4,708 research outputs found

    VASP: A Volumetric Analysis of Surface Properties Yields Insights into Protein-Ligand Binding Specificity

    Get PDF
    Many algorithms that compare protein structures can reveal similarities that suggest related biological functions, even at great evolutionary distances. Proteins with related function often exhibit differences in binding specificity, but few algorithms identify structural variations that effect specificity. To address this problem, we describe the Volumetric Analysis of Surface Properties (VASP), a novel volumetric analysis tool for the comparison of binding sites in aligned protein structures. VASP uses solid volumes to represent protein shape and the shape of surface cavities, clefts and tunnels that are defined with other methods. Our approach, inspired by techniques from constructive solid geometry, enables the isolation of volumetrically conserved and variable regions within three dimensionally superposed volumes. We applied VASP to compute a comparative volumetric analysis of the ligand binding sites formed by members of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains and the serine proteases. Within both families, VASP isolated individual amino acids that create structural differences between ligand binding cavities that are known to influence differences in binding specificity. Also, VASP isolated cavity subregions that differ between ligand binding cavities which are essential for differences in binding specificity. As such, VASP should prove a valuable tool in the study of protein-ligand binding specificity

    Using Sequence Similarity Networks for Visualization of Relationships Across Diverse Protein Superfamilies

    Get PDF
    The dramatic increase in heterogeneous types of biological data—in particular, the abundance of new protein sequences—requires fast and user-friendly methods for organizing this information in a way that enables functional inference. The most widely used strategy to link sequence or structure to function, homology-based function prediction, relies on the fundamental assumption that sequence or structural similarity implies functional similarity. New tools that extend this approach are still urgently needed to associate sequence data with biological information in ways that accommodate the real complexity of the problem, while being accessible to experimental as well as computational biologists. To address this, we have examined the application of sequence similarity networks for visualizing functional trends across protein superfamilies from the context of sequence similarity. Using three large groups of homologous proteins of varying types of structural and functional diversity—GPCRs and kinases from humans, and the crotonase superfamily of enzymes—we show that overlaying networks with orthogonal information is a powerful approach for observing functional themes and revealing outliers. In comparison to other primary methods, networks provide both a good representation of group-wise sequence similarity relationships and a strong visual and quantitative correlation with phylogenetic trees, while enabling analysis and visualization of much larger sets of sequences than trees or multiple sequence alignments can easily accommodate. We also define important limitations and caveats in the application of these networks. As a broadly accessible and effective tool for the exploration of protein superfamilies, sequence similarity networks show great potential for generating testable hypotheses about protein structure-function relationships

    An efficient visualization tool for the analysis of protein mutation matrices

    Get PDF
    BACKGROUND It is useful to develop a tool that would effectively describe protein mutation matrices specifically geared towards the identification of mutations that produce either wanted or unwanted effects, such as an increase or decrease in affinity, or a predisposition towards misfolding. Here, we describe a tool where such mutations are efficiently identified, categorized and visualized. To categorize the mutations, amino acids in a mutation matrix are arranged according to one of three sets of physicochemical characteristics, namely hydrophilicity, size and polarizability, and charge and polarity. The magnitude and frequencies of mutations for an alignment are subsequently described using color information and scaling factors. RESULTS To illustrate the capabilities of our approach, the technique is used to visualize and to compare mutation patterns in evolving sequences with diametrically opposite characteristics. Results show the emergence of distinct patterns not immediately discernible from the raw matrices. CONCLUSION Our technique enables effective categorization and visualization of mutations by using specifically-arranged mutation matrices. This tool has a number of possible applications in protein engineering, notably in simplifying the identification of mutations and/or mutation trends that are associated with specific engineered protein characteristics and behavior

    Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?

    Get PDF
    The organization and mining of malaria genomic and post-genomic data is highly motivated by the necessity to predict and characterize new biological targets and new drugs. Biological targets are sought in a biological space designed from the genomic data from Plasmodium falciparum, but using also the millions of genomic data from other species. Drug candidates are sought in a chemical space containing the millions of small molecules stored in public and private chemolibraries. Data management should therefore be as reliable and versatile as possible. In this context, we examined five aspects of the organization and mining of malaria genomic and post-genomic data: 1) the comparison of protein sequences including compositionally atypical malaria sequences, 2) the high throughput reconstruction of molecular phylogenies, 3) the representation of biological processes particularly metabolic pathways, 4) the versatile methods to integrate genomic data, biological representations and functional profiling obtained from X-omic experiments after drug treatments and 5) the determination and prediction of protein structures and their molecular docking with drug candidate structures. Progresses toward a grid-enabled chemogenomic knowledge space are discussed.Comment: 43 pages, 4 figures, to appear in Malaria Journa

    Computational Approaches to Drug Profiling and Drug-Protein Interactions

    Get PDF
    Despite substantial increases in R&D spending within the pharmaceutical industry, denovo drug design has become a time-consuming endeavour. High attrition rates led to a long period of stagnation in drug approvals. Due to the extreme costs associated with introducing a drug to the market, locating and understanding the reasons for clinical failure is key to future productivity. As part of this PhD, three main contributions were made in this respect. First, the web platform, LigNFam enables users to interactively explore similarity relationships between ‘drug like’ molecules and the proteins they bind. Secondly, two deep-learning-based binding site comparison tools were developed, competing with the state-of-the-art over benchmark datasets. The models have the ability to predict offtarget interactions and potential candidates for target-based drug repurposing. Finally, the open-source ScaffoldGraph software was presented for the analysis of hierarchical scaffold relationships and has already been used in multiple projects, including integration into a virtual screening pipeline to increase the tractability of ultra-large screening experiments. Together, and with existing tools, the contributions made will aid in the understanding of drug-protein relationships, particularly in the fields of off-target prediction and drug repurposing, helping to design better drugs faster

    Protein structure prediction and structure-based protein function annotation

    Get PDF
    Nature tends to modify rather than invent function of protein molecules, and the log of the modifications is encrypted in the gene sequence. Analysis of these modification events in evolutionarily related genes is important for assigning function to hypothetical genes and their products surging in databases, and to improve our understanding of the bioverse. However, random mutations occurring during evolution chisel the sequence to an extent that both decrypting these codes and identifying evolutionary relatives from sequence alone becomes difficult. Thankfully, even after many changes at the sequence level, the protein three-dimensional structures are often conserved and hence protein structural similarity usually provide more clues on evolution of functionally related proteins. In this dissertation, I study the design of three bioinformatics modules that form a new hierarchical approach for structure prediction and function annotation of proteins based on sequence-to-structure-to-function paradigm. First, we design an online platform for structure prediction of protein molecules using multiple threading alignments and iterative structural assembly simulations (I-TASSER). I review the components of this module and have added features that provide function annotation to the protein sequences and help to combine experimental and biological data for improving the structure modeling accuracy. The online service of the system has been supporting more than 20,000 biologists from over 100 countries. Next, we design a new comparative approach (COFACTOR) to identify the location of ligand binding sites on these modeled protein structures and spot the functional residue constellations using an innovative global-to-local structural alignment procedure and functional sites in known protein structures. Based on both large-scale benchmarking and blind tests (CASP), the method demonstrates significant advantages over the state-of-the- art methods of the field in recognizing ligand-binding residues for both metal and non- metal ligands. The major advantage of the method is the optimal combination of the local and global protein structural alignments, which helps to recognize functionally conserved structural motifs among proteins that have taken different evolutionary paths. We further extend the COFACTOR global-to-local approach to annotate the gene- ontology and enzyme classifications of protein molecules. Here, we added two new components to COFACTOR. First, we developed a new global structural match algorithm that allows performing better structural search. Second, a sensitive technique was proposed for constructing local 3D-signature motifs of template proteins that lack known functional sites, which allows us to perform query-template local structural similarity comparisons with all template proteins. A scoring scheme that combines the confidence score of structure prediction with global-local similarity score is used for assigning a confidence score to each of the predicted function. Large scale benchmarking shows that the predicted functions have remarkably improved precision and recall rates and also higher prediction coverage than the state-of-art sequence based methods. To explore the applicability of the method for real-world cases, we applied the method to a subset of ORFs from Chlamydia trachomatis and the functional annotations provided new testable hypothesis for improving the understanding of this phylogenetically distinct bacterium

    Prediction of the Human EP1 Receptor Binding Site by Homology Modeling and Molecular Dynamics Simulation

    Get PDF
    The prostanoid receptor EP1 is a G-protein-coupled receptor (GPCR) known to be involved in a variety of pathological disorders such as pain, fever and inflammation. These receptors are important drug targets, but design of subtype specific agonists and antagonists has been partially hampered by the absence of three-dimensional structures for these receptors. To understand the molecular interactions of the PGE2, an endogen ligand, with the EP1 receptor, a homology model of the human EP1 receptor (hEP1R) with all connecting loops was constructed from the 2.6 Ã… resolution crystal structure (PDB code: 1L9H) of bovine rhodopsin. The initial model generated by MODELLER was subjected to molecular dynamics simulation to assess quality of the model. Also, a step by step ligand-supported model refinement was performed, including initial docking of PGE2 and iloprost in the putative binding site, followed by several rounds of energy minimizations and molecular dynamics simulations. Docking studies were performed for PGE2 and some other related compounds in the active site of the final hEP1 receptor model. The docking enabled us to identify key molecular interactions supported by the mutagenesis data. Also, the correlation of r2=0.81 was observed between the Ki values and the docking scores of 15 prostanoid compounds. The results obtained in this study may provide new insights toward understanding the active site conformation of the hEP1 receptor and can be used for the structure-based design of novel specific ligands

    The interplay of descriptor-based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases

    Get PDF
    One of the most intriguing groups of enzymes, the feruloyl esterases (FAEs), is ubiquitous in both simple and complex organisms. FAEs have gained importance in biofuel, medicine and food industries due to their capability of acting on a large range of substrates for cleaving ester bonds and synthesizing high-added value molecules through esterification and transesterification reactions. During the past two decades extensive studies have been carried out on the production and partial characterization of FAEs from fungi, while much less is known about FAEs of bacterial or plant origin. Initial classification studies on FAEs were restricted on sequence similarity and substrate specificity on just four model substrates and considered only a handful of FAEs belonging to the fungal kingdom. This study centers on the descriptor-based classification and structural analysis of experimentally verified and putative FAEs; nevertheless, the framework presented here is applicable to every poorly characterized enzyme family. 365 FAE-related sequences of fungal, bacterial and plantae origin were collected and they were clustered using Self Organizing Maps followed by k-means clustering into distinct groups based on amino acid composition and physico-chemical composition descriptors derived from the respective amino acid sequence. A Support Vector Machine model was subsequently constructed for the classification of new FAEs into the pre-assigned clusters. The model successfully recognized 98.2% of the training sequences and all the sequences of the blind test. The underlying functionality of the 12 proposed FAE families was validated against a combination of prediction tools and published experimental data. Another important aspect of the present work involves the development of pharmacophore models for the new FAE families, for which sufficient information on known substrates existed. Knowing the pharmacophoric features of a small molecule that are essential for binding to the members of a certain family opens a window of opportunities for tailored applications of FAEs
    • …
    corecore