, . . . , 𝑁
𝑔
and ℎ = 1, 2, 3, . . . , 𝐻, 𝑈

𝑖ℎ
: on/off status of
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the 𝑖th production unit at the ℎth hour, 𝑈
𝑖ℎ
= 0 for the off

state of one generating unit and 𝑈
𝑖ℎ
= 1 for the operating

status of one generating unit, HSC
𝑖
: hot start-up cost of the 𝑖th

unit, CSC
𝑖
: cold start-up cost of the 𝑖th unit,MDT

𝑖
: minimum

down-time of the unit 𝑖, 𝜏OFF
𝑖

: continuously off-time of unit 𝑖,
SC
𝑖
: cold start time of unit 𝑖,𝑁

𝑔
: number of generating units,

and𝐻: time horizon for UC (h).
Unit commitment is a highly constrained optimization

problem. Different power systems have a different set of
imposed constraints. The most common can be divided into
two categories. The first, called unit constraints, represents
the constraints that are applied to the single units; the second
type, system constraints, contains those that are applied to the
whole power system.

2.1. System Constraints

Power balance constraints: at any time over the
planning horizon the total real power generation of
the system must be equal to the total demand:

𝑁𝑔

∑

𝑖=1

𝑃
𝑖ℎ
𝑈
𝑖ℎ
= 𝑃
𝑑ℎ
. (4)

Spinning reserve constraints: in order to prevent any
abnormal operating conditions, the spinning reserve
must be considered:

𝑃
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+ 𝑃
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−

𝑁𝑔
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2.2. Unit Constraints

Generation limits: these constraints require that the
unit generation be within the minimal, 𝑃min

𝑖
, and

maximal, 𝑃max
𝑖

, generation levels:

𝑃
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𝑖

≤ 𝑃
𝑖ℎ
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𝑖

. (6)

Minimum up-time constraint: the minimum up-time
constraint determines the shortest duration a unit
must stay in the generation mode, MUP

𝑖
, after its

transit to this mode:
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𝑖
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Minimum down-time constraint: The minimum
down-time constraint specifies the shortest duration
a unit must stay in the shut-down mode, MDT

𝑖
, after

it is shut down:

𝑈
𝑖ℎ
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∑
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𝑖
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with𝑃
𝑟ℎ
: system spinning reserve at the ℎth hour,𝑃

𝑑ℎ
: amount

of the consumed power at the ℎth hour,𝑃min
𝑖

,𝑃max
𝑖

: minimum

and maximum power produced by a generator, MUT
𝑖
: con-

tinuously on-time of unit 𝑖, and MDT
𝑖
: continuously down-

time of unit 𝑖.
The real practical barrier in the unit commitment prob-

lem is the high dimensionality of the possible search space.
The mentioned unit and system constraints present the main
limits of the search space of the studied model.

Here, in order to transform the complex nonlinear con-
strained problem into a linear unconstrained problem, we
consider the following Lagrangian function:
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(9)

Herein, 𝜆
𝑖
is the Lagrangian coefficient.

The hypothesis tested in this paper is that the unit
commitment dynamic can use both metaheuristic methods
as hybridmethods to get the final commitment over the entire
planning period.

3. Methodology of Resolution

For our case study, three optimization methods are used
to solve the unit commitment problem; the first one uses
the genetic algorithm. This strategy takes into account the
advantage of the genetic algorithm speed in solving problems
having a fairly complex architecture. The second method
relies on the use of the fuzzy logic approach. The use of
the fuzzy logic approach to solve this problem is depicted
to the effectiveness of this optimization method in solving
nonlinear difficult problems. Besides, the third strategy is
based on the combination of two calculations methods, the
genetic algorithm and the gradient method. The resolution
of the unit commitment problem through gradient-genetic
algorithmmethod is provided by a specific adjustment of the
Lagrangian multipliers 𝜆

𝑖
of the Lagrangian function. The

combined choice of these twomethods is due to inquire about
the rapidity of the genetic algorithm in the search for global
minimum in first step and to operate the benefits the gradient
method in a second step, since it is effective in terms of the
quality of the obtained optimal solutions.

3.1. Genetic Algorithm. The fundamental principle of a genet-
ic algorithm is to represent the natural evolution of organisms
(individuals). In one individual’s population, only the strong-
est, or in other words the best suited to the natural environ-
ment, survive and can give offspring [16, 20, 25, 27, 30].

In each evolution stage, the genetic operators (selection,
crossover, andmutation) operate based on the data structures
in order to allow each individual to sweep the solutions hori-
zon and to distinguish the global optimum among the local
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optima. At first, from an initial population of individuals, the
evaluation function satisfies the following relation:
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with𝐹max: maximumof the function𝐹
𝑟
,𝐿: penalty coefficient,

𝐾: scaling coefficient, and 𝛽
ℎ
: constant defined as follows:
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3.1.1. Selection. Genetic algorithm did not work on the real
generator outputs themselves but on bit string encodings of
them.The output of each one of the five generators is encoded
in a 12-bit string, which gives a resolution of 212 = 4096
discrete power values in the range (𝑃min

𝑖
, 𝑃

max
𝑖

). For our case
study, we have adopted the biased roulette wheel method
in order to select the best chromosomes according to their
performances obeying to the following equation:

per𝑓 (𝑐
𝑖
) =

𝑓 (𝑐
𝑖
)

∑
𝑙

𝑖=1
𝑓 (𝑐
𝑖
)

, (12)

where 𝑙 is the length of a binary string.
After the selection of the parent chromosomes, recom-

bination and mutation take place to produce the offspring
chromosomes. Owing to the nature of our coding and the
use of integers, we cannot use the crossover and mutation
operators in their classic form.

3.1.2. Crossover. Crossover is a structured, yet randomized,
mechanism of exchanging information between strings.
Crossover begins by selecting at random two members
previously placed in the mating pool during reproduction. A
crossover point is then selected at random, and information
from one parent, up to the crossover point, is exchanged with
the other parent. The probability of crossover 𝐶

𝑟
is given by

the following expression [31, 32]:

𝐶
𝑟
= 𝐾
1
⋅ [

Max (1/ (1 + 𝐾 ((𝐹max/𝐹𝑟) − 1))) − 𝐹CROSS

Max (1/ (1 + 𝐾 ((𝐹max/𝐹𝑟) − 1))) − 𝐹
] ,

(13)

where 𝐹CROSS is the larger of the fitness values of the solutions
to be crossed, 𝐹 is the average of the fitness function, and 𝐾

1

is the constant of proportionality.

3.1.3. Mutation. Mutation is generally considered a sec-
ondary operator. Mutation ensures that no string position
will ever be fixed at a certain value for all the time. Mutation
operates by toggling, in a binary code, any given string
position with probability of mutation𝑀

𝑃
. The expression of

the probability of mutation is given as follows [31, 32]:

𝑀
𝑃
= 𝐾
2
⋅ [Max( 1
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)

−
1
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×(Max( 1
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) − 𝐹)

−1

] ,

(14)

where𝐾
2
is the constant of proportionality.

3.1.4. ConvergenceCriteria. GA terminates the evolution only
when the generation reaches its maximum number. When
convergence is obtained program finds all the possible on/off
scheduling states 𝑈

𝑖ℎ
for the given load demand for 24 hours

and displays the power 𝑃
𝑖ℎ
generated by each unit.

The process of solving the unit commitment problem by
genetic algorithmmethod is performed according to Figure 1.

In passing from one generation to another, the old
population should be replaced by the descendant’s population
newly created to maintain the search for better solutions.
This step is important because it determines the degree of
exploitation and advancement of the optimal solution search.
This research is based on saving the best solution until the
optimization progresses.

3.2. Fuzzy logic. Fuzzy logic provides not only a meaningful
and powerful representation for measurement of uncertain-
ties but also a meaningful representation of blurred concept
expressed in normal language. Fuzzy logic is a mathematical
theory, which encompasses the idea of vagueness when
defining a concept or a meaning. For example, there is
uncertainty or fuzziness in expressions like “low” or “high,”
since these expressions are imprecise and relative. Thus, the
variables considered are termed “fuzzy” as opposed to “crisp.”
Fuzziness is simply one means of describing uncertainty.

Such ideas are readily applicable to the unit commitment
problem. The application of fuzzy logic allows a qualitative
description of the behavior of a certain system, the charac-
teristics of the system, and its response without the need for
exact mathematical formulation [13, 14, 33, 34].

To establish our strategy, we have considered the partial
derivatives of the Lagrange function (9) with respect to each
of the controllable variables equal to zero:
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𝑈
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= 0.

(15)
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Figure 1: Operations of the genetic algorithm.
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Figure 2: Membership functions of input/output variables.

Equations (15) represent the optimality conditions nec-
essary to solve equation systems (1) and (5) without using
inequality constraints (5) and (6). Hence, (9) can be written
as follows:

𝜆 =
𝜕 [𝜙
𝑖
(𝑃
𝑖ℎ
)] /𝜕𝑃

𝑖ℎ

(𝜕𝑃
𝐿ℎ
/𝜕𝑃
𝑖ℎ
) − 𝑈
𝑖ℎ

; 𝑖 = 1, . . . , 𝑁
𝐺
; ℎ = 1, . . . , 𝐻. (16)

The term 𝜕[𝜙
𝑖
(𝑃
𝑖ℎ
)]/𝜕𝑃
𝑖ℎ
represents the incremental cost (IC)

of each unit 𝑖 and 𝜕𝑃
𝐿ℎ
/𝜕𝑃
𝑖ℎ
represents the incremental losses

(IL). These terms occur as fuzzy variables associated to our
strategy in order to solve the unit commitment problem.

It should be noted that the strategy is based on the
integration of a fuzzy controller to optimize the cost of

the production unit while ensuring proper planning of the
production units. In the current formulation, the fuzzy input
variables associated to the unit commitment problem are the
load capacity of the generator (LCG), the incremental cost
(IC), and the incremental losses (IL). The output variable is
the cost of production (𝐶

𝑃
). The following is a brief descrip-

tion and explanation of the main choice of the mentioned
fuzzy variables.

(i) Load capacity of generator (LCG) is considered to be
fuzzy, as it is based upon the load to be served.

(ii) Incremental losses (IL) are taken to be fuzzy because
the losses can lead to changes in the total production
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cost and because losses vary over the whole network
architecture.

(iii) Incremental cost (IC) is taken to be fuzzy because the
cost of fuel may change over the period of time and
because the cost of fuel for each unit may be different.

(iv) Production cost (𝐶
𝑃
) of the system is treated as a fuzzy

variable since it is directly proportional to the hourly
load.

The fuzzy system consists of three principle components:
fuzzification, fuzzy rules, and defuzzification which are
described as follows [14, 33].

3.2.1. Fuzzification. Three inputs are considered, load capac-
ity of generator (LCG), incremental losses (IL), and incre-
mental cost (IC) and the output vector is represented by
the amount of the production cost (𝐶

𝑃
). The triangular

membership functions are considered for the fuzzification
of the input variables. These last ones are presented in five
fuzzy sets of linguistic values for the load capacity generator,
low (L), below average (BAV), average (AV), above average
(AAV), and high (H). For the incremental losses (IL) and
the incremental cost (IC) three fuzzy sets of linguistic values
are considered, zero (Z), small (S), and large (LG). However,
the output variable (𝐶

𝑃
) is presented in five fuzzy sets of

linguistic values: low (L), below average (BAV), average (AV),
above average (AAV), and high (H)with associated triangular
membership functions, as shown in Figure 2.

3.2.2. Fuzzy Rules. The Mamdani-type fuzzy rules are used
to formulate the conditional statements that comprise fuzzy
logic.The fuzzy rules are designed to optimize the production
cost through a proper assessment of the variables LCG, IL,
and IC. According to the fuzzy sets of linguistic value related
to each input variable, 45 rules (5 × 3 × 3 = 45 rules) are
designed as shown in Table 1. Each rule represents a mapping
from the input space to the output space.

Based on the aforementioned fuzzy sets, membership
functions are selected for each fuzzy input and the fuzzy
output variables. For our case study, a triangular form is used
to illustrate the considered membership functions. Once the
membership functions are set, the input variables are then
linked to the output variable by if-then rules as shown in
Figure 3.

3.2.3. Defuzzification. Moreover, once fuzzy rules
are defined, the results must be defuzzified using a
defuzzification method in order to achieve exact values
in the desired margins. The defuzzification method used
in our strategy consists of determining the abscissa of the
gravity center (CDG) surface swept by the fuzzy inferences
(17):

Production Cost =
∫
1

−1
𝐶
𝑃
⋅ 𝜇 (𝐶
𝑃
) ⋅ 𝑑𝐶

𝑃

∫
1

−1
𝜇 (𝐶
𝑃
) ⋅ 𝑑𝐶

𝑃

, (17)

with 𝜇(𝐶
𝑃
) being the membership degree of the production

cost vector.

Table 1: Fuzzy rules relating input/output fuzzy variables.

Rule LCG IC IL 𝐶
𝑃

1 L L Z L
2 L L S L
3 L L LG L
4 L M Z L
5 L M S L
6 L M LG L
7 L LG Z L
8 L LG S L
9 L LG LG L
10 BAV L Z BAV
11 BAV L S BAV
12 BAV L LG BAV
13 BAV M Z BAV
14 BAV M S BAV
15 BAV M LG BAV
16 BAV LG Z BAV
17 BAV LG S BAV
18 BAV LG LG BAV
19 AV L Z AV
20 AV L S AV
21 AV L LG AV
22 AV M Z AV
23 AV M S AV
24 AV M LG AV
25 AV LG Z AV
26 AV LG S AV
27 AV LG LG AV
28 AAV L Z AAV
29 AAV L S AAV
30 AAV L LG AAV
31 AAV M Z AAV
32 AAV M S AAV
33 AAV M LG AAV
34 AAV LG Z AAV
35 AAV LG S AAV
36 AAV LG LG AAV
37 H L Z H
38 H L S H
39 H L LG H
40 H M Z H
41 H M S H
42 H M LG H
43 H LG Z H
44 H LG S H
45 H LG LG H

Hence, to minimize the objective function (1), we
entrusted to the integrated fuzzy logic approach the pro-
cessing of three inputs (LCG, IC, and IL). The first input is
materialized by the load capacity of generator, the second
is the incremental cost, and the third is the incremental
losses.The fuzzy logic approach deduces the fuzzy inferences
according to imposed conditions’ (45 rules) and then the
fuzzy logic process applies a method of defuzzification to
deduce a nonfuzzy vector of command which corresponds to
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Figure 3: Configuration of the fuzzy logic system.

the optimal production cost 𝐶
𝑃
of the five units. The method

used in order to evaluate this vector consists of determining
the𝑋-coordinate of the centre of gravity of the surface swept
by the fuzzy deductions (17).Themost remarkable advantage
of this strategy is not only minimizing the production cost
𝐶
𝑃
but also integrating in this vector the on/off states of each

production unit 𝑈
𝑖
.

3.3. Gradient-Genetic AlgorithmMethod. The purpose of this
strategy is to validate an approach to apprehend the whole
problem by combining an economic model with a model
having operational constraints. To achieve this objective, the
approach is to combine a classical gradient method with
a metaheuristic method, genetic algorithm, well suited to
take into account new constraints. Minimizing the objective
function (1) is equivalent to minimizing the Lagrangian
function (9).

Therefore, the solution in the unit commitment problem
is represented by a binarymatrix𝑈 of dimension (𝑙×𝑁

𝑔
).The

proposed method for coding is a mix of binary and decimal
numbers. Each column vector in the solution matrix (which
is the operation schedule of one unit) of length 𝑙 is converted
to its equivalent decimal number. The solution matrix is
then converted into one row vector (chromosome) of 𝑁

𝑔

decimal numbers (𝑈
𝑙
, 𝑈
2
, . . . , 𝑈

𝑛
); each variable represents

the schedule of one unit. The numbers 𝑈
𝑙
, 𝑈
2
, . . . , 𝑈

𝑛
are

integers ranging from 0 to (2𝑁𝑔−1). Accordingly, a population
of size (POP) is randomly generated in a matrix (𝑁POP ×

𝑁
𝑔
). In one individual’s population, only the strongest, or

in other words the best suited to the natural environment,
survive and can give offspring. In each evolution stage,
the genetic operators (selection, crossover, and mutation)
operate based on the data structures in order to allow each
individual to sweep the solutions horizon and to distinguish
the global optimum among the local optima [22, 35, 36].
The best solution (𝑃

𝑖ℎ
, 𝑈
𝑖ℎ
) given by the genetic algorithm

process is saved in one vector 𝛾
𝑘
in the gradient method

in order to obtain better solution (𝑃
𝑖ℎ
, 𝑈
𝑖ℎ
) leading to the

minimumproduction cost. Indeed, with this process, we have
reduced in one side the search space and therefore reduced
the computation time and have driven, in the other side, the
gradient method to perform the specific search in a space
containing the best solutions. The process of the gradient
method is carried out through the research of the descent
direction of the greatest slope corresponding to theminimum
production cost. Indeed, we have

𝛾
𝑘+1

= 𝛾
𝑘
+ 𝑑
𝑘
⋅ 𝜉
𝑘
. (18)

The vectors 𝛾
𝑘+1

, 𝑑
𝑘
, 𝜉
𝑘
are defined by the following equations

system:

𝛾
𝑘+1

= [

[

𝑃
𝑖ℎ

𝑈
𝑖ℎ

𝜆
𝑖

]

]

,

𝜉
𝑘
=

[
[
[
[
[
[
[
[
[
[
[

[

𝜕 (∑
𝑁𝑔

𝑖=1
∑
𝐻

ℎ=1
[𝜙
𝑖
(𝑃
𝑖ℎ
) + ST

𝑖
(1 − 𝑈

𝑖(ℎ−1)
)] 𝑈
𝑖ℎ
+ 𝜆
𝑖
⋅ (𝑃
𝑑
− ∑
𝑁𝑔

𝑖=1
𝑃
𝑖
𝑈
𝑖ℎ
))

𝜕𝑃
𝑖ℎ

𝜕 (∑
𝑁𝑔

𝑖=1
∑
𝐻

ℎ=1
[𝜙
𝑖
(𝑃
𝑖ℎ
) + ST

𝑖
(1 − 𝑈

𝑖(ℎ−1)
)] 𝑈
𝑖ℎ
+ 𝜆
𝑖
⋅ (𝑃
𝑑
− ∑
𝑁𝑔

𝑖=1
𝑃
𝑖
𝑈
𝑖ℎ
))

𝜕𝑋
𝑖ℎ

𝜕 (∑
𝑁𝑔

𝑖=1
∑
𝐻

ℎ=1
[𝜙
𝑖
(𝑃
𝑖ℎ
) + ST

𝑖
(1 − 𝑈

𝑖(ℎ−1)
)] 𝑈
𝑖ℎ
+ 𝜆
𝑖
⋅ (𝑃
𝑑
− ∑
𝑁𝑔

𝑖=1
𝑃
𝑖
𝑈
𝑖ℎ
))

𝜕𝜆
𝑖

]
]
]
]
]
]
]
]
]
]
]

]

,

𝑑
𝑘
=

𝜉
𝑡

𝑘
⋅ 𝜉
𝑘

𝜉
𝑘
⋅ (𝐴 ⋅ 𝜉

𝑘
)
,

(19)
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where the Hessian matrix 𝐴 is defined by

𝐴
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(20)

where 𝜉
𝑘
presents the gradient vector indicating the descent

direction to the global minimum, 𝑑
𝑘
presents the calculation

step, and 𝐴 presents the Hessian matrix defined by the
partial derivatives of the production function relative to the
generated powers and to the various on/off states of each
production unit.

The proposed strategy helps not only to search effective
solutions corresponding to a minimum production cost but
also to proceed through an acceleration evoked by the second
derivatives of the Hessian matrix so as to reach the optimal
solution as quickly as possible.

The process of solving the unit commitment problem by
gradient-genetic algorithm method is performed according
to Figure 4.

The proposed hybrid gradient-genetic algorithm strategy
differs from other evolutionary computing techniques in
providing an acceptable solutionwithin a relatively short time
and is likely to lead the search towards the most promising
solution area. A step-by-step gradient-genetic algorithm for
the UC problem is outlined as follows.

Step 1. Read in system data for each unit.

Step 2. Initialize generation to 1.

Step 3. Sort the fitness function 𝐹 value for the initial
population according to (10).

Step 4. Evaluate the fitness function for the initial population
[𝑈
0

𝑖ℎ
𝑃
0

𝑖ℎ
].

Step 5. Check the total number of generations.

Step 6. Perform selection, probability of crossover 𝐶
𝑟
, and

probability of mutation𝑀
𝑃
according to (12), (13), and (14),

Step 7. Evaluate the fitness function 𝐹(𝑈
𝑖ℎ
, 𝑃
𝑖ℎ
) for the

mutated individuals.

Step 8. Compare the objective function, 𝐹
𝑇
(𝑃
𝑖ℎ
, 𝑈
𝑖ℎ
) (1), of

the current individuals with the objective function of the
best individuals and save individuals having the minimum
objective function.

Step 9. If the current generation number reaches the prede-
termined maximum generation number, the search proce-
dure is stopped; otherwise go to Step 6.

Step 10. Save the best solutions in one vector 𝛾
𝑘
.

Step 11. Calculate initial parameters 𝜉
0
, 𝑑
0
, and 𝐴.

Step 12. Check the convergence criterion 𝛾
𝑘+1

− 𝛾
𝑘
< 𝜀.

Step 13. Calculate 𝑑
𝑘
and 𝛾
𝑘+1

.
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Figure 4: Flowchart of solving the unit commitment problem via gradient-genetic algorithm method.

Step 14. Check the convergence criterion. If 𝛾
𝑘+1

−𝛾
𝑘
< 𝜀, go to

Step 13; else save the final solution corresponding to the unit
commitment scheduling 𝑈

𝑖ℎ
and the generated power 𝑃

𝑖ℎ
for

each unit 𝑖 and then calculate the corresponding production
cost.

4. Simulations and Results

In order to test the performance of the optimization pro-
posed strategies, strategies were simulated on MATLAB
environment implemented on computer having the following
characteristics: Core 2 Duo CPU 2.53GHz and 4GB RAM.
The three strategies have been applied to IEEE electrical
network 14 buses [37–40], having 5 generators, over a period
of 24 hours. The strategies are occurring at 𝑡 = 40 sec and the
scheduling of the on/off states and the amount of generated
power by each production unit is performed for each 3 hours.

The characteristics of the different production units are
given in Table 2. The genetic algorithm parameters are taken
as follows: crossover probability = 0.6, mutation probability
= 0.02, population size = 40, and maximum number of
generations = 300 [20, 22, 41].

In this paper, we considered 8 successive periods in order
to establish the temporal evolution of the power demand,
Table 3. Each period lasts for 3 hours; hence, the total period
is about 24 hours.

Figure 5 illustrates the total production cost of various
optimization methods for solving the unit commitment
problem. Compared to the algorithms of Wei et al. [42] and
C. H. Cai and Y. Y. Cai [43], we find that these optimization

methods present high performance since they improved to
win in the production cost.

It is clear that, through the comparison of production
costs using the fuzzy logic by that one obtained using the
genetic algorithm method, Table 4, the fuzzy approach was
reliable and enabled to get a gain of 1% of the total cost.
However, the strategy based on the use of the gradient-genetic
algorithm method was the most effective and presented high
performances not only in the production cost but also in the
ability of convergence to the global optimum.

Compared to other algorithms as artificial bee colony
(ABC) method and particle swarm optimization (PSO) [44],
it is inferred that genetic algorithm, fuzzy logic, and gradient-
genetic algorithm have the best computation time.Therefore,
the computation time of the unit commitment resolution
through artificial bee colony is about 40.74 sec and, through
the particle swarm optimization, the computation time is
equal to 49.03 sec [44], whereas, with the proposed strategies,
the computation time is highly reduced. It is equal to 10.21 sec
for genetic algorithm strategy and 12.57 sec for the hybrid
gradient-genetic algorithm strategy and the computation
time is about 7.34 sec for the fuzzy logic approach. Therefore,
it is noted that the strategy based on the use of fuzzy logic
method is more efficient than the other two algorithms in
terms of computation time.

Table 5 shows the organization of the on/off states of
the production units of the various optimization strategies.
Thanks to the hybrid optimization method, we were able
to organize the on/off statements of the various production
units through an estimation of the amount of load required
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Table 2: Characteristics of production units.

Unit 𝑃max (MW) 𝑃min (MW) 𝑎 𝑏 𝑐 Up Down Hot start cost ($) Cold start cost ($) Cold start (h)
1 582 110 379.2 30.36 0.0756 8 8 4500 9000 6
2 55 15 606.6 27.3 0.2274 3 3 170 340 2
3 53 10 454.8 22.74 0.2274 3 3 170 340 2
4 23 8 151.8 22.5 0.1518 1 1 30 60 0
5 23 8 303.6 22.74 0.1518 1 1 30 60 0
𝑃max, 𝑃min: minimum and maximum power produced by each generator.
Up: continuously minimum up-time of unit 𝑖.
Down: continuously minimum down-time of unit 𝑖.
𝑎, 𝑏, and 𝑐: cost function parameters of unit 𝑖.
Cold start cost ($): cold start cost of unit 𝑖.
Hot start cost ($): hot start cost of unit 𝑖.
Cold start (h): cold start time of unit 𝑖.
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Figure 5: Total production cost of various optimization methods.

Table 3: Amount of the power demand.

Hour 3 6 9 12 15 18 21 24
Demand (MW) 259 200 300 450 527 610 480 320

Table 4: Comparison between the optimization methods.

Genetic
algorithm Fuzzy logic Gradient-genetic

algorithm
Production
cost ($) 29457 29210 27750

by the electrical grid, taking into account the allowable
constraints; optimal scheduling can profit from the produc-
tion cost. The superiority of the gradient-genetic algorithm
method is obvious.Thismethod operates better than the indi-
vidual algorithms in terms of on/off unit commitment states
scheduling and in terms of optimizing the total production
cost.

In fact, based on the probability equation of such a
combination planning,

𝑃Combinaison = (2
𝑛
− 1)
𝑚
, (21)

where 𝑛 is the number of units and 𝑚 is the discretized
duration. For our case study, the combining probability

𝑃Combinaison is about 6.2
35 combinations.This number suggests

the ability of the hybridmethod to choose a perfect planning,
allowing guaranteeing the supply/demand balance and a
minimal production cost.

Figures 6, 7, and 8 show the production scheduling of
5 units for a variable power demand during a discrete time
margin (horizon time about 24 hours). Indeed, taking into
account the technical constraints related to each generator
(limited power, minimum down-time before restart, and
minimum operating time before off state), strategies were
able to get the best on/off scheduling states of the various
units while optimizing the power produced by each unit
within the allowable margins. Furthermore, solving the UCP
by these optimization methods is considered reliable and
has presented high performances especially for a problem
involving identical production units, which is not the case
for the application of dynamic programming method to the
UCP, established in the works of Dekrajangpetch et al. [45],
which could not be applied to the case of electrical network
having the same characteristics of production units.However,
we find that the unit commitment scheduling based on the
fuzzy logic theory (Figure 6) is more promising than that
one established using the genetic algorithm (Figure 7) and
this can be observed on the temporal evolution of the power
produced by the most powerful generator (615MVA), which
suggests the effectiveness of resolution through the fuzzy
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Table 5: Optimal binary combination of units operation.

Unit Units operation scheduling
using genetic algorithm

Units operation scheduling
using fuzzy logic

Units operation scheduling using
gradient-genetic algorithm

Unit 1 11111111 11111111 11111111
Unit 2 00111111 00111111 00111110
Unit 3 00111110 00011110 00111110
Unit 4 00001110 00001110 00001110
Unit 5 00001100 00001100 00001000
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Figure 6: Unit commitment scheduling and generated power through genetic algorithm.
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Figure 7: Unit commitment scheduling and generated power through fuzzy Logic.
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Figure 8: Unit commitment scheduling and generated power through gradient-genetic algorithm method.

logic approach especially in presence of systems that are
difficult to model. Nevertheless, the strategy based on the use
of gradient-genetic algorithmmethod (Figure 8) remains the
most promising and could be applied to solve the UCP for
systems having complicated architecture and for any number
of production units. Knowing that the minimization of the
production cost equation is closely related to the optimization
of the generated power 𝑃

𝑖ℎ
, the efficiency of resolution-

genetic approach gradient algorithm is guaranteed with great
consideration in the limitation of the amount of produced
active power by each generator per hour and in the allowable
voltage levels margins for each electrical network.

The improvement of the production cost for the model
based on fuzzy approach depends on the number of fuzzy
rules taken in the resolution. However, increasing this num-
ber leads to increasing the horizon of solutions research
which implies the increase of the execution time. Fur-
thermore, the optimization of the production cost through
genetic algorithm requires a proper selection of the GA
parameters which vary from one system to another. Thus,
it is difficult to reduce for both the execution time and the
production cost for the mentioned methods. With regard to
production cost, the proposed strategy based on gradient-
genetic algorithmmethod is more promising. Indeed, it leads
to a better combination of the production units operating
states leading to an optimal production cost, while, regarding
convergence speed and execution time, the approach based
on fuzzy logic has presented high performances.

5. Conclusion

A comparative study between a strategy based on hybrid
gradient-genetic algorithm method and two metaheuristic
methods for solving the unit commitment problem has been

the subject of this work. The simulation results showed that,
in terms of execution time and convergence effectiveness,
the resolution through fuzzy logic is reliable despite the fact
that the production cost is relatively minimal but did not
present the best production cost. Yet, the proposed strategy
which combines genetic algorithm and gradient method has
presented high performances in optimizing the production
cost and capability of convergence to a global optimum.
In addition, the hybrid strategy has ensured a proper unit
commitment scheduling of the various production units
throughout the optimization of the produced power. More-
over, the right choice of the initial population suggests the
possibility of obtaining improvements in execution time.
These factors illustrate the effectiveness of this strategy and
show that it can be applied for solving the unit commitment
problem of an electrical grid having complicated architecture
and containing any number of production units.
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