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Optimization Methods for Electric Power
Systems: An Overview

R. C. Bansal Dr.

Abstract

Power systems optimization problems are very difficult to solve because power systems are
very large, complex, geographically widely distributed and are influenced by many unexpected
events. It is therefore necessary to employ most efficient optimization methods to take full
advantages in simplifying the formulation and implementation of the problem. This article
presents an overview of important mathematical optimization and artificial intelligence (AI)
techniques used in power optimization problems. Applications of hybrid AI techniques have also
been discussed in this article.

KEYWORDS: Power systems optimization, linear programming, expert systems, fuzzy systems,
artificial neural network
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1 Introduction
Mathematical optimization (algorithmic) methods have been used over the years 
for many power systems planning, operation, and control problems. Mathematical 
formulations of real-world problems are derived under certain assumptions and 
even with these assumptions, the solution of large-scale power systems is not 
simple.  On the other hand, there are many uncertainties in power system 
problems because power systems are large, complex, and geographically widely 
distributed. More recently deregulation of power utilities has introduced new 
issues into the existing problems. It is desirable that solution of power system 
problems should be optimum globally, but solution searched by mathematical 
optimization is normally optimum locally. These facts make it difficult to deal 
effectively with many power system problems through strict mathematical 
formulation alone. 
    Therefore, artificial intelligence (AI) techniques which promise a global 
optimum or nearly so, such as expert systems (ES), artificial neural network 
(ANN), genetic algorithm (GA), fuzzy logic have emerged in recent years in 
power systems as a complement tool to mathematical approaches. The real 
beginning of AI is often quoted as 1958 [1]. Various optimization techniques have 
been applied to solve the power systems problem and large number of papers has 
been published in this area since 1950. Review on various power systems 
problems has been presented by Kothari et al. [2-4], Momoh et al. [5,6], Sachdev 
et al. [7], Happ [8], Quintanna et al. [9], Gonen et al. [10], Rahman [11], Huneault 
[12] and IEEE Committee [13,14]. This article presents an overview of important 
mathematical optimization and AI (e.g. ES, fuzzy logic, ANN, GA, ant colony 
search (ACS), tabu search (TS)) techniques used in power optimization problems.  
Applications of hybrid AI techniques in power systems have also been discussed 
in this article.

2 Mathematical Optimization Methods
An optimization problem is a mathematical model where main objective is to 
minimize undesirable things (e.g. cost, energy loss, errors, etc.) or maximize 
desirable things (e.g. profit, quality, efficiency, etc.), subject to some constraints. 
The main advantages of algorithmic methods include:
• Optimality is mathematically rigorous in some algorithms.
• Problems can be formulated to take advantage of the existing sparsity 

techniques applicable to large-scale power systems.
• There are a wide range of mature mathematical programming technologies, 

such as linear programming (LP)/interior point (IP) method and quadratic 
programming (QP), nonlinear programming (NLP), decomposition technique, 
integer and mixed integer programming, dynamic programming (DP), etc.

Following Section briefly discusses about the important mathematical 
optimization techniques used in power systems problems:

1

Bansal: Optimization Methods for Electric Power Systems: An Overview

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/28/15 2:50 AM



2.1 Linear and Quadratic Programming
When the objective function and constraints are linear, this gives the LP [15-17]. 
LP methods basically fall into two categories: simplex and IP methods [18-25]. 
These methods can handle problems with thousands of variables and constraints 
even using inexpensive computers. Main advantage of simplex method is its high 
computational efficiency. Main disadvantage is that number of iterations grows 
exponentially with problem size. This disadvantage can be overcome by IP 
methods. IP methods do not step from one corner point to the next in the manner 
of simplex algorithm, but rather stay within the interior of the constrained region 
and progressively move to the optimal point. A variety of IP algorithms have been 
applied to a number of power system problems, e.g. economic dispatch, reactive 
power optimization, power system optimization, etc. Both the simplex and IP 
methods can be extended to a linear and quadratic objective function when 
constraints are linear. Such methods are called QP [26-27]. LP has been used in 
various power systems applications, including power systems optimal power flow 
[16], load flow [17], reactive power planning [28], active and reactive power 
dispatch [29, 30].

2.2 Nonlinear Programming
When the objective function or the constraints are nonlinear, it forms NLP. The 
difference between the NLP and LP is analogous to the difference between a set 
of solving nonlinear equations and a set of solving linear equations. In most of the 
NLP methods, the approach is to start from an initial guess and to determine a 
‘descent direction’ in which objective function decreases in case of minimization 
problem. A large number of NLP methods are available, distinguishable by their 
definition and step length. Quasi-Newton [31], which attempts to build up an 
approximation to Hessian matrix, can exhibit powerful convergence.  Drawback 
of this method is that matrix processing is required. If the coefficients of Hessian 
matrix are available analytically, Newton method [32] can be applied. Some of 
the most successful mathematical methods in use today are based on applying QP 
to solve a local approximation to a non-linear problem. IP methods originally 
developed for LP can be applicable to QP and NLP problem. NLP has been 
applied to various areas of power systems [5] e.g. optimal power flow [33], 
hydrothermal scheduling [34], etc. 

2.3 Integer and Mixed-Integer Programming
For many optimization problems (e.g. ON status =1, and OFF status =0), some of 
the independent variables can take only integer values; such problem is called 
integer programming. When some of the variables are continuous, the problem is 
called mixed integer programming. Mainly two approaches i.e.  ‘branch and 
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bound’, and ‘cutting plane methods’, have been used to solve integer problems 
using mathematical programming techniques [31]. It is possible to solve problem 
of hundreds of variables using integer and mixed integer programming. The size 
and complexity of integer and mixed-integer programmes that can be solved in 
practice depends upon the structure of the problem. Decomposition technique to 
decompose continuous problem into integer/mixed integer programming has been 
used in [35-40]. Integer/mixed integer programming has been applied to various 
areas of power systems e.g. optimal reactive power planning [41], power systems 
planning [42, 43], unit commitment [44], generation scheduling [45], etc.

2.4 Dynamic Programming
DP based on the principle of optimality states that a sub-policy of an optimal 
policy must in itself be an optimal sub-policy. For example, for a problem of n 
generators with possible s output level each, exhaustive enumeration would 
require sn possible combinations to be examined, where as DP would examine 
fewer than n2s2 combinations. DP is a very powerful technique, where it is 
applicable, but suffers from the curse of dimensionality [46], (In the above 
example for n=100, s= 200, n2s2 = 4 X 108). DP has been applied to various areas 
of power systems e.g. reactive power control [47], transmission planning [48], 
unit commitment [49], etc.

3 Artificial Intelligence Techniques
Despite the successes of the algorithmic approaches described in the previous 
section, there remains a large class of problems that elude complete solution in a 
conventional setting. These problems require:

• Use of knowledge bases to store human knowledge.
• Operator judgment particularly in practical solutions.
• Experience gained over a period of time.
• Characterization by network uncertainty, load variations, etc.

This section presents the overview of AI techniques (ES, ANN, fuzzy systems, 
EC, ant colony search, tabu search, etc.) for power systems problems.

3.1 Expert System
ES was first broadly researched by Feigenbaum et al. in the early 1970s [50, 51]. 
ES is a knowledge-based or rule based system, which uses the knowledge and 
interface procedure to solve problems that are difficult enough to require human 
expertise for their solution.  Main advantages of ES [52] are: (i) It is permanent 
and consistent; (ii) Can be easily transferred or reproduced; (iii) Can be easily 
documented. Main disadvantage of ES is that it suffers from a knowledge 
bottleneck by having inability to learn or adapt to new situations. The level of 
maturity of applications varies from software prototype to practical systems in use 
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in the power industry environment. The knowledge engineering techniques started 
with simplistic rule based techniques and extended to more advanced techniques 
such as object-oriented design, qualitative reasoning, verification and validation 
methods, natural languages, multi-agent systems.
   For the past twenty years, a great deal of ES applications have been developed 
to help plan, analyze, manage, control and operate various aspects of power 
generation, transmission and distributions systems. A survey of ES applications in 
power system is presented in [53-56]. Lu et al. [57, 58] have done considerable 
work on the applications of ES in power systems. A recent survey presented in 
[59] indicates that ES has been applied to various areas of power systems, 
including: power system planning, alarm processing, fault diagnosis, power 
system protection, power system restoration and reactive power/voltage control.

3.2 Artificial Neural Network
The starting point of ANN was the training algorithm proposed by Hebb in 1949, 
which demonstrated how a network of neurons could exhibit learning behaviour 
[60]. ANN are mainly categorized by their architecture (number of layers), 
topology (connectivity pattern, feed forward or recurrent etc.), and learning 
regime. Most of the applications of ANN in the power systems use multi-layer 
feed forward network. The main advantages of ANN are [61-64]: (i) It is fast; (ii) 
Possesses learning ability; (iii) Adapts to the data; (iv) Robust; (v) Appropriate for 
non-linear modelling. These advantages suggest the use of ANN for voltage 
security monitoring and control. Though the neural network training is generally 
computationally expensive, it takes negligible time to evaluate voltage stability 
once the network has been trained. Despite the advantages, some disadvantages of 
the ANN are: (i) Large dimensionality; (ii) Selection of the optimum 
configuration; (iii) The choice of training methodology; (iv) The ‘black-box’ 
representation of ANN – they lack explanation capabilities and so decisions are 
not audible; (v) The fact that results are always generated even if the input data 
are unreasonable.
     Vankayala et al. [65] have presented a bibliographical survey of neural 
network and their applications to power systems. Neural network has been mainly 
used in following areas of power systems:
• Planning (long term load forecasting [66, 67], capacitor placement/voltage 

control [68-72])
• Operation (economic dispatch/unit commitment [73-79], short-term load 

forecasting [80-90], fault diagnosis  [91-95], load flow [96], static and 
dynamic security assessment [97-100], hydro scheduling [101-104], transient 
stability [105-114])

• Analysis (power system stabilizer [115-117]). 
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3.3 Fuzzy Logic 
Fuzzy logic was developed by Zadeh in 1964 to address uncertainty and 
imprecision which widely exist in the engineering problems and it was first 
introduced in 1979 for solving power system problems. Fuzzy set theory can be 
considered as a generalization of the classical set theory. In classical set theory an 
element of the universe either belongs to or does not belong to the set. Thus the 
degree of association of an element is crisp. In a fuzzy set theory the association 
of an element can be continuously varying. Mathematically, a fuzzy set is a 
mapping (known as membership function) from the universe of discourse to the 
closed interval [0,1]. The membership function is usually designed by taking into 
consideration the requirement and constraints of the problem. Fuzzy logic 
implements human experiences and preferences via membership functions and 
fuzzy rules. Due to the use of fuzzy variables, the system can be made 
understandable to a non-expert operator. In this way, fuzzy logic can be used as a 
general methodology to incorporate knowledge, heuristics or theory into 
controllers and decision makers.
   The advantages of fuzzy theory are (i) More accurately represents the 
operational constraints of power systems;  (ii) Fuzzified constraints are softer than 
traditional constraints [118, 119]. A detailed introduction to fuzzy logic and their 
applications in power systems has been presented in [120-122]. Momoh et al. 
[123] have presented the overview and literature survey of fuzzy set theory 
application in power systems. A recent survey presented in [124] shows that fuzzy 
set theory has been applied mainly in voltage and reactive power control, load 
forecasting, fault diagnosis, power system protection/relaying, stability, and 
power system control, etc. 

3.4 Evolutionary Computation
   EC is based on the Darwin’s principle of ‘survival of the fittest strategy’. An 
evolutionary algorithm begins by initializing a population of candidate solutions 
to a problem [132]. New solutions are then created by randomly varying those of 
the initial population. All solutions are measured with respect to how well they 
address the task. Finally, a selection criterion is applied to weed out those 
solutions, which are below par. The process is iterated using the selected set of 
solutions until a specific criterion is met.  The advantages of EC are adaptability 
to change and ability to generate good enough solutions but it needs to be 
understood in relation to computing requirements and convergence properties. 
EC can be subdivided into GA, evolution strategies, evolutionary programming 
(EP), genetic programming, classified systems and simulated annealing (SA). 
   The first work in the field of Evolutionary Computation (EC) was reported by 
Fraser in 1957 [125] to study the aspects of genetic system using a computer. 
After some time a number of evolutionary inspired optimization techniques were 
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developed, i.e. by Friedman in 1959 [126], Blendsoe in 1961 [127] and 
Bremermann in 1962 [128]. EC was presented by Fogel et al. in 1966 [129]. The 
rejection of EC work by AI community was responsible for widespread 
skepticism faced by more schema-friendly GA of late 1960s and mid 1970s. GA 
was later popularized by Holland in 1975 [130], and Goldberg in 1989 [131]. 
   Over 95% of all the papers published in power systems are based on GA [52]. 
Other popular technique for power system applications is SA. GA and SA have 
been receiving increasing amounts of attention due to their versatile optimization 
capabilities for both continuous and discrete optimization problems. Both are 
motivated by so-called nature’s wisdom: GA are loosely based on the concept of 
natural selection and evolution; while SA originated in the annealing process 
found in the thermodynamics and metallurgies. A recent extensive literature 
survey on EC applications in power systems presented in [133].

3.4.1 Genetic Algorithm
GA is a global search technique based on mechanics of natural selection and 
genetics. It is a general-purpose optimization algorithm that is distinguished from 
conventional optimization techniques by the use of concepts of population 
genetics to guide the optimization search. Instead of point-to-point search, GA 
searches from population to population. The advantages of GA over traditional 
techniques are: 
i) It needs only rough information of the objective function and places no 
restriction such as differentiability and convexity on the objective function.
ii) The method works with a set of solutions from one generation to the next, and 
not a single solution, thus making it less likely to converge on local minima.
iii) The solutions developed are randomly based on the probability rate of the 
genetic operators such as mutation and crossover; the initial solutions thus would 
not dictate the search direction of GA.
     Major disadvantage of GA method is that it requires tremendously high time. 
Alander [134] has presented a bibliography of genetic algorithm in power 
systems. Following are the major applications of GA in power systems: 
• Planning (transmission expansion planning [135-140], capacitor placement 

[141-142])
• Operation (voltage/reactive power control [143-145], unit 

commitment/economic dispatch [146-154], hydrothermal scheduling [155-
157]). 

3.4.2 Simulated Annealing
SA technique based on thermodynamics were originally inspired by the formation 
of crystals in solids during cooling. The advantages of SA are its general 
applicability to deal with arbitrary systems and cost functions, its ability to refine 
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optimal solution, and its simplicity of implementation even for complex problems.
The major drawback of SA is repeated annealing. This method cannot tell 
whether it has found optimal solution. Some other method (e.g. branch and 
bound) is required to do this. SA has been used in various power system 
applications e.g. transmission expansion planning [158, 159], unit commitment 
[160-162], maintenance scheduling [163], etc.

3.5 Ant Colony Search
Dorigo introduced the ACS system first time in 1992 [164]. ACS techniques take 
inspiration from the behavior of real ant colonies and are used to solve function or 
combinational problems. ACS algorithms to some extent mimic the behavior of 
real ants. The main characteristics of ACS are positive feedback for recovery of 
good solutions, distributed computation, which avoids premature convergence, 
and the use of a constructive greedy heuristic to find acceptable solutions in the 
early stages of the search process.  Poor computational of the ACS is the main 
drawback of this technique. ACS technique has been mainly used in finding the 
shortest route for transmission network [165, 166].

3.6 Tabu Search
TS is an iterative improvement procedure that starts from some initial solution 
and attempts to determine a better solution in the manner of a  ‘greatest descent 
neighborhood’ search algorithm. Basic components of TS are the moves, tabu list 
and aspiration level. TS is a metahuristic search to solve global optimization 
problem, based on multi-level memory management and response exploration 
[167-170]. TS has been used in various power system applications, e.g. 
transmission planning [171], optimal capacitor placement [172-174], unit 
commitment [175], hydrothermal scheduling [176], fault diagnosis/alarm 
processing [177, 178], reactive power planning  [179], etc. 

4 Hybrid AI Techniques
The real life power system problems may neither fit the assumptions of a single 
AI technique nor be effectively solved by the strengths and capabilities of single 
technique. One approach to deal with these complex real world problems is to 
integrate the two or more techniques in order to combine their strengths and 
overcome each other’s weaknesses to generate hybrid solutions [52]. With the 
benefits offered by hybrid AI techniques, their applications to power systems have 
been increasing rapidly. Table 1 lists the different hybrid AI techniques, which 
have been applied to various power systems problems.
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Table 1: Applications of hybrid AI techniques in power systems problems

 5 Conclusions
This article has shed some light on the important mathematical optimization and 
AI techniques used in power system applications.  Various hybrid AI techniques 
used in power systems have also been discussed. In the light of the overview 
presented in this article, the following are the significant points of conclusions.
   Despite remarkable advances in mathematical optimization techniques, 
conventional mathematical methods have yet to achieve fast and reliable real time 
applications in power system applications. Considerable efforts are required to 
avoid mathematical traps such as ill-conditioning and convergence difficulties.
   AI relies heavily on good problem description and extensive domain 
knowledge. ES, which is a knowledge-based system, suffers from a knowledge 
bottleneck by having an inability to learn or to adapt to new situations. 
Knowledge-based system can enhance the capabilities of a power system, 
whereas ANN can acquire knowledge through adaptive training and 
generalization. ANN, fuzzy, and ES suffer from the same requirement of expert 
user in their design and implementation.  They also suffer from a lack of the 
formal model theory and mathematical rigors and so are vulnerable to the experts’ 
depth of knowledge in problem definition. Fuzzy theory with its of realistic 
description of power system problems and ANN with its promise of adaptive 
training and generalization deserves scope for further study. GA, by contrast, 
access deep knowledge of systems problem by well-established models. GA has 
much more potential in power systems analysis and are also latest entry into the 

Hybrid AI techniques Application area/power system problems
Fuzzy neural network 
systems

Generation and distribution [180], relaying 
[181], fault diagnosis [182], load forecasting 
[183, 184], reactive power control [185, 
186], generator maintenance scheduling 
[187]

Fuzzy genetic systems Stability [188], Power systems control [189, 
190], economic dispatch [191]

Fuzzy expert systems Power system planning [192]
Fuzzy/ neural/expert/genetic 
systems

Load forecasting [193, 194], generation 
expansion planning [195], power system 
stabilizer [196]

Simulated annealing with 
fuzzy/genetic/expert 
systems

Reactive power planning [197], generator 
maintenance scheduling [198-200]
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AI fields and are getting most of the current attention. GA needs to be understood 
in relation to the computation requirements and convergence properties. The 
application of hybrid systems in power system problems is a novel development, 
which represents a definite future trend in power systems research.

References
[1] J. McCarthy. Programs with Common Sense. Proc. National Physics Lab., 

HMSO, London, 1958.
[2] D.P. Kothari. Optimal Hydrothermal Scheduling:  A Review. Journal of 

Scientific and Industrial Research, Vol. 47: 98-101, Feb. 1988.
[3] A. Ahmad and D.P. Kothari. A Review of Recent Advances in Generator 

Maintenance Scheduling. Electric Machines and Power Systems, 26(4):373-
387, 1998.

[4] S. Sen and D.P. Kothari. Optimal Thermal Generating Unit Commitment- A 
Review. Int. Journal of Electrical Power and Energy Systems, 20(7): 443-
451, 1998.

[5] J.A. Mamoh, M.E. El Hawary, and R. Adapa. A Review of Selected 
Optimal Power Flow Literature to 1993, Part-I: Non-Linear and Quadratic 
Programming Approach. IEEE Trans. Power Systems, 14(1):96-104, 1999.

[6] J.A. Mamoh, M.E. El Hawary, and R. Adapa. A Review of Selected 
Optimal Power Flow Literature to 1993, Part-II: Newton, Linear 
Programming and Interior Point Methods. IEEE Trans. Power Systems, 
14(1):105-111, 1999.

[7] M.S. Sachdev, R. Billinton, and C.A. Peterson. Representative Bibliography 
on Load Forecasting. IEEE Trans. Power Apparatus and Systems, PAS-
96(2): 697-700, 1977.

[8] H.H. Happ. Optimization Power Dispatch – A Comprehensive Survey. 
IEEE Trans. Power Apparatus and Systems, PAS-96(2):841-854,  1977.

[9] V.H. Quintana, G.L. Torres, and J.M. Palomo. Interior-Point Methods and 
Their Applications to Power Systems: A Classifications of Publications and 
Software. IEEE Trans. Power Systems, 15(1): 170-176, 2000.

[10] T. Gonen and A.A. Mahmoud. Bibliography of Power Distribution System 
Planning. IEEE Trans. Power Apparatus and Systems, PAS-102(6):1778-
1787, 1983.

[11] R. Rahman. Artificial Intelligence in Electric Power System’s Survey in 
Japanese Industry. IEEE Trans. Power Systems, 8(3):1211-1218, 1993.

[12] M. Huneault and F.D. Galiana. A Survey of the Optimal Power Flow 
Literature. IEEE Trans. Power Systems, 6(2): 762-770, 1991.

[13] IEEE Committee Report. Load Forecasting, Bibliography, Phase-1. IEEE 
Trans. Power Apparatus and Systems, PAS-99(1): 53-58, 1980.

9

Bansal: Optimization Methods for Electric Power Systems: An Overview

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/28/15 2:50 AM



[14] IEEE Committee Report. Load Forecasting, Bibliography, Phase-2. IEEE 
Trans. Power Apparatus and Systems, PAS-100(7):3217-3220,1981.

[15] B. Scott and J.L. Marinho. Linear Programming for Power System Network 
Security Applications. IEEE Trans. Power Apparatus and Systems, PAS-
98:837-845, May/June 1979.

[16] O. Alsac, J. Bright, M. Prais, and B. Scott. Further Developments in LP 
Based Optimal Power Flow. IEEE Trans. Power Systems, 5(3):697-711, 
1990.

[17] G.T. Hegdt and W.M. Grady. Optimal Var Siting Using Linear Load Flow 
Formulation. IEEE Trans. Power Apparatus and Systems, PAS-102 
(5):1214-1222, 1983.

[18] G.D. Irrisari, L.M. Kimball, K.A. Clements, A. Bagchi and P.W. Davis. 
Economic Dispatch with Network and Ramping Constraints via Interior 
Point Methods. IEEE Trans. Power Systems, 13(1):236-242, 1998.

[19] L.S. Vargas, V.H. Quintana, and V. Vannelli. A Tutorial Description of an 
Interior Point Method and its Applications to Security Constrained 
Economic Dispatch. IEEE Trans. Power Systems, 8(3):1315-1324, 1993.

[20] S. Granville. Optimal Reactive Dispatch Through Interior Point Methods. 
IEEE Trans. Power Systems, 9(1):136-144, 1994.

[21] J.L. M. Ramos, A.G. Exposito, and V.H. Quintana. Reactive Power 
Optimization by Quadratic Interior Point Method: Implementation Issues. 
Proc. 12th Power System Computation Conf., Dredson, Germany, 1996.

[22] M. Christoforidis, M. Aganagic, B. Awobamise, S. Tong, and A.F. Rahimi. 
Long-Term/Mid-Term Resource Optimization of a Hydro-Dominant Power 
System using Interior Point Methods. IEEE Trans. Power Systems, 
11(1):287-294, 1996.

[23] J.C.O. Mello, A.C.G. Melo, and S. Granville. Simultaneous Capability 
Assessment by Combining Interior Point Method and Monte Carlo 
Simulation. IEEE Trans. Power Systems, 12(2):736-742, 1997.

[24] K. Pannambalam, V.H. Quintana, and A. Vannelli. A Fast Algorithm for 
Power System Optimization using Interior Point Method. IEEE Trans. 
Power Systems, 7(2):892-899, 1992.

[25] V.R. Sherkat and Y. Ikura. Experience With Interior Point Optimization 
Software for a Fuel Planning Application. IEEE Trans. Power Systems, 
9(2):833-840, 1994.

[26] J.A. Momoh, S.X. Guo, E.C. Ogbuoriri, and R. Adapa. The Quadratic 
Interior Point Method Solving Power System Optimization Problems. IEEE 
Trans. Power Systems, 9 (3):1327-1336, 1994.

[27] J. Nanda, D.P. Kothari, and S.C. Srivastava. A New Optimal Power 
Dispatch Algorithm using Fletcher’s QP Method. IEE Proceedings, 
Generation Transmission and Distribution, 136(3):153-161, 1989.

10

International Journal of Emerging Electric Power Systems, Vol. 2 [2005], Iss. 1, Art. 1021

DOI: 10.2202/1553-779X.1021

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/28/15 2:50 AM



[28] G. Opoku. Optimal Power System VAR Planning. IEEE Trans. Power 
Systems, 5(1):53-59, 1990,.

[29] A.M. Chebbo and M.R. Irving. Combined Active and Reactive Power 
Dispatch Part 1: Problem Formulation and Solution Algorithm. IEE 
Proceedings- Generation Transmission and Distribution, 142(4):393-400, 
1995.

[30] A.M. Chebbo, M.R. Irving, and N.H. Dandachi. Combined Active and 
Reactive Power Dispatch Part 2: Test Results. IEE Proceedings- Generation 
Transmission and Distribution, 142(4):401-405, 1995.

[31] M.R. Irving and Y.H. Song. Optimization Methods for Electric Power 
Systems, Part 1, Mathematical Optimization Methods. IEE Power 
Engineering Journal, 14 (5):245-254, 2000.

[32] W.F. Tinney and  C.S. Hart. Power Flow Solution by Newton’s Method. 
IEEE Trans. Power Apparatus and Systems, PAS-86(11):1449-1460, 1967.

[33] D.I. Sun, B. Ashley, B. Brewer, A. Hughes, and W.F. Tinney. Optimal 
Power Flow by Newton Approach. IEEE Trans. Power Apparatus and 
Systems, PAS-103(2):2864 – 2878, 1984.

[34] D.P. Kothari. Optimal Stochastic Hydrothermal Scheduling using Nonlinear 
Programming Technique. Presented Australian Society, Melbourne 
(Australia), 335-344, 1989.

[35] N. Alguacil and   A.J. Conejo. Multi-Period Optimal Power Flow using 
Benders Decomposition. IEEE Trans. Power Systems, 15(1):196-201,  
2000.

[36] N. Deeb and S.M. Shahidehpour. Linear Reactive Power Optimization in a 
Large Power Network Using the Decomposition Approach. IEEE Trans. 
Power Systems, 5(2):428 – 438, 1990.

[37] A.M. Geoffrion. Generalized Benders Decomposition. Journal of 
Optimization Theory Applications, 10(4) 237-261, 1972.

[38] M.V.F Pereira, L.M.V.G. Pinto, S.H.F. Cunha, and C.G. Oliveira. 
Decomposition Approach to Automated Generation/Transmission 
Expansion Planning. IEEE Trans. Power Apparatus and Systems, PAS-104 
(11):3074-3083, 1985.

[39] S. Granville, M.V.F. Pereira, and A. Monticelli. An Integrated Methodology 
for VAR Source Planning. IEEE Trans. Power Systems, 3(2):549-557, 
1988.

[40] J. Madina, A.J. Conejo, N.R. Jimenez, F.P. Thoden, and J. Gonzalez. A LP 
Based Decomposition Approach to Solve The Medium Term Hydrothermal 
Coordination Problem. Proc. 12th Power System Computation Conf., 
Dredson, Germany, 1397-1405, 1996.

11

Bansal: Optimization Methods for Electric Power Systems: An Overview

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/28/15 2:50 AM



[41] K. Aoki, M. Fan, and A. Nishikori. Optimal VAR Planning by 
Approximation Method for Recursive Mixed – Integer Linear 
Programming. IEEE Trans. Power Systems, 3(4): 1741 – 1747,1988.

[42] R. Adams and M.A. Laughton. Optimal Planning of Power Networks using 
Mixed Integer Programming. Proceedings IEE, 121(2):139-145, 1974.

[43] T. Gonen and B.L. Foote. Distribution System Planning using Mixed 
Integer Programming. IEE Proceedings-Generation, Transmission and 
Distribution, 128(2):70-79, 1981.

[44] T.S. Dillon, K.W. Edwin, H.D. Kochs, and R.D. Tand. Integer 
Programming Approach to the Problem of Unit Commitment with 
Probabilistic Reserve Determination. IEEE Trans. Power Apparatus and 
Systems, PAS-97(6): 2154-2166, 1978. 

[45] J.F. Dapezo and H.M. Merill. Optimal Generator Scheduling with Integer 
Programming. IEEE Trans. Power Apparatus and Systems, PAS-94 
(3):1537-1545, 1975.

[46] Y.H. Song. Modern Optimization Techniques in Power Systems. Kluwer 
Academic Publishers, London, UK, 1999.

[47] F.C. Lu and Y.Y. Hsu. Reactive Power/Voltage Control in a Distribution 
Substation using Dynamic Programming. IEE Proceedings- Generation 
Transmission and Distribution, 142(6):639-645, 1995.

[48] J. Parten. A Simplified Modified Dynamic Programming Algorithm for 
Sizing Location and Feeder Reinforcements. IEEE Trans. Power Delivery, 
5(1): 277-283, 1990.

[49] W.J. Hobbs, G. Hermon, S. Warner, and G.B. Sheble. An Enhanced 
Dynamic Approach for Unit Commitment. IEEE Trans. Power Systems, 
3(3):1201-1205, 1988.

[50] B.G. Bucannan and E.A. Feigenbaum. Dendral and Metadendral: Their 
Applications Dimension. Artificial Intelligence, 5-24, Nov.1978.

[51] T.J. Dillon and MA. Laughton. Expert System Application in Power 
Systems. Prentice Hall, London, 1990.

[52] K. Wardwick, A. Ekwue, and R. Aggarwal. Artificial Intelligence 
Techniques in Power Systems. IEE, London, UK, 1997. 

[53] Z.Z. Zhang, G.S. Hope, and O.P.  Malik. Expert Systems in Electric Power 
Systems – A Bibliographic Survey. IEEE Trans. Power Systems, 4(4): 
1355-1362, 1989.

[54] N.J. Balu, R.A. Adapa, G. Cauley, M. Lauby, and D.J. Maratukulam, 
Review of Expert Systems Planning And Operations, Proceedings of IEEE, 
80(5): 727-731, 1992.

[55] CIGRE Task Force 38-06-02, Survey on Expert System in Alarm Handling, 
Electra, Vol. 139:133-151, 1991.

12

International Journal of Emerging Electric Power Systems, Vol. 2 [2005], Iss. 1, Art. 1021

DOI: 10.2202/1553-779X.1021

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/28/15 2:50 AM



[56] A.J. Germond and D. Niebur. Survey of Knowledge-Based Systems in 
Power Systems: Europe. Proceedings of IEEE, 80(5): 732-744, 1992. 

[57] C.C. Liu, T.K. Ma, K.L. Liou, and M.S. Tsai. Practical Use of Expert 
Systems in Power Systems. Int. Journal on Engineering Intelligent Systems, 
2(1): 11-22, 1994. 

[58] C.C. Liu, Practical Use of Expert Systems in Planning and Operation of 
Power Systems. Electra, 141:31-67, Feb. 1993.  

[59] R.C. Bansal. Literature Survey on Expert System Applications to Power 
Systems (1990-2001). Int. Journal Engineering Intelligent Systems, 
11(3):103-112, 2003.

[60] P.D. Wasserman. Neural Computing: Theory and Practice. Van Nostrand 
Reinhold, New York, 1989.

[61] D. Niebur and T.S. Dillon, Neural Network Applications in Power Systems, 
CRL Publishing Ltd. U.K. 1996.

[62] R. Aggarwal and Y.H. Song. Artificial Neural Networks in Power Systems: 
Part 1 General Introduction to Neural Computing. IEE Power Engineering 
Journal, 11(3): 129-134, 1997.

[63] R. Aggarwal and Y.H. Song. Artificial Neural Networks in Power Systems: 
Part 2 Types of Artificial Neural Networks. IEE Power Engineering 
Journal, 12(1):41-47, 1998.

[64] R. Aggarwal and Y.H. Song. Artificial Neural Networks in Power Systems: 
Part 3 Examples of Applications in Power Systems. IEE Power Engineering 
Journal, 12(6):279-287, 1998.

[65] V.S.S. Vankayala and N.D. Rao. Artificial Neural Networks and Their 
Applications to Power Systems – A Bibliographical Survey. Electric Power 
Systems Research, 28(1):67-79,1993.

[66] D.D. Highly and T.J. Hilmes. Load Forecasting by ANN. IEEE Computer 
Applications in Power, 6(3) 10-15, 1993.

[67] D. Park. Electric Load Forecasting Using an Artificial Neural Network. 
IEEE Trans. Power Systems, 6(2): 442-449, 1991.

[68] N.I. Santoso and O.T. Tan. Neural-Net Based Real-Time Control of 
Capacitors Installed on Distribution Systems. IEEE Trans. Power Delivery, 
5(1): 266-272, 1990.

[69] M.J. Short, C.K. Hui, J.F. Macqeen, and A.O. Ekwue, Application of 
Artificial Neural Network for NGC Voltage Collapse Monitoring. CIGRE 
Symposium, Paris, Paper 28-205,1994.

[70] Y.H. Song, H.B. Wan, and A.T. Johns. Kohonen Neural Network Based 
Approach to Voltage Weak Buses Areas Identification. IEE Proceedings-
Generation Transmission Distribution, 144(3):340-344, 1997. 

13

Bansal: Optimization Methods for Electric Power Systems: An Overview

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/28/15 2:50 AM



[71] A.D. Roy and S.K. Goswami. Development of Artificial Neural Networks 
for Solving Capacitor Control Problem in Distribution Network. Proc. 9th

National Power Systems Conference, IIT Kanpur (India), 413-416, 1996.
[72] Z. Gu and D.T. Rizy. Neural Network for Combined Control of Capacitance 

Banks and Voltage Regulators in Distribution Systems. IEEE Trans. Power 
Systems, 11(4): 1921-1928, 1996.

[73] J. Kumar and G. Sheble. Clamped State Solution of Artificial Neural 
Network for Real Time Economic Dispatch. IEEE Trans. Power Systems, 
10(2): 925-931, 1995.

[74] M. Djukanovi, M. Alovi, B. Miloevi, and D.J. Sobajic. Neural-Net Based 
Real-Time Dispatch for Thermal Power Plants. IEEE Trans. Energy 
Conversion, 11(4): 755-761, 1996.

[75] Y. Fukuyama and Y. Ueki. An Application of Neural Network to Dynamic 
Dispatch using Multi Processors. IEEE Trans. Power Systems, 9(4): 1759-
1765, 1994.

[76] C. Su and G. Chiou. A Fast Computation Hopfield Method to Economic 
Dispatch of Power Systems. IEEE Trans. Power Systems, 12(4): 1759-1764, 
1997.

[77] M.P. Walsh, M.E. Flynn and M.J. O’Malley. Augmented Hopfield Network 
for Unit Commitment and Economic Dispatch. IEEE Trans.  Power 
Systems, 12(4): 1765-1774, 1997.

[78] P.S. Kulkarni, A.G. Kothari, and D.P. Kothari. Combined Economic 
Dispatch Unit using Economic Improved Back Propagation Neural 
Network. Electric Machines and Power Systems, 28(8): 31-44, 2000. 

[79] P.S. Kulkarni, A.G. Kothari, and D.P. Kothari. Adaptive BP NN Approach 
to Emission Constrained Economic Dispatch. Proc. CBIP Int. Conf., New 
Delhi (India), pp. viii-1-10, 1999.

[80] D. Singh and S.P. Singh. ANN Based Short Term Load Forecasting. 
Institution of Engineers (India), 82(3): 155-160, 2001.

[81] H. Mori and A. Yuithara. Deterministic Annealing for ANN-Based Short-
Term Load Forecasting. IEEE Trans. Power Systems, 16(3): 545-551, 2001.

[82] H.S. Hippert, C.E. Pedeira, and H. Hamadanizadeh. Neural Network for 
Short-Term Load Forecasting. IEEE Trans. Power Systems, 16(1): 44-55, 
2001.

[83] S. Krunic, I. Krcmar, and N. Rajakovic. An Improved Neural Network 
Approach for Short-Term Load Forecasting. Electric Machines and Power 
Systems, 28(8): 703-722, 2000. 

[84] Y.Y. Hsu and C.C. Yang. Design of Artificial Neural Networks for Short 
Term Load Forecasting. Part I and II. IEE Proceedings- Generation, 
Transmission and Distribution, 138(5): 407-418, 1991.

14

International Journal of Emerging Electric Power Systems, Vol. 2 [2005], Iss. 1, Art. 1021

DOI: 10.2202/1553-779X.1021

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/28/15 2:50 AM



[85] R. Lamedica, A. Prudenzi, M. Sofrna, M. Caciottas, and V.O. Cencelli. A 
Neural Network Based Technique for Short Term Load Forecasting. IEEE 
Trans. Power Systems, 11(4): 1749-1756, 1996.

[86] K.L. Ho, Y.Y. Hsu, and C.C. Yang. Short Term Load Forecasting using a 
Multilayer Neural Network with an Adaptive Learning Algorithm. IEEE 
Trans. Power Systems, 7(1): 141-149, 1992.

[87] T.M. Peng, N.F. Hubele, and G.G. Karady, Advancement in the Application 
of Neural Network for Short Term Load Forecast. IEEE Trans. Power 
Systems, 7(1), 1992, 250-257.

[88] W. Charytoniuk and M.S. Chen. Very Short Term Load Forecasting using 
Artificial Neural Network. IEEE Trans. Power Systems, 15(1): 263-268, 
2000.

[89] D.K. Ranaweera, N.F. Hubele, and A.D. Papalexopoulos. Application of 
Radial Basis Function Neural Network Model to Short Term Load Forecast. 
IEE Proceedings - Generation Transmission and Distribution, 142(1): 45-
50, 1995.

[90] M. Saforna and F. Proverbio, A Neural Network Operator Oriented Short-
Term and On-Line Load Forecasting Environment. Electric Power Systems 
Research, 33(2):139-149,1995.

[91] M.M. Tawfik and M.M. Morcos. ANN-Based Technique for Estimating 
Fault Location on Transmission Lines Using Prony Method. IEEE Trans. 
Power Delivery, 16(2): 219-224, 2001.

[92] H.A. Darwish and A.M.I. Taalab. Development to Implementation of ANN-
Based Fault Diagnosis Scheme for Generator Winding Protection. IEEE 
Trans. Power Delivery, 16(2): 200-207, 2001.

[93] Z. Chen and J.C. Mann. Artificial Neural Network Approach to Single 
Ended Fault Locator for Transmission Lines. IEEE Trans. Power Systems, 
15(1): 370-375, 2000.

[94] Y.H. Song, A.T. Johns and R. Aggarwal. Neural Network Based Adaptive 
Autoreclosure Technique For Long-Distance Compensated Transmission 
Systems. Electric Machines and Power Systems, 25(3): 281-294, 1997.

[95] S. Ebrom, D.L. Lubkeman and M. White. A Neural Network Approach to 
the Detection of the Incipient Faults on Power Distribution Feeders. IEEE 
Trans. Power Delivery, 5(2):505-514, 1990.

[96] W.L. Chan, A.T.P. So and L.L. Lia. Initial Application of Artificial Neural 
Network to Load Flow Analysis. IEE Proceedings- Generation 
Transmission and Distribution, 147(6): 361-366, 2000.

[97] D.J. Sobajic and Y.H. Pao. ANN Based Dynamic Security Assessment for 
Electric Power Systems. IEEE Trans. Power Systems, 4(1): 220-226, 1989.

15

Bansal: Optimization Methods for Electric Power Systems: An Overview

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/28/15 2:50 AM



[98] S. Ghosh and B.H. Chowdhury, Security Constrained Optimal Rescheduling 
of Real Power using Hopfield Neural Network. IEEE Trans. Power 
Systems, 11(4): 1743-1748, 1996.

[99] D.J. Sobojic and Y. Pao. Artificial Neural Network Based Dynamic 
Security Assessment for Electric Power Systems. IEEE Trans. Power 
Systems, 4(1):220-228, 1989.

[100] D. Nibur and A.J. Germond. Power System Static Security Assessment 
using the Kohonen Neural Network Classifier. IEEE Trans. Power Systems, 
7(2):865-872,1992.

[101] R. Naresh and J. Sharma. Hydro System Scheduling Using ANN Approach. 
IEEE Trans. Power Systems, 15(1): 388-395, 2000.

[102] J.T. Ma, L.L. Lai, R.H. Liang, and Y.Y. Hsu. Short-Term Hydro-
Scheduling using Hopfield Neural Network Evolutionary Programming 
Approach to Reactive Power Planning. IEE Proceedings- Generation 
Transmission and Distribution, 143(3): 269-275, 1996.

[103] L.R. Hsu and H.Y Yih. A Hybrid Artificial Neural Network-Differential 
Dynamic Programming Approach for Short-Term Hydro Scheduling. 
Electric Power System Research, 33(2): 77-86, 1995.

[104] R.H. Liang and Y.Y. Hsu. Scheduling of Hydroelectric Generations using 
Artificial Neural Networks. IEE Proceedings- Generation Transmission and 
Distribution, 141(5): 452-458, 1994.

[105] X.Z. Dai, D. He, L.L. Fan, N.H. Li, and H. Chen. Improved ANN Alpha 
Th-Order Inverse TCSC Controller for Enhancing Power System Transient 
Stability. IEE Proceedings- Generation Transmission and Distribution, 
146(6): 550-556, 1999.

[106] C.W. Liu, M.C. Su, S.S. Tsay, and Y.J. Wang. Application of a Novel 
Fuzzy Neural Network to Real-Time Transient Stability Swings Prediction 
Based on Synchronized Phasor Measurements. IEEE Trans. Power Systems, 
14(2): 685 –692, 1999.

[107] C.W. Liu, S.S. Tsay, Y.J. Wang, and M.C. Su. Neuro-Fuzzy Approach to 
Real-Time Transient Stability Prediction Based on Synchronized Phasor 
Measurements. Electric Power System Research, 49(2): 123-127, 1999.

[108] T. Hiyama, Y. Ueki, H. Andou. Integrated Fuzzy Logic Generator 
Controller for Stability Enhancement. IEEE Trans. Energy Conversion, 
12(4): 400 –406, 1997.

[109] S.H. Karaki, A.S. Deba, and Y.E. Saliva. Multi-Machine Classical Transient 
Stability using ANN. Int. Journal of Power and Energy Systems, 19(1): 49-
55, 1997.

[110] F. Aboytes and R. Ramirez, Transient Stability Assessment in Longitudinal 
Power Systems using Artificial Neural Networks. IEEE Tran. Power 
Systems, 11(4): 2003 –2010, 1997.

16

International Journal of Emerging Electric Power Systems, Vol. 2 [2005], Iss. 1, Art. 1021

DOI: 10.2202/1553-779X.1021

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/28/15 2:50 AM



[111] H.C. Chang and M.H. Wang. Neural Network-Based Self-Organizing Fuzzy 
Controller for Transient Stability of Multimachine Power Systems. IEEE 
Trans. Energy Conversion, 10(2): 339-347, 1995.

[112] V. Miranda, J.N. Fidalgo, J.A.P. Lopes, and L.B. Almeida. Real Time 
Preventive Actions for Transient Stability Enhancement with a Hybrid 
Neural Network-Optimization Approach. IEEE Trans. Power Systems, 
10(2): 1029 –1035, 1995.

[113] D.R. Marpaka, M. Bodruzzaman, S.S. Devagan, S.M. Aghili, and S. Kari. 
Neural Network Based Transient Stability Assessment of Electric Power 
Systems. Electric Power System Research, 30(1): 251-256, 1994.

[114] A.M. Sharaf and T.T. Lie. Artificial Neural Network Pattern Classification 
of Transient Stability and Loss of Excitation for Synchronous Generation. 
Electric Power Systems Research, 30(1): 9-16, 1994.

[115] A. Sharma and M.L. Kothari. Adaptive Network Fuzzy Interference System 
Based Dual Input Power System Stabilizer. Proc. National Seminar on 
Sustainable Energy Options for the New Millennium, Jaipur (India), 240 –
249, 2000.

[116] S. Madnani. Radial Basis Function (RBF) Network Adaptive Power System 
Stabilizer. IEEE Trans. on Power Systems, 15(2):722-727, 2000.

[117] M.  Moghivvemi and S.S. Yang. ANN Application Techniques for Power 
System Stabilizer. Electric Machines and Power Systems, 28(2): 167-178, 
2000.

[118] L.A. Zadeh. Fuzzy Sets. Information and Control, Vol. 8:338-353, 1965.
[119] S.K. Pal and D.P. Mandal. Fuzzy Logic and Approximate Reasoning: An 

Overview. Journal of Institution of Electronics and Telecommunication 
Engineers, Paper No. 186-C, 548-559, 1991.

[120] Y.H. Song and A.T. Johns. Applications of Fuzzy Logic in Power Systems. 
I. General Introduction to Fuzzy Logic. IEE Power Engineering Journal, 
11(5): 219-222, 1997.

[121] Y.H. Song and A.T. Johns. Applications of Fuzzy Logic in Power Systems. 
II. Comparison and Integration with Expert Systems Neural Networks and 
Genetic Algorithms. IEE Power Engineering Journal, 12(4):185-190, 1998.

[122] Y.H. Song and A.T. Johns. Applications of Fuzzy Logic in Power Systems. 
III. Example Applications. IEE Power Engineering Journal, 13(2):97-103, 
1999.

[123] J.A. Momoh, X.W. Ma, and K. Tomsovic. Overview and Literature Survey 
of Fuzzy Set Theory in Power Systems. IEEE Trans. Power Systems, 10(3): 
1676-1690, 1995.

[124] R.C. Bansal. Bibliography on the Fuzzy Set Theory Applications to Power 
Systems (1994-2001). IEEE Trans. Power Systems, 18(4):1291-1299, 2003.

17

Bansal: Optimization Methods for Electric Power Systems: An Overview

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/28/15 2:50 AM



[125] A.S. Fraser. Simulation of Genetic Systems by Automatic Digital 
Computers. Australian Journal of Biological Sciences, Vol. 10: 484-491 
1957.

[126] G.D. Friedman. Digital Simulation of an Evolutionary Process. General 
Systems Yearbook, 4, 1959.

[127] W.W. Blendsoe. The Use of Biological Concepts in the Analytical Study of 
Systems. Paper presented at the ORSA-TIMS National Meeting, San 
Francisco, CA, Nov. 1961.

[128] H.J. Bremermann. Optimization Through Evolution and Recombination.  in 
M.C. Yovits, G.T. Jacobi, and G.D. Goldstein (editors), Self Organization 
Systems, Spartan Books, Wasington, D.C., pp. 93-106, 1962.

[129] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial Intelligence Through 
Simulated Evolution. John Wiley, New York, 1966.

[130] J.H. Holland. Adaption in Natural and Artificial Systems. University of 
Michigan Press, Ann Arbor, MI, 1975.

[131] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine 
Learning. Addison-Wesley, New York, 1989.

[132] D. B. Fogel. What is Evolutionary Computation? IEEE Spectrum, 37(2):26-
32, 2000.

[133] R.C. Bansal. A Bibliographical Survey of Evolutionary Computation 
Applications in Power Systems (1994-2003). To appear in Int. Journal of 
Power and Energy Systems, Vol. 25, 2005.

[134] J.T. Alander. An Indexed Bibliography of Genetic Algorithm in Power 
Engineering. Report Series 94-1, Power, Feb. 1996, 
ftp://ftp.uwasa.fi/cs/report94-1/gaPOWERbib.ps.Z.

[135] E.L. da Silva, H.A. Gill, and J.M. Areiza. Transmission Network Expansion 
Planning Under an Improved Genetic Algorithm. IEEE Trans. Power 
Systems, 15(3): 1168-1175, 2000.

[136] R. Hugh, R. Palma, E. Cura, and C. Silva. Economically Adapted 
Transmission System in Open Access Schemes - Application of Genetic 
Algorithm. IEEE Trans. Power Systems, 11(3): 1427-1440, 1996.

[137] EC. Yeh, S.S. Venkata and Z. Sumic. Improved Distribution System 
Planning using Computational Evolution. IEEE Trans. Power Systems, 
11(2): 668-674, 1996.

[138] J.B. Park, Y.M. Park, and K.Y. Lee. An Improved Genetic Algorithm for 
Transmission Network Expansion Planning. IEEE Trans. Power Systems, 
15(3): 916-922, 2000.

[139] K. Nara, T. Satoh, K. Aoki, and M. Kitagawa. Multilayer Expansion 
Planning for Distribution Systems Distribution Network Planning. IEEE 
Trans. Power Systems, 6(3): 952-958, 1991.

18

International Journal of Emerging Electric Power Systems, Vol. 2 [2005], Iss. 1, Art. 1021

DOI: 10.2202/1553-779X.1021

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/28/15 2:50 AM



[140] V. Miranda, J. V. Ranito, and L.M. Proenca. Genetic Algorithms in Optimal 
Multistage Distribution Network Planning. IEEE Trans. Power Systems, 
9(4): 1927-1933, 1994.

[141] M. Delfanti, G.P. Granelli, P. Marannino, and M.  Montagna. Optimal 
Capacitor Placement using Deterministic and Genetic Algorithms. IEEE 
Trans. on Energy Conversion, 15(3): 1041-1046, 2000.

[142] S. Sundhararajan and A. Pahwa. Optimal Selection of Capacitor for Radial 
Distribution Systems using Genetic Algorithms. IEEE Trans. Power 
Systems, 9(3), 1994, 1499-1507.

[143] T. Haida and Y. Akimoto. Voltage Optimization using Genetic Algorithm. 
Proc. 3rd Symposium on Expert System Applications to Power Systems, 
Tokyo, Japan, 375-380, 1991.

[144] R. Yokoyama, T. Niimura, and Y. Nakanishi. A Coordinated Control of 
Voltage and Reactive Power By Heuristic Modeling and Approximate 
Reasoning. IEEE Trans. Power Systems, 8(2): 636 – 645, 1993.

[145] K. Iba. Reactive Power Optimization by Genetic Algorithm. IEEE Trans. 
Power Systems, 9(2): 685- 692, 1994.

[146] S.A. Kazarlis, A.G. Bakirtzis, and V. Petridis. A Genetic Algorithm 
Solution to Unit Commitment Problem. IEEE Trans. Power Systems, 11(1): 
83-92,1996.

[147] C.P. Cheng, C.W. Liu, and C.C. Lin. Unit Commitment by Lagrangian 
Relaxation and Genetic Algorithms. IEEE Trans. Power Systems, 15(2): 
707-714, 2000.

[148] C.W. Richter Jr. and G.B. Sheble. A Profit Based Unit Commitment GA for 
Competitive Environment. IEEE Trans. Power Systems, 15(2): 715-721, 
2000.

[149] C.J. Aldridge, S. Mekee, J.R. Mc Denel, S.J. Gallowak, K.P. Dahal, M.C. 
Bradley, and J.F. Macqueen. Knowledge-Based Genetic Algorithm for Unit 
Commitment Problem. IEE Proceedings- Generation Transmission and 
Distribution, 146(2): 146-152, 2001.

[150] P.C. Yang, H.T. Yang, and C.L. Huang. Solving the Unit Commitment 
Problem Through a Constraint Satisfaction Technique. Electric Power 
Systems Research, 37(1): 55-65, 1996.

[151] T.T. Maifield, and G.B. Sheble. Genetic Based Unit Commitment 
Algorithm. IEEE Trans. Power Systems, 11(3): 1359-1376, 1996.

[152] S.A. Kazarils, A.G. Bakirtzis, and V. Petridis. A Genetic Algorithm 
Solution to Unit Commitment Problem. IEEE Trans. Power Systems, 11(1): 
83-92, 1992.

[153] P. Venkatesh, P.S. Kanan, and S. Anudevi. Application of Micro Genetic 
Algorithm to Economic Load Dispatch. Institution of Engineers (India),
82(3): 161-166, 2001.

19

Bansal: Optimization Methods for Electric Power Systems: An Overview

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/28/15 2:50 AM



[154] Y.H. Song and C.S. Chou. Advanced Engineered Conditioning Genetic 
Approach to Power Economic Dispatch. Proc. IEE – Generation 
Transmission Distribution, 144(3): 285-292, 1997.

[155] P.H. Chan and H.C. Chang. Genetic Aided Scheduling of Hydraulically 
Coupled Plants in Hydrothermal Coordination. IEEE Trans. Power Systems, 
11(2): 975-981, 1996.

[156] O.S. Orero and M.R. Irving. A Genetic Algorithm Modeling Framework 
and Solution Technique for Short Term Optimal Hydrothermal Scheduling. 
IEEE Trans. Power Systems, 13(2): 501-518, 1998.

[157] O.S. Orero and M.R. Irving. A Genetic Algorithm for Generator Scheduling 
in Power System. Int. Journal of Electrical Power and Energy Systems, 
18(1): 19-26,1996.

[158] R.A. Gallego, A.B. Alves, A. Monticelli, and R. Romero. Parallel Simulated 
Annealing Applied to Long Term Transmission Network Expansion 
Planning. IEEE Trans. Power Systems, 12(1): 181-188,1997.

[159] R. Romero, R.A. Gallego, and A. Monticelli. Transmission System 
Expansion Planning by Simulated Annealing. IEEE Trans. Power Systems, 
11(1): 364-369, 1996.

[160] U.D. Annakkage, T. Numnonda, and N.C. Pahalawaththa. Unit 
Commitment by Parallel Simulated Annealing. IEE Proceedings-
Generation Transmission and Distribution, 142(6): 595-600, 1995.

[161] A.H. Mentaway, Y.L. Abdel-Magid, and S.Z. Selim. A Simulated 
Annealing Algorithm for Unit Commitment. IEEE Trans. Power Systems, 
13(1): 197-204,1998.

[162] H.T. Yang, P.C. Yang, and C.L. Huang. A Parallel Algorithm Approach to 
Solving the Unit Commitment Problem: Implementation on the Transputer 
Networks. IEEE Trans. Power Systems, 12(2): 661-668, 1997.

[163] T. Satoh and K. Nara. Maintenance Scheduling by Using Simulated 
Annealing Method. IEEE Trans. Power Systems, 6(2) 850-857, 1991.

[164] Y.H. Song and M.R. Irving. Optimization Methods for Electric Power 
Systems, Part 2, Heuristic Optimization Methods. IEE Power Engineering 
Journal, 15(3): 151-160, 2001.

[165] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by 
a Colony of Co-Operating Agents. IEEE Trans. Systems, Man and 
Cybernetics, 26(1): 29-41, 1996.

[166] Y.H. Song and C.S. Chou. Application of Ant Colony Search Algorithms in 
Power System Optimization. IEEE Power Engineering Review, 18(12): 63-
64, 1998.

[167] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 
Boston, USA, 1997. 

20

International Journal of Emerging Electric Power Systems, Vol. 2 [2005], Iss. 1, Art. 1021

DOI: 10.2202/1553-779X.1021

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/28/15 2:50 AM



[168] F. Glover, M. Laguna, E. Tallard and D.de Werra. Tabu Search. Science 
Publishers, Basel, Switzerland, 1993.

[169] F. Glover. Tabu Search – Part 1. ORSA Journal on Computing, 1(3): 190-
206, 1989. 

[170] F. Glover, Tabu Search – Part 1. ORSA Journal on Computing, 2(1): 4-32, 
1990. 

[171] F. Wen and C.S. Chang. Transmission Network Optimal Planning using 
Tabu Search Method. Electric Power System Research, 42(2): 153-163, 
1997.

[172] Y.C. Huang, H.T. Yang, and C.L. Haung. Solving the Capacitor Placement 
Problem in a Radial Distribution System using Tabu Search Approach. 
IEEE Trans. Power Systems, 11(4): 1868-1873, 1996. 

[173] H.T. Yang, Y.C. Huang, and C.L. Haung. Solution to Capacitor Placement 
Problem in a Radial Distribution System Using Tabu Search Method. Proc. 
Int. Conf. on Energy Management and Power Delivery, Singapore, 388-
393,1995.

[174] D. Gan, Y. Hayashi, and K. Nara. Multi-Level Reactive Resource Planning 
by Tabu Search. Proc. of IEE of Japan Power and Energy, Nagoya, Japan, 
137-142, 1995.

[175] H. Mori and T. Usami. Unit Commitment using Tabu Search with 
Restricted Neighborhood. Proc. of Int. Conf. on Intelligent Systems 
Applications to Power Systems, Orlando, USA, 422-427, 1996.

[176] X. Bai and S. Shahidehpour. Hydro-Thermal Scheduling by Tabu Search 
and by Decomposition Method. IEEE Trans. Power Systems, 11(2): 968-
974, 1996.

[177] F. Wen and C.S. Chang. A Tabu Search Approach to Fault Section 
Estimation in Power Systems. Electric Power System Research, 40(1): 63-
73, 1997.

[178] F. Wen and C.S. Chang. Tabu Search Approach to Alarm Processing in 
Power Systems. IEE Proceedings- Generation Transmission and 
Distribution, 144(1): 31-38, 1997.

[179] D. Gan, Z. Qu, and H. Cai. Large Scale VAR Optimization by Tabu Search. 
Electric Power System Research, 39(3): 195-204, 1995.

[180] R. Aggarwal and Y.H. Song. Fuzzy Logic and Neural Networks in 
Generation and Distribution. Power Technology International, Spring Issue, 
39-45, 1997.

[181] P.K. Dash, T.S. Sidhu, and H.S. Gill. A Novel Fuzzy Neural Based 
Distance-Relaying Scheme. IEEE Trans. Power Delivery, 15(3): 895-901, 
2000.

21

Bansal: Optimization Methods for Electric Power Systems: An Overview

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/28/15 2:50 AM



[182] R. Aggarwal, M. Joorabian, and Y.H. Song. Fuzzy Neural Network 
Approach to Accurate Transmission Line Fault Location. Int. Journal of 
Engineering Intelligent Systems, 5(4), 1997. 

[183] D. Srinivasan, A. Liew, and C. Chang. Forecasting Daily Load Curve using 
a Hybrid Fuzzy-Neural Approach. IEE Proceedings- Generation 
Transmission and Distribution, 141(6): 561-567, 1994.

[184] A.C. Bakirtzis, J.B. Theocharis, S.J. Kiartzis, and K.J. Satsios. Short Term 
Load Forecasting Fuzzy Neural Networks. IEEE Trans. Power Systems, 
10(3): 1518-1524, 1995.

[185] C.W. Liu, C.S. Chang, and M.C. Su. Neuro-Fuzzy Networks for Voltage 
Security Monitoring Based on Synchronized Phasor Measurements. IEEE 
Trans. Power Systems, 13(2):326-332, 1998.

[186] K. Elithy and A. Al-Naamany, A Hybrid Neuro Fuzzy Network (ANN) and 
Static VAR Compensator for Stabilizer System Damping Improvement in 
the Presence of Load Parameters Uncertainty. Electric Power Systems 
Research, 56(3): 211-223, 2000. 

[187] C. Wang and M. Shalidehpour. A Fuzzy Artificial Neural Network for 
Multi-Area Optimal Power Generation Scheduling with Transmission 
Losses. Proc. of the American Power Conf., Chicago, IL, 1992.

[188] P. Lakshmi and M.A. Khan. Stability Enhancement of a Multi-Machine 
Power System using Fuzzy Logic Based Power System Stabilizer Tuned 
Through Genetic Algorithm. Int. Journal of Electrical Power and Energy 
Systems, 22(2): 137-145, 2000.

[189] J. Wen, S. Cheng, and O.P. Malik. A Synchronous Generator Fuzzy 
Excitation Controller Optimally Designed with Genetic Algorithm. IEEE 
Trans. Power Systems, 13(3): 884-889, 1997.

[190] C.S. Chang, W. Fu, and F. Wen. Load Frequency Control using Genetic 
Algorithm Based Fuzzy Gain Scheduling of PI Controller. Electrical 
Machines and Power Systems, 26(1): 39-52, 1998.

[191] Y.H. Song, G.S. Wang, P.Y. Wang, and A.T. Johns. 
Environmental/Economic Dispatch using Fuzzy Controlled Genetic 
Algorithms. Proc IEE - Generation Transmission Distribution, 144(4): 377-
382, 1997. 

[192] A.K. David and R. Zhao. An Expert Systems With Fuzzy Sets for Optimal 
Long Range Operation Planning. IEEE Trans. Power Systems, 6(1):59-65, 
1991.

[193] P.K. Dash, A.C. Liew, and S. Rahman. Fuzzy Neural Network and Fuzzy 
Expert Systems for Load Forecasting. IEE Proceedings - Generation 
Transmission and Distribution, 143(1): 106-114, 1996.

[194] K.H. Kim, K. J. Park, K. J. Hwang, and S.H. Kim. Implementation of 
Hybrid Short Term Load Forecasting using Artificial Neural Networks and 

22

International Journal of Emerging Electric Power Systems, Vol. 2 [2005], Iss. 1, Art. 1021

DOI: 10.2202/1553-779X.1021

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/28/15 2:50 AM



Fuzzy Expert Networks. IEEE Trans. Power Systems, 10(3): 1534-1539, 
1995.

[195] Y. M. Park, J. B. Park, and J. R. Won, A Hybrid Genetic 
Algorithm/Dynamic Programming Approach To Optimal Long-Term 
Generation Expansion Planning, Int. Journal of Electrical Power and 
Energy Systems, 20(4): 295-303, 1997.

[196] A. Afzalin and D.A. Linkens. Training of Neuro Fuzzy Power System 
Stabilizer using Genetic Algorithms. Int. Journal of Electrical Power and 
Energy Systems, 22(2): 93-102, 2000.

[197] W.S. Jwo, C.W. Liu, C.C. Liu, and Y.T. Hsiao. Hybrid Expert System and 
Simulated Annealing Approach to Optimal Reactive Power Planning. IEE 
Proceedings- Generation Transmission and Distribution, 142(4): 381-385, 
1995.

[198] K.P. Wong and Y.W. Wong. Combined Genetic Algorithm/ Simulated 
Annealing /Fuzzy Set to Short Term Generation Scheduling with Take-or 
Pay Fuel Contract. IEEE Trans. Power Systems, 11(1): 128-136, 1996.

[199] K.P. Wong and S.Y.W. Wong. Hybrid Genetic/Simulated Annealing to 
Short Term Multiple Fuel-Constrained Generation Scheduling. IEEE Trans. 
Power Systems, 12(2):776-784, 1997.

[200] H. Kim, K. Nara, and M. Gen. A Method for Maintenance Scheduling using 
GA Combined with SA. Computers and Industrial Engineering, 27(4): 477-
480, 1994.

23

Bansal: Optimization Methods for Electric Power Systems: An Overview

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/28/15 2:50 AM


	International Journal of Emerging Electric Power Systems
	Optimization Methods for Electric Power Systems: An Overview
	Optimization Methods for Electric Power Systems: An Overview
	Abstract


