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Abstract

Nature tends to modify rather than invent function of protein molecules, and the log of

the modifications is encrypted in the gene sequence. Analysis of these modification

events in evolutionarily related genes is important for assigning function to hypothetical

genes and their products surging in databases, and to improve our understanding of the

bioverse. However, random mutations occurring during evolution chisel the sequence to

an extent that both decrypting these codes and identifying evolutionary relatives from

sequence alone becomes difficult. Thankfully, even after many changes at the sequence

level, the protein three-dimensional structures are often conserved and hence protein

structural similarity usually provide more clues on evolution of functionally related

proteins.

In this dissertation, I study the design of three bioinformatics modules that form a new

hierarchical approach for structure prediction and function annotation of proteins based

on sequence-to-structure-to-function paradigm. First, we design an online platform for

structure prediction of protein molecules using multiple threading alignments and

iterative structural assembly simulations (I-TASSER). I review the components of this

module and have added features that provide function annotation to the protein sequences

and help to combine experimental and biological data for improving the structure

modeling accuracy. The online service of the system has been supporting more than

20,000 biologists from over 100 countries.

Next, we design a new comparative approach (COFACTOR) to identify the location

of ligand binding sites on these modeled protein structures and spot the functional residue

constellations using an innovative global-to-local structural alignment procedure and
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functional sites in known protein structures. Based on both large-scale benchmarking and

blind tests (CASP), the method demonstrates significant advantages over the state-of-the-

art methods of the field in recognizing ligand-binding residues for both metal and non-

metal ligands. The major advantage of the method is the optimal combination of the local

and global protein structural alignments, which helps to recognize functionally conserved

structural motifs among proteins that have taken different evolutionary paths.

We further extend the COFACTOR global-to-local approach to annotate the gene-

ontology and enzyme classifications of protein molecules. Here, we added two new

components to COFACTOR. First, we developed a new global structural match

algorithm that allows performing better structural search. Second, a sensitive technique

was proposed for constructing local 3D-signature motifs of template proteins that lack

known functional sites, which allows us to perform query-template local structural

similarity comparisons with all template proteins. A scoring scheme that combines the

confidence score of structure prediction with global-local similarity score is used for

assigning a confidence score to each of the predicted function. Large scale benchmarking

shows that the predicted functions have remarkably improved precision and recall rates

and also higher prediction coverage than the state-of-art sequence based methods. To

explore the applicability of the method for real-world cases, we applied the method to a

subset of ORFs from Chlamydia trachomatis and the functional annotations provided

new testable hypothesis for improving the understanding of this phylogenetically distinct

bacterium.
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Together, these developed softwares during my dissertation form an integrated

pipeline to facilitate structural and functional annotation of genome sequences, and can

thereby improve our understanding of the bioverse and well being of living organisms.
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Chapter 1

Background and overview

With the advancement in sequencing technology, genome sequences have been rapidly pooling

up in the sequence databases. However, to fully understand these “blueprints of life”, it is

imperative to decode the genetic information into biologically meaningful knowledge. Proteins,

despite being established as the “work horses” of the cell, are lagging far behind in terms of

structural and functional information in this sequencing frenzy era. This is in part due to the

time-consuming, expensive and technically difficult nature of experimental methods for

characterizing these proteins. For instance, as of October 2011, more than 17 million protein

sequences from over 18,000 species had already been deposited in UniProtKB/TrEMBL1

database and the rate of deposition was over 200 times faster (Figure 1.1) than the rate at which

protein structure were being deposited in the Protein Data Bank2 (PDB), not to mention that the

functional characterization of these proteins by experimental methods lags further behind. Thus,

one of the most challenging tasks in modern molecular and cell biology is to characterize these

protein sequences for better understanding of physiological processes and systems3.

This dissertation work is a software engineering component geared towards the development

of automated methods for annotating protein sequences, which can help biologists to construct

hypothesis and design experiments for drawing reliable conclusions.

1.1. Proteins: from the view of a computational structural biologist

In this thesis, we will study and develop algorithms that will tackle two main problems: first, to

improve the automated pipeline for protein structure prediction, and second, to develop a

structure based approach for automated function prediction. Before we move ahead and approach
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these problems, we will briefly introduce some basics about protein bioinformatics, which is a

preliminary requirement for understanding the later chapters.

Figure 1.1 Protein sequence to structure: Catch me if you can!

1.1.1. Levels of protein structure

Proteins are linear polymers of amino acids and can be described at four different levels of

abstraction (Figure 1.2), namely:

(a) Primary structure: Is the sequence of amino acids in a protein, where each amino acid is

represented by its one-letter code.

(b) Secondary structure: The polar groups of protein backbone form hydrogen bonds and

generate repeating structural fragments called secondary structure. α-helix and β-sheet are

two most commonly observed secondary structure elements in a protein.
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(c) Tertiary structure: Also commonly referred as the 3D-structure of a protein, consists of

multiple secondary structure elements, where every atom in the protein is represented by

its 3D-coordinates.

(d) Quaternary structure: The quaternary structure of a protein represents the arrangement of

multiple folded protein molecules in a multi-subunit complex. These spatial

conformations are stabilized by non-covalent interactions.

Figure 1.2 Abstraction levels of protein structure.
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1.1.2. Protein databases

The field of Biology over the years has become a data-rich science and computer has naturally

become the storage medium. A large number of databases have therefore been developed to

distribute the gathered information freely to the biologists, in a computer readable format. In

Table 1.1, we enlist and then briefly summarize the available information in some of the protein

databases that have been used in this work.

Table 1.1 Publicly available protein databases used in this work.

Database Information Web link

PDB Tertiary & Quaternary structure http://www.pdb.org

NCBI nr Non-redundant protein sequence
database

ftp://ftp.ncbi.nih.gov/blast/db

Enzyme Nomenclature of enzymes http://enzyme.expasy.org

PDBSProtEC Mapping of PDB chain to Enzyme
nomenclature

http://www.bioinf.org.uk/pdbsprotec

Gene Ontology

(GO)

Controlled vocabulary (GO terms) to
describe the  attributes of gene and
gene product

http://www.geneontology.org

UniProtKB-GOA
Assignment of GO terms to UniProt
records and GO assignment for PDB
entries

http://www.ebi.ac.uk/GOA

NCBI RefSeq Complete genomic DNA, gene
transcripts and protein sequences

http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome

(a) PDB2: The Protein Data Bank (PDB) stores experimentally solved tertiary and quaternary

structure of biological macromolecules including nucleotides and proteins. As of October,

2011, PDB contains over 70,000 protein structures, and more than 3,000 protein-nucleic acid

complexes.

(b) NCBI nr: NCBI provides a non-redundant set of protein sequences collected from other

databases, namely: GenPept, SwissProt, PIR, PDF, PDB, and NCBI RefSeq.
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(c) Enzyme4: Is a repository of enzyme nomenclature based on Enzyme Classification (EC)

numbers. It also contains information about catalytic activity, required cofactor (if any) and

mapping to SwissProt sequences entries.

(d) PDBSProtEC5: A database containing assignment of EC numbers to PDB chains based on

PDB to SwissProt and SwissProt to Enzyme database mapping.

(e) Gene Ontology6: The Gene Ontology (GO) database provides annotations of genes, gene

products and sequences using a structured, controlled vocabularies and classifications

(f) UniProtKB-GOA7: The UniProtKB-GOA consortium provides GO annotation mapping to

proteins in UniProt Knowledgebase (UniProtKB). Annotation for PDB chains is also

provided based on UniProtKB accession and match between InterPro and PDB mapping

(g) NCBI RefSeq8: Annotated and curated collection of nucleotide and protein sequences.

1.1.3. Analyzing similarity between two proteins

Before we proceed to describe the different levels of abstractions at which we can compare

proteins, first we need to understand why we need to compare proteins. The reason is that nature

is conservative and has evolved over time because of small incremental modifications, rather

than large changes. Thus, by comparing two proteins, we can detect similarities, which allow us

to infer the structure and function of isolated proteins using already characterized protein. That

said, we will now outline sequence and structure based methods and evaluation metrics for

comparing proteins.

1.1.3.1. Sequence based alignment

Similarity between two sequences (nucleotides or proteins) can be obtained by either using

dynamic programming or based on heuristic search. Even though dynamic programming
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methods find optimal alignment, they are relatively slow; heuristic approaches are much faster

and therefore used for identifying similar sequences in large database, but they are less precise.

Many sequence alignment algorithms have been developed, however, here we will only present

an overview of the most basic and widely used algorithms that are relevant to this work.

(a) Global sequence alignment (Needleman-Wunsch algorithm)

In 1970, Needleman and Wunsch9 described the first method for aligning two sequences based

on dynamic programming. The algorithm has three steps: (a) an initialization step; (b) a matrix

filling step; and (c) traceback.

In the initialization step, for any two sequences A and B with lengths x and y, a matrix M of

size (x+1, y+1) is initialized and M(0, 0) is set to 0. M(0, j) is initialized to score (numerically

equal to j x d, where d is empirically determined gap penalty) resulting from aligning B[1] to a

gap of length j and analogous to that M(i, 0) is initialized values (numerically equal to i x d)

resulting from aligning A[1] to a gap of length i. For each position in the matrix M with i, j >0,

the M(i, j) scores signify how favorably residue/nucleotide A[i] are replaced by B[j] or

alternatively a deletion or insertion occurs.

In the next step, the matrix M is filled from top right to bottom left, where the M(i, j) score

is filled based on the rule given in Equation 1.1.

where, score (a, b) is taken from substitution matrix like BLOSUM10 and PAM11, and d is the

gap penalty.

During the matrix filling procedure, the chosen condition from Equation 1.1 is recorded for

each cell. These choices are traced back in the last step, starting from the bottom right cell of

(1.1)
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matrix M to the top right cell and the alignment is printed. Thus, Needleman-Wunsch (NW)

algorithm always generates global alignment of sequences and penalizes end gaps. In most part

of this work, we will use this algorithm as implemented in NW-align program

(http://zhanglab.ccmb.med.umich.edu/NW-align/) and sequence identity is defined as:

(b) Local sequence alignment (Smith-Waterman algorithm)

The Smith-Waterman (SW) algorithm12 also uses dynamic programming algorithm but produces

local alignment. Here, we will briefly summarize the changes in this algorithm compared to the

Needleman and Wunsch algorithm described above.

In the initialization step, M(i, 0) and M(0, j) are initialized to 0.

During the matrix filling procedure, a new option is introduced (Equation 1.3) which helps

to set the negative scoring cells to 0 and aids in identifying positively scoring cells which render

the local alignment.

During the traceback, instead of starting at the bottom right matrix element, as in NW-

algorithm, in SW-algorithm, the traceback starts from the cell with maximum value and then

traced back until a cell with value 0 is encountered.

(c) Heuristic database search (BLAST algorithm)

As mentioned earlier, heuristic approach generate sub-optimal alignment but is very fast and

hence useful for searching database. FASTA13 and BLAST14 are two commonly used programs

for heuristic search in large databases and generating pairwise alignment against top ranking hits;

(1.3)

(1.2)
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(b) Local sequence alignment (Smith-Waterman algorithm)

The Smith-Waterman (SW) algorithm12 also uses dynamic programming algorithm but produces

local alignment. Here, we will briefly summarize the changes in this algorithm compared to the

Needleman and Wunsch algorithm described above.

In the initialization step, M(i, 0) and M(0, j) are initialized to 0.

During the matrix filling procedure, a new option is introduced (Equation 1.3) which helps

to set the negative scoring cells to 0 and aids in identifying positively scoring cells which render

the local alignment.

During the traceback, instead of starting at the bottom right matrix element, as in NW-

algorithm, in SW-algorithm, the traceback starts from the cell with maximum value and then

traced back until a cell with value 0 is encountered.

(c) Heuristic database search (BLAST algorithm)

As mentioned earlier, heuristic approach generate sub-optimal alignment but is very fast and

hence useful for searching database. FASTA13 and BLAST14 are two commonly used programs

for heuristic search in large databases and generating pairwise alignment against top ranking hits;

(1.3)

(1.2)
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while ClustalW15 is a multiple sequence alignment tool. Here we will only discuss BLAST,

because its derivative (PSI-BLAST16 discussed in next section) has been used extensively in this

work. The BLAST (Basic Local Alignment Search Tool) algorithm consists of three main steps:

First, the query sequence is split into k letter words, where the default value of k for proteins

is 3. All possible combinations of k letter words (203) are then scored against these query words

using substitution matrices (BLOSUM10 or PAM11). In the second step, words scoring higher

than a threshold cutoff T are marked as hits, and the database sequence are searched using these

selected hits, with the requirement that there should be an exact match. Matches in the databases

are extended bi-directionally using un-gapped alignment, until the alignment score drops below a

threshold cut-off S. These extended hits are called as HSP (High scoring Segment Pairs). In the

third step, high scoring HSPs with score  Sg, are extended further using gapped alignment and

highest scoring hits are reported with the final alignment.

(d) Heuristic database search using sequence-profile alignment (PSI-BLAST)

The choice of substitution matrix (BLOSUM or PAM) used for scoring the alignment in heuristic

algorithms (for e.g. in BLAST) determines how well the method can distinguish true hits from

random ones during the database search. Therefore, the sensitivity of these heuristic algorithms

can be improved by choosing a matrix, which can best describe the characteristics of the query

protein family.

This concept forms the basis of PSI-BLAST (Position Specific Iterative BLAST)

algorithm16, which scores the database sequences using the query profile. A profile17 or PSSM

(Position Specific Scoring Matrix) is a matrix of dimensions 20 × L, where L is the length of

query sequence and the 20 columns contain substitution scores for the 20 standard amino acids.

PSI-BLAST uses an iterative search procedure, where the first round of PSI-BLAST search is
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essentially the same as running BLAST. Statistically significant hits (those with e-value lower

than user-specified threshold) are selected and multiple sequence alignment is constructed from

these sequences, which is then converted to PSSM. A PSSM contains information about both the

query sequence and the substitution matrix, and is used for the next round of database search.

1.1.3.2. Structure based alignment

Compared to sequence comparisons, protein structure comparisons can provide useful insight

into their functionality because (a) Protein residues located far apart in the primary sequence can

come very close in 3D space; (b) structure is known to be more conserved than the sequence18, as

seemingly dissimilar sequences can fold into the same 3D conformation/structure.

Additionally in this work, we will use predicted models and structure alignment therefore is

essential for evaluating the quality of predicted structures.

Given a set of two proteins P1 and P2 and a scoring scheme, the aim of any structure

alignment method is to find a set of equal sized substructure in these proteins with highest score.

In this section we will briefly review, two scoring schemes RMSD and TM-score, which have

been used in the later chapters.

(a) RMSD: Root mean square deviation (RMSD) is one of the most widely used structure

similarity measure. For calculating RMSD, one needs to first identify an optimal

transformation (rotation and translation) that can superposes the complete structure or

substructures of P1 onto P2 or vice-versa. The formulation for finding this optimal

superposition is based on the Kabsch algorithm19. RMSD on the superposed structures is then

defined as:
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where, L is the length of common structure or the aligned length and  is distance between

the ith elements in the alignment.

(b) TM-score: Template modeling score (TM-score)20, is another widely used metric for

evaluating protein structure similarity. As in RMSD, for evaluating TM-score between two

protein structures, they must be superposed onto each other. In TM-score, the transformation

matrix for superposing the entire protein structure is acquired after Kabsch19 superposition of

fragments of various lengths gleaned from N-to-C terminus of proteins. After each

superposition, TM-score is evaluated and recorded. TM-score is defined as:

where, L is the length of query protein and Lali is the aligned length, di is the distance

between ith pair of aligned residues and d0 is the normalization scale for defining aligned

residue pairs given by . Finally, during the iteration, the superposition

with highest TM-score is reported as the final alignment. TM-score was originally designed

for evaluating the quality of predicted protein structure (model) as it is more sensitive

towards the global topology. Also, it down-weights large distances between aligned residue

pairs compared to the smaller ones, while in RMSD all the residue are weighted equally.

In this work, the structural similarity between predicted model and its experimental form

is evaluated using TM-score program (http://zhanglab.ccmb.med.umich.edu/TM-score);

while the global structural similarity between two different proteins (query and template) is

evaluated using TM-align (http://zhanglab.ccmb.med.umich.edu/TM-align). In TM-align, a

8.11524.1 3
0  Ld

(1.4)

(1.5)
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wide variety of initial structure-based alignments are used as initial seed, which are then

refined further based on heuristic iterations of the Needleman-Wunsch dynamic

programming 9 with the distance scoring matrix defined by TM-score superposition. The best

alignment is scored using TM-score (Equation 1.5), where L is the length of query protein.

1.2. Protein structure: experimental determination & prediction

In Figure 1.1, we showed that the growth of experimental protein structures elucidation (dotted

lines) has fallen behind in the race with the exponentially increasing number of sequenced

proteins. In this section, we will first provide a brief overview of the two most commonly used

methods for protein structure determination for understanding the limitation of the experimental

approaches, and then review the developments of protein structure prediction methods for

solving this problem.

1.2.1 Experimental methods for protein structure determination

X-ray crystallography and NMR spectroscopy are the two most commonly used methods for

determining atomic resolution of protein structures. Cryo-EM and Small angle X-ray and

Neutron scattering (SAXS), are two other rapidly developing methods; however the resolution of

the structure obtained using these two methods is generally limited and can therefore only be

used for studying large macro-molecular complexes.

The inevitable step of structure determination using X-ray requires the target protein to be

crystallized. However, getting a protein crystal is not a trivial problem because: (a) the protein

needs to be highly purified and also available in sufficiently large quantity; and (b) the

crystallization procedure is like voodoo, the exact conditions that are required for getting a

protein crystal from a protein solution is unknown. Once a good protein crystal is obtained, it is
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X-rayed from various angles and the resulting scattered X-rays are recorded at a detector

(photographic film or a electron counter). The collected data is then fed into a computer that

computes a spatial electron density map. The position of the protein atoms is then manually fitted

into these densities.

In NMR spectroscopy, the protein is in solution, so crystallization is not required. However,

highly purified protein in large quantity is still a prerequisite. Also, the protein needs to be stable

in solution for several days. Atoms with odd number of neutron or proton are associated with a

nuclear spin, and since the nuclei are charged, they develop a magnetic field. The spin of the

nuclei in these atoms is randomly oriented, but when they are placed in a strong magnetic field,

the spin gets aligned about the direction of magnetic field. In NMR spectroscopy of proteins, the

spin of the magnetic nuclei of protein atoms are influenced by varying the magnetic field in

multiple directions and one measures the absorption spectra as the atom spin returns to being

aligned with the magnetic field. Based on the collected absorption pattern it is possible to

determine how many bonds exist between two atoms and the approximate spatial distance

between the two atoms. Based on this information, protein structures can be solved by satisfying

the spatial distance restraints21. Nevertheless, the procedure of generating spatial distance

restraints from the absorption spectra is non-automated and tedious, and hence generally not

suitable for large proteins.

The limitations of experimental methods for protein structure elucidation has actuated the

structural genomics (SG) project to increase the throughput of experimental structure elucidation

22; 23; 24 and provide a framework for inferring molecular function 25; 26. While the SG aims to

structurally characterize the protein universe by an optimized combination of experimental

structure determination and comparative modeling (CM) of protein structures, 3D structures of at
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least 16,000 optimally selected proteins would be required for CM to cover 90% of protein

domain families 27, and at the current rate it appears that this goal can be achieved only in about

next 10 years28. This underscores the need of computational methods for protein structure

prediction, so that 3D structural models can be built and provide insight for functional analysis.

Also, the development of better structure prediction methods would dramatically enlarge the

scope of structural genomics project.

1.2.2 Computational approaches for protein tertiary structure prediction

The goal of protein tertiary structure prediction is to estimate the spatial position of every atom

of a protein. Protein structure prediction methods can be classified into three categories:

Comparative modeling (CM) 29; 30, threading 31; 32; 33; 34; 35; 36 and ab initio modeling 37; 38; 39; 40; 41.

In CM, the protein structure is constructed by matching the sequence of the protein of interest

(query) to an evolutionarily related protein of known structure (template) in the PDB 2, where the

residue equivalency between query and the template is obtained by aligning sequences or

sequence profiles. Threading-based methods match the query protein sequence directly to 3D

structures of solved proteins with the goal of recognizing similar protein folds, which may have

no clear evidence of an evolutionary relationship with the query protein. The last resort for

predicting the protein structure, when no good template is detected in the PDB library, is to

predict the structure using ab initio modeling. Predictions based on this method assume that the

native structure of a protein corresponds to its global free energy minimum 42 and the

conformational space is sampled to attain this state as guided by well designed energy force

fields. This is the most difficult category of protein-structure prediction and if successful will

provide the eventual solution to protein folding problem. However, the success of ab initio

modeling is currently limited to small proteins with less than 100 amino-acids 37; 38; 39; 40; 41.
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As a general trend in the field of protein structure prediction, the borders between the

conventional categories of methods have become blurred. For instance, both comparative

modeling and threading based methods use sequence-profile and profile-profile alignments for

identifying templates. Similarly, most of the contemporary ab initio based methods often use

evolutionary information either for generating sparse spatial restraints or for identifying local

structural building blocks. Recent community-wide blind tests have demonstrated significant

advantages of the composite approaches in protein structure predictions 43; 44; 45, which combines

the various techniques from threading, ab initio modeling and atomic-level structure refinements

46; 47. In the later chapters we will focus on the methodology of I-TASSER 38; 47; 48, which serves

an example of composite approach for generating 3D structural models and predicting the

function of a given query sequence.

1.2.2.1. CASP experiments

The community-wide Critical Assessment of techniques for protein Structure Prediction (CASP)

experiments (http://predictioncenter.org) provides a standard platform to assess state-of-the-art

methods for protein structure and function prediction. During this biennial event, the organizers

release a large number of protein sequences for which structure and function is unknown. The

participants are then asked by the organizers to predict the structure and function of these

proteins and submit their predicted models before provided deadlines. Finally, after the

experiment is over, the experts of the field evaluate the predicted models based on obtained

experimental results.
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1.3. Functional annotations based on sequence-to-structure-to-function

paradigm

Understanding the relationship between protein sequence, structure and function is often

considered as the ‘holy grail’ of computational biology. In this section, we will review the

sequence-to-structure-to-function paradigm and the potential challenges for any developed

method based on this paradigm. But before we proceed, it is necessary to introduce the

taxonomies of protein function and the concept of homology, which is crucial for understanding

the discussion in later chapters.

1.3.1. Protein function

The definition of protein function is subjective and contextual. In this work, we have used three

standard vocabularies for defining protein’s function: (a) EC number and (b) Gene Ontology

terms and (c) ligand binding residues. For the benchmarking experiments, we have used the

protein sequence and functional annotations from the PDB database.

1.3.1.1. Enzyme Commission number

Enzymes are proteins that catalyze (i.e. increase the rates of) chemical reactions in physiological

processes. Based on the reactions they catalyze, enzymes are categorized into hierarchical

families using a numerical classification scheme known as Enzyme Commission (EC) number.

The EC numbers do not specify the enzymes, but the function characterized by the enzyme. The

first number represents the type of enzymatic activity such as hydrolases (enzymes that cleave

the substrate by hydrolysis), isomerases (enzymes which participate in intra-molecular

rearrangement of the substrates) etc. All the enzymes can be categorized into six main classes

based on their enzymatic activity (Table 1.2). The second number corresponds to the nature of



16

Table 1.2 The six main classes of enzyme

Enzyme Class Class Name Reaction catalyzed

Class 1 Oxidoreductases Oxidoreduction reactions

Class 2 Transferases Transfers a group from one compound to the other

Class 3 Hydrolases
Hydrolytic cleavage of C-O, C-N, C-C and

phosphoric anhydrite bond

Class 4 Lyases
Cleavage of C-C, C-O, C-N, and other bonds by

elimination, leaving double bonds or rings

Class 5 Isomerases Intramolecular rearrangement of the substrates

Class 6 Ligases
Joining of two molecules by utilizing ATP or a other

triphosphate as energy source.

chemical bonds or groups in the substrate on which the enzyme acts. The third number refers to

nature of the cofactors required by the enzyme to catalyze the reaction. The fourth number

corresponds to the nature of the substrate on which they act.

1.3.1.2. Gene Ontology

The gene ontology (GO) is currently the most effective approach for machine-legible and

automatic functional annotation for both enzyme and non-enzymatic proteins. The Gene

Ontology6 (GO) is a widely used vocabulary for describing three different perspectives or

“aspects” of gene functions: molecular function (MF), biological process (BP) and cellular

component (CC). Each GO aspect is represented by a tree-like structured directed acyclic graph

(DAG), where nodes in the graph represent a GO term and describe a component of gene product

function (Figure 1.3), while the edges between the nodes are equivalent to the relationships (is-a

or part-of) between the GO terms. The GO terms are held in a form of functional hierarchy,

where functions that are more general are present on the top while functions that are more

specific are further down the graph. Each GO term or node in the DAG can have multiple parents
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(for example transition metal binding and transcription regulator activity have two parent nodes),

and is allowed to have multiple children. Moreover, since the edges are directed and the DAG is

acyclic, we can never arrive at the same node if the edges are followed. Each protein can have

multiple ascribed GO-terms, and all ancestors GO-terms are implied when a GO-term is

assigned.

Figure 1.3 An excerpt of a directed acyclic graph for molecular function.

1.3.2. The concept of homology

Nature is an engineer. The reason is quite obvious; it prefers to use existing resources within the

cell for designing a new but related function, rather than inventing something from scratch, for

e.g. the well known Rossmann fold is frequently used in many proteins for binding di-nucleotide

co-enzymes49. This engineering process is quasi-static in nature. First, it requires gene
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duplication event to occur, so that a copy of the gene is available during the modification and the

cell can alleviate the selection pressure. For a period of time, both the copies of the gene co-exist

in the same species (S0 in Fig. 1.4). Eventually over a long period of time, either one or both the

genes might be modified to perform a new but similar function. Since both the genes and their

protein product are related by divergence from a common ancestor, they are ordained as

homologs and their relationship as homology. Orthologs and paralogs are two subcategories of

homologs. While orthologs proceeds from speciation event (A1-A2 & B1-B2 in Fig 1.4),

paralogs (A-B in Fig 1.4) arise after gene duplication; however, both have the potential to

acquire new functional capabilities during the course of evolutionary divergence50. Nevertheless,

orthologs most often perform same function and paralogs perform biologically distinct function.

Homologous genes can also be transferred from one species to another via horizontal gene

transfer i.e. without evolutionary decent, these are referred to as xenologs.

Figure 1.4 Schematic diagram to explain the concept of homology. Evolutionary descent of an ancestral
gene to paralogs and orthologs following gene duplication in species S0, and then speciation to yield
species S1 and S2. Genes A, A1, A2, B, B1 and B2 have descended from a common ancestral gene. This
picture has been adapted from 51.
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Since all life forms on earth have a common ancestry, all the genes/proteins should ideally

be expected to be homologous. But in parlance, they are not. The key concept missing in the

descriptions provided above, is the time-scale required for the nature’s engineering process,

which is often difficult trace back. More appropriately, homology only pertains to genes/proteins

when the evolutionary linkage is recent or detectable.

1.3.2.1. Functional annotations using homology

Once an evolutionary linkage is established, protein chemistry is often implicated. However,

these linkages should be properly inspected before any functional inferences are drawn, because

incorrect annotations can have far-reaching consequences like erroneous and costly experimental

validation or incorrect functional assignments in the databases52.

In most cases, homology between proteins is established based on sequence identity14 or  on

sequence-profile comparision16, where profile is a matrix containing family specific information

of functionally and structurally important residues (refer to section 1.3.1.1 d). Thus, profile-

based methods are generally more powerful in detecting homologous proteins than single

sequence, because non-conservative substitutions during evolution chisel away the ancestor

sequence to such an extent, that the sequence identity obtained based on a single sequence

comparison between evolutionarily related and random protein is indistinguishable. Even when

using these profiling tools, one needs to define a sequence similarity threshold for grouping

proteins into families, which is often difficult to decide because some protein families are

functionally more promiscuous than the others53. Moreover, the profile-based methods still have

a lower limit of sequence identity threshold (“twilight zone”)54, where structure becomes an

absolute necessity to warrant evolutionary relatedness.
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Proteins domains are autonomously folding and functional units. As such, annotating protein

at the domain level should be much more accurate55. However, identification of functional

domains from sequence alone is still not satisfactory, and is usually successful only when a

homologous template protein structure is available in the PDB library56. Identifying domain

boundaries based on structural information is much easier and accurate57; 58, which buttress the

need of structures, either by experimental techniques or based on structure modeling. This is also

one of the motivations for structural genomics projects: to make the 3D structures available for

novel uncharacterized proteins.

Structure-based methods for homology detection are more powerful than sequence-alone-

based methods, because in many cases evolution retains the folding pattern long after sequence

similarity becomes undetectable59. The most general way of predicting the function from

structure is to use global structure comparison and identify structural neighbors in structure

databases with functional annotation. Although, putative relatives of a query can be identified

based on these comparisons, the evidence is usually insufficient for transferring the functional

annotations, as two proteins may have similar fold yet very different functions. For example, the

classic fold alpha/beta barrel, is inhabited by five different classes of enzymes and also non-

enzymatic proteins (Fig 1.5).

Since natural selection guides to optimize function, identifying conserved functional

residues in structure can be very useful for assigning function. Many groups60; 61; 62; 63 have

focused on developing methods for identifying these active/binding site residues, as these are

often more conserved than the overall fold and can be used for assigning the function.

Nevertheless, these approaches often require a template library of known active/binding sites that

can be pre-compiled either manually64 or based on automation. But none of these libraries can be
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complete, because functional sites in many experimentally solved protein structures are still

unknown.

Figure 1.5 Functional promiscuity in classic alpha/beta barrel.

1.4. Scope and outline of this work

Biological function of a protein is determined by its 3D shape, which dictates how the protein

interacts with ligands or other protein molecules. However, experimental approaches for

structural determination and functional characterization of proteins lag far behind the rapid

increase in genome-wide sequence data. In this dissertation work, we have developed a unified

automated platform for structural and functional annotation of protein sequences, based on the

sequence-to-structure-to-function paradigm. The developed protocol is then tested on large-scale

benchmarking experiments and real blind tests. The main aspects of the work are presented

below:
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 In the second chapter, we review the details and recent developments of tertiary structure

prediction using the I-TASSER server, which forms the basis of functional annotations in

later chapters. A large indescribable part of work related to this chapter is the

maintenance of this prized server.

 In the third chapter, we present a new comparative approach (COFACTOR) to accurately

recognize functional sites of protein-ligand binding interactions using low-resolution

predicted protein structures by I-TASSER. We tested this algorithm in the recent

community-wide CASP9 experiment, and it was ranked as the best method for binding-

site prediction and outperformed all other participating algorithms.

 In the fourth chapter, we extend the developed COFACTOR algorithm for predicting

other aspects of protein function, namely Enzyme commission (EC) numbers and Gene

Ontology (GO) terms. A new approach that combines/utilizes both sequence and

structure for functional homolog detection is introduced. As an illustration on the

genome-wide functional annotations, the method was applied to the ORFs in the

Chlamydia trachomatis genome, which revealed new testable insights distinct from the

sequence-based annotations.

 In the last chapter, we conclude this thesis by providing a summary of the results and

provide suggestions for future development.
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Chapter 2

I-TASSER server: an integrated platform for protein structure and

function prediction

“I have a protein of interest but I don’t know its structure/function” is one of the most

common problems that most molecular and cell biologists face in their research. This

impediment has been aggravated in recent years due to the fact that the percentage of protein

sequences in UniProtKB/TrEMBL 1 with a solved protein structure in the PDB library 2

plunged to 0.4% by the end of 2011; this number was 0.6% at the end of 2009, 1.2% in 2007

and 2% in 2004 (Figure 1.1). Recent advances in computer algorithms for predicting protein

structure and function have considerably alleviated this problem, and provided biologists

with valuable information about their proteins of interest 3. In this chapter, we will review

the I-TASSER (Iterative Threading ASSEmbly Refinement) 4; 5; 6; 7 methodology for protein

structure prediction, highlight the recent developments of popularly used I-TASSER server

and provide guidelines for improving the structure and function modeling experiment. The

server is freely available for the academic community at

http://zhanglab.ccmb.med.umich.edu/I-TASSER.

2.1. An overview of the I-TASSER pipeline

I-TASSER 4; 5; 6; 7 is a hierarchical protein structure modeling approach based on the

multiple threading alignments and an iterative implementation of the Threading ASSEmbly

Refinement (TASSER) program 8. Figure 2.1 shows the schematic representation of I-

TASSER pipeline for protein structure and function prediction, which consist of four

consecutive steps of threading, structure assembly, structure refinement and function
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prediction. In this chapter, we will only focus on the structure prediction module of the

pipeline, as the function prediction module will be discussed in the following two chapters.

Figure 2.1 Schematic diagram of the I-TASSER protein structure and function prediction protocol.

2.1.1. Threading of query sequence

Threading refers to a bioinformatics procedure for identifying template proteins from solved

structure databases that have a similar structure or similar structural motif as the query

protein sequence. In the first stage of I-TASSER, the query sequence is matched against a

non-redundant (nr) sequence database by PSI-BLAST 9, to identify evolutionary relatives. A

sequence profile is then created based on a multiple sequence alignment (MSA) of the

homologs, which is also used to predict the secondary structure using PSSpred

(http://zhanglab.ccmb.med.umich.edu/PSSpred). Assisted by the sequence profile and the

predicted secondary structure, the query sequence is then threaded through a representative

PDB structure (sequence identity cutoff of 70%) with the objective of identifying the global
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or local threading alignments using either MUSTER 10 (single threading server) or

LOMETS 11 (meta-threading server). In this section, we will first describe the methodology

of MUSTER threading algorithm and then give an overview and advantage of using

LOMETS.

2.1.1.1. MUSTER threading program

MUSTER is a sequence profile-profile alignment (PPA) method assisted by the predicted

structural information like secondary structure, structure profiles, solvent accessibility,

backbone dihedral torsion angles, and hydrophobic scoring matrix. The scoring function of

MUSTER for aligning the ith residue of the query and the jth residue of the template is

defined as 10

Score(i, j)  Eseqprof  Esec  Estrucprof  Esa  Ephi  Epsi  Ehydro  Eshift . (2.1)

The first term Eseq_prof , is the alignment score of the sequence profile-profile alignment. The

second term Esec , computes the match between the predicted secondary structure of query

and known secondary structure of templates. The third term Estruc_prof , calculates the score of

aligning the structured-derived profiles of templates to the sequence profile of query. The

fourth term Esa , computes the difference between the predicted solvent accessibility of

query and solvent accessibility of templates. The fifth and sixth terms (Ephi and Epsi),

calculate the difference between the predicted torsion angles (phi and psi) of query and

those of templates. The experimental torsion angles for templates are calculated using

STRIDE 12, while torsion angles of query are predicted by ANGLOR 13. The seventh term

Ehydro , is an element of hydrophobic scoring matrix 14 that encourages the match of

hydrophobic residue (V, I, L, F, Y, W, M) in the query and the templates. Finally, the last
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term Eshift is a constant, which is introduced to avoid alignment of unrelated residues in local

regions. While the first term is sequence-based information, the second to seventh terms are

related to structural information. If only the first two terms plus Eshift in equation 1 are

involved, the corresponding threading program is called profile-profile alignment (PPA) 11,

which is the precursor of MUSTER.

The sequence and structural information are then combined into a single-body energy

term, which can be conveniently used in the Needleman-Wunsch 15 dynamic programming

algorithm (Section 1.1.3.1) for identifying the best match between the query and the

templates. A position-dependent gap penalty in the dynamic programming is employed, i.e.

no gap is allowed inside the secondary structure regions (helices and strands); gap opening

(go) and gap extension (ge) penalties apply to other regions; ending gap-penalty is neglected.

Figure 2.2 Illustration of MUSTER threading alignment score calculation. Full (Lfull) and partial
(Lpartial) alignment lengths are used to normalize the threading alignment score (Rscore). Symbols
‘-’, ‘.’ and ‘:’ indicate an unaligned gap, an aligned non-identical residue pair and an aligned
identical residue pair, respectively. The query and template sequences are taken from 1hroA (first 53
residues) and 155c_ (first 61 residues), respectively, as an illustrative example. (Taken from Wu, S.
and Zhang, Y. Proteins 72(2008): 550).

Following the dynamic programming alignments, the alignments of different structural

templates are ranked based on their alignment score and the length of the alignment. In PPA

11, the templates are ranked based on a raw alignment score (Rscore) divided by the full

alignment length (Lfull) (including query and template ending gaps) as shown in Figure 2.2.

In MUSTER, however, Rscore/Lpartial is used as an another possible ranking scheme, where
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Lpartial is the partial alignment length excluding query ending gap as shown in Figure 2.2. A

combined ranking is then taken as follows: If the sequence identity of the first template

selected by Rscore/Lpartial to the query is higher than that selected by Rscore/Lfull, then the

template ranking is done based on Rscore/Lpartial. Otherwise, the templates are ranked based on

Rscore/Lfull.

2.1.1.2. LOMETS: Meta-threading server

As observed in the CASP experiments 16, although the average TM-score of MUSTER

outperforms many of the state-of-art algorithms, a single threading program can never be

better than all other threading algorithms on every target. This inconsistency naturally leads

to the prevalence of the meta-server 11; 17, which is designed to collect and combine

prediction results from a set of individual threading programs.

On the I-TASSER web-server, this idea has been implemented using LOMETS 11, a

locally installed meta-threading server. The threading programs in LOMETS represent a

diverse set of the state-of-the-art algorithms using different approaches, namely: Sequence

profile alignments (PPA-I 11, PPA-II 11, SPARKS2 11, SP3 18), structural profile alignments

(FUGUE 19), pairwise potentials (PROSPECT2 20), and the hidden Markov models

(HHsearch 21, SAM-T02 22). In the individual threading programs, the templates are ranked

by a variety of sequence-based and structure-based scores. The top template hits from each

threading program are then selected for further consideration. The quality of the template

alignments (and therefore the difficulty of modeling the targets) is assessed based on

normalized Z-score, which is defined as:

Norm. Z - score =
Z - score
Z0

(2.2)
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where, Z-score is the score in standard deviation units relative to the statistical mean of all

alignments generated by the program; and Z0 is a program-specific Z-score cutoff

determined based on large-scale threading benchmark tests 11 to differentiate ‘good’ from

‘bad’ templates.

For each target, LOMETS first threads the query sequence through the PDB library to

identify template threading alignments by each threading program and then ranks them

purely based on consensus. The idea behind the consensus approach is simple: there are

more ways for a threading program to select a wrong template than that to select a right one.

Therefore, the odds of multiple threading programs working collectively to make a common

wrong selection is lower than the chance to make a common correct selection.

Table 2.1 Performance comparison of component threading programs and LOMETS meta-server on
620 non-homologous testing proteins. (Taken from Wu, S. and Zhang, Y. Nuc. acid res. 35(2007):
3375).

Threading servers
or meta-servers

TM-score (MODELLER models) RMSD (Å) (MODELLER models)

First model
Best in top five
models First model

Best in top five
models

PPA-I 0.4117 0.4531 16.66 14.02
SP3 0.4138 0.4551 13.86 12.83
PPA-II 0.4076 0.4512 14.89 13.02
SPARKS2 0.3973 0.4441 13.60 12.23
PROSPECT2 0.3914 0.4384 13.01 12.02
FUGUE 0.3721 0.4173 19.26 15.82
HHSEARCH 0.3827 0.4224 22.38 19.04
SAM-T02 0.3575 0.3971 21.75 17.53

LOMETS 0.4434 0.4669 10.99 10.61

Table 2.1 shows the improvement of LOMETS over individual threading programs. For

the purpose of eliminating the dependence on the alignment coverage, the full-length

models have been built here by MODELLER 23, using the templates from each threading

program. Based on 620 non-homologous testing proteins, the models generated by

LOMETS threading alignments achieves an average TM-score of 0.4434, which is at least 8%

higher than that by any individual threading program.
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2.1.2. Structure assembly and refinement

Following the threading procedure, continuous fragments in threading alignments are

excised from template structures, and are used to assemble structural conformations of the

sections that aligned well, while the unaligned regions (mainly loops/tails) are built by ab

initio modeling 6; 24.

For a given threading alignment, I-TASSER first builds an initial full-length model by

connecting the continuous secondary structure fragments (≥ 5 residues) through a random

walk of Cα-Cα bond vectors of variable lengths from 3.26 to 4.35Å. To guarantee that the

last step of this random walk can quickly arrive at the first Cα of the next template fragment,

the distance l between the current Cα and the first Cα of the next template fragment is

checked at each step of the random walk, and only walks with l < 3.54n are allowed, where

n is the number of remaining Cα-Cα bonds in the walk. If the template gap is too big to be

spanned by a specified number of unaligned residues, a big Cα-Cα bond is kept at the end of

the random walk and a spring-like force that acts to draw sequential fragments close will be

applied during Monte Carlo simulations, until a physically reasonable bond length is

achieved.

To improve the efficiency of conformational search, I-TASSER adopts a reduced model

to represent the protein chain, with each residue described by its Cα atom and its side-chain

center of mass. Because the regions not aligned during the threading process usually have a

lower modeling accuracy, the structure modeling in these regions is confined to a lattice

system of grid size 0.87 Å 24, which helps to reduce the entropy of conformational search.

Although this grid size may introduce considerable uncertainty of conformational
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representations in comparative modeling (which usually has an error range of 1-2 Å), it does

not generate observable effect in the ab initio modeling, as it often has an error range of 4-6

Å. The threading aligned regions usually have a higher accuracy. Modeling in these regions

is therefore off lattice and the template fragments are kept rigid during the simulations,

which helps to maintain the fidelity of the high-resolution structures in these regions.

Next, the assembled structure is refined using a replica-exchange Monte Carlo

simulation technique 25, which implements several replica simulations in parallel at different

temperatures, with the temperatures periodically exchanged between the replicas; the energy

barriers are flattened by a hyperbolic function to speed up the jumps of simulations between

different energy basins. The overall simulation is guided by a composite knowledge-based

force field, which is described in the next section.

2.1.2.1. I-TASSER force field

The I-TASSER simulations are guided by a composite knowledge-based force field, which

includes: (1) general statistical terms derived from the PDB (C-alpha/side-chain correlations

24, H-bonds 26 and hydrophobicity 27); (2) variety of statistical short-range and long-range

correlation terms that are extracted from multiple threading alignments 11; and (3) sequence-

based contact predictions from SVMSEQ 28. Partly because of the consideration of the

hydrophobic interactions and the bias towards radius of gyration in the energy force field,

the current I-TASSER procedure is designed to best fold single-domain globular proteins

(the procedure for modeling multiple-domain proteins is discussed section 2.3). Readers are

recommended to read Zhang and Skolnick 8; 29; 30 for further details about these energy

terms.
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2.1.2.2. Iterative strategy

The conformations generated in the low-temperature replicas during the refinement

simulation are clustered by SPICKER 31, with the purpose of identifying low free-energy

states. The cluster centroids are obtained by averaging all the clustered structures after

superposition, and are ranked based on the structure density of the clusters. However, the

cluster centroids generally have a number of non-physical steric clashes between Cα atoms

and can be over-compressed. Starting from the selected SPICKER cluster centroids, the

TASSER Monte Carlo simulation 25 is performed again (see Figure 2.1). While the inherent

I-TASSER potential remains unchanged in the second run, external constraints are added,

that are derived by pooling the initial high-confident restraints from threading alignments,

the distance and contact restraints from the combination of the centroid structures and the

PDB structures identified by the structure alignment program TM-align 32 using the cluster

centroids as query structures. The conformation with the lowest energy in the second round

is selected as the final model.

The main purpose of this iterative strategy is to remove the steric clashes of the cluster

centroids. On a benchmark test set of 200 proteins with < 300 residues it was found that the

average number of steric clashes (residue pairs with Cα distance < 3.6Å) for the cluster

centroids of the first cluster dramatically reduces from 79 to 0.8. As strong distance map and

contact restraints are implemented in this step, the topology of the models also improves. In

these test cases, the average TM-score increased from 0.5734 to 0.5801 (1.2%) and the Cα-

RMSD to native decreased from 6.67Å to 6.52Å compared with the cluster centroid of the

first round.
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2.1.3. Construction of full atomic model

The models generated after I-TASSER Monte-Carlo simulations 25 and SPICKER clustering

31 are reduced models, where each residue is represented by the Cα atom and side-chain

center of mass. To increase the biological usefulness of protein models, full-atomic models

are constructed by REMO 33 from these cluster centroids, while optimizing the hydrogen-

bonding network, where a H-bonding list is pre-constructed based on secondary structure

predictions and the 3D backbone model. REMO can quickly build the initial full-atomic

models from Cα traces but often the models have distortions in local structure and side-

chain atoms. Finally, all the models generated by REMO are submitted to FG-MD

(Fragment Guided-Molecular Dynamics) 34, with the purpose of improving the local

geometry and hydrogen bonding, and reduce backbone and side-chain steric clashes in the

model. FG-MD simulations are carried out in vacuum, as implemented in LAMMPS 35

package. The force field consists of energy terms from Amber99 36, Cα repulsive potential,

statistical hydrogen-bonding potential and distance restraints collected from both the

template and structural fragments searched by TM-align32 in the PDB library, using initial

model as the probe. The distance restraints are generated by combination of distance maps

from initial model, TM-align global template and TM-align fragments at each location. FG-

MD refinement simulation is the last step of structure predictions pipeline.

In the last stage, the function of the query protein is inferred by structurally matching

the predicted 3D models against the proteins of known structure and function in the PDB,

using global and local structure alignment algorithms. We will discuss this module in detail

in the following chapters.
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2.2. Estimating the accuracy of predicted protein structure

Assessing the quality of a prediction is important because this assessment eventually

determines how biologists will use the predicted model in their research. For estimating the

accuracy of the structure predictions, a confidence score named C-score is defined, based on

the quality of the threading alignments and the convergence of the I-TASSER’s structural

assembly refinement simulations, mathematically formulated as:

C  score  ln
M
M tot


1
RMSD

 Norm. Z  score(i)
i1

N










 (2.3)

where M is the multiplicity of structure decoys in the structural clusters identified by the

SPICKER 31; Mtot is the total number of decoys submitted to the clustering; RMSD is the

average RMSD of the clustered decoys to the cluster centroids; Norm.Z-Score(i) is the

normalized Z-score (Eq. 2.2) of the top threading alignment obtained from ith threading

server in LOMETS 11; N is the number of servers used in LOMETS.

The C-score scheme has been extensively tested in large-scale benchmarking tests 37; 38.

When tested on predicted structures, the Pearson correlation between C-score and the TM-

score (the absolute difference between model to the native structure) was found to be 0.91,

which is a significantly higher value, keeping in mind that the mathematic range of the

Pearson correlation is between 0 (for random variables) and 1 (for identical variables).

When a C-score cut-off of -1.5 is used to select models of correct topology, both the false

positive and the false negative rate are below 0.1, which means that more than 90% of the

quality predictions are correct. On combining C-score and protein length, the accuracy of

the I-TASSER models can be predicted with an average error of 0.08 for the TM-score and

2 Å for the RMSD (root mean square deviation) 38. Again, considering the big quality
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variations of protein structure predictions (i.e. TM-score in 0-1 and RMSD in 0~30Å), these

estimation errors are very low and the assessments should provide quantitative guidance of

model quality to the users.

2.3. Structure modeling of multi-domain proteins

Since the I-TASSER force field has been designed for modeling single-domain proteins, the

procedure for modeling multiple-domain proteins is a slightly different, but fully automated

process. First, the domain boundaries are defined based on the LOMETS threading

programs, i.e. if a segment of query sequence of >80 residues has no alignment with

template proteins in top two threading hits, the target is treated as a multiple-domain protein

and the domain boundary is defined at the borders of the aligned/unaligned sections. Next,

two types of assembly simulations are implemented: one simulation is conducted for

modeling the whole-chain structure, which provides a guide for domain orientations;

another simulation is carried out for modeling the single-domain structures individually.

Finally, to obtain the full-length model, the models of individual domains are docked

together using the whole-chain I-TASSER model as a template. The docking simulation is

performed using a quick Metropolis Monte Carlo simulation where the energy is defined as

the RMSD of the individual domain models to the whole-chain I-TASSER template plus the

reciprocal of the number of inter-domain steric clashes. The purpose is to generate a global

model, which has a similar domain orientation to the whole-chain I-TASSER model but

with the minimum number of steric clashes. This procedure is applied only to proteins that

have some domains that are not aligned in the top-scoring templates. If multi-domain

templates are available and all domains of query protein are aligned, the whole chain will be

modeled in I-TASSER using the full-chain template.
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If the domain boundary information is available to the user, e.g. from some

experimental data, it is recommended that the user should first split the sequence into

individual domains and then submit each domain individually to the server. This will not

only speed up the I-TASSER prediction process but also result in a more reliable structure

and function prediction, since the current pipeline of the I-TASSER methodology has been

optimized for modeling single-domain proteins5. Domain boundaries in protein sequences

can also be predicted by using freely available external online programs such as PFAM

(http://pfam.sanger.ac.uk/) or NCBI CDD

(http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml).

2.4. Using biological knowledge to improve structure modeling

2.4.1. Provide external restraints

The structure assembly simulations in I-TASSER are mainly guided by spatial restraints

collected from the LOMETS threading templates. For query proteins, that have good

threading hit (Norm. Z-score >1) in the template library, derived spatial restraints are mostly

of high accuracy and I-TASSER will generate high-resolution structural models for these

proteins. In contrast, for query proteins that have weak or no threading hit, collected spatial

restraints often contain errors because of the uncertainty of the template and the alignment.

The I-TASSER server allows the user to specify additional restraints based on

experimental evidence or biological insights. Because restraints from experiments normally

have a higher accuracy than those derived from threading alignments, user-specified spatial

information can be very useful for improving the quality of the structure assembly,

especially for the non-homologous protein targets. Our benchmark test shows that by using
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as few as N/8 NOE restraints, obtained from the NMR experiments (where N is the length of

the protein), the current simulation procedure is able to successfully fold 75% of the

proteins of up to 200 residues, which could not be folded without using spatial restraints

because of the lack of appropriate templates 39. Users can provide external restraints to the I-

TASSER server in two ways:

1. Specify contact/distance restraints

Specify a restraint file with experimentally characterized inter-residue

contacts/distances, for example from NMR or cross-linking experiments. An example

file is shown in Figure 2.3a, where Column 1 specifies the type of restraint, i.e. “DIST”

or “CONTACT”. For distance restraint (DIST), columns 2 and 4 contain residue

positions (i, j), columns 3 and 5 contain the atom-types in the residue and column 6

specifies the distance between the two specified atoms. For contact restraints

(CONTACT), columns 2 and 3 contain the positions (i, j) of residues, which should be

in contact. The distance between the side chains center of these contacting residue pairs

is decided based on observed distances in known structures in PDB. I-TASSER will try

to draw these atom pairs close to the specified distance during the structure refinement

simulations.

2. Specify a protein structure template

I-TASSER normally starts with a set of protein templates identified by the LOMETS

threading programs, where the template library consists of a representative PDB subset

at a pair-wise sequence identity cutoff of 70%. Users can specify a solved protein

structure as the template, as the desired template may not be included in our library or
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the desired template may not be identified by LOMETS even though it is in the library.

Figure 2.3 Example of external restraint files for specifying (a) residue-residue contact/distance
restraints; (b) query-template alignment in FASTA format; and (c) query-template alignment in 3D
format.

To specify a template, users can either upload a PDB formatted structure file or input a

PDB ID and the I-TASSER server will obtain the structure from the PDB library. Once
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a template is specified, the I-TASSER simulation will start from the template with

restraints mainly collected from it; but the simulation will also use the threading-based

LOMETS restraints with the purpose to model the unaligned regions as well as adjust

the reassembly of aligned regions.

The weight of the LOMETS restraints varies depending on the target type. Here,

the query proteins are categorized into easy or hard targets based on the statistical

significance of the threading alignments. The templates for easy targets are usually

from homologous proteins and the alignments have a higher accuracy, while templates

for hard targets are mostly from non-homologous proteins and the alignments have a

lower accuracy. Because the accuracy of the LOMETS restraints is different for

different targets, the weight of implementing the LOMETS restraints is stronger for

easy targets than that in the case of hard targets, that have been systematically tuned

based on large-scale benchmark training 11. LOMETS threading programs use a

representative PDB library to find plausible folds for the query protein. Although using

a representative structure library helps to reduce the time required to compute the

sequence-structure alignments, it is possible that a good template protein is missed in

the library or the template may not have been identified by LOMETS threading

programs, even though it is present in the library. In these cases, the user should specify

the desired protein structure as the template.

To specify protein structure as an additional template, users can either upload a PDB

formatted structure file or specify the PDB ID of a deposited protein structure in PDB

library. The I-TASSER will generate the query-template alignment using MUSTER

program and will collect spatial restraints from both the user specified template and
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LOMETS templates to guide the structure assembly simulation. Because the accuracy

of the LOMETS restraints is different for different targets, the weight of the LOMETS

restraints is stronger in easy (homologous) targets than that in hard (non-homologous)

targets that have been systematically tuned in our benchmark training.

Users can also specify their own query-template alignments. The server accepts

alignment in two formats: the FASTA format (Figure 2.3b) and the 3D format (Figure

2.3c). The FASTA format is standard and is described at

http://zhanglab.ccmb.med.umich.edu/FASTA. The 3D format is similar to the standard

PDB format, but two additional columns derived from the templates are added to the

ATOM records (see Figure 2.3c):

Columns 1-30: Atom (C-alpha only) and residue names for the query sequence.

Columns 31-54: Coordinates of C-alpha atoms of the query copied from the

corresponding atoms in the template.

Columns 55-59: Corresponding residue number in the template based on alignment

Columns 60-64: Corresponding residue name in the template

2.4.2. Exclude template proteins

Proteins are flexible molecules and can adopt multiple conformational states to change their

biological activity. For example, structures of many protein kinases and membrane proteins

have been solved in both active and inactive conformation. Also, presence or absence of

bound ligand can cause large structural movements. While all the conformational states of

the template are alike for the threading programs, it is desirable to model the query using

templates in only one particular state. A new option on the server allows the user to exclude

template proteins during structure modeling. This feature would also allow the user to
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choose the homology level of templates to be used for the modeling. Users can exclude

template proteins from the I-TASSER library by:

A. Specifying a sequence identity cutoff

Users can use this option to exclude homologous proteins from the I-TASSER

template library. The homology level is set, based on the sequence identity cutoff i.e.

the number of identical residues between the query and the template protein divided by

the sequence length of the query sequence. For example, if the user types in "70%" in

the provided form, all templates proteins that have a sequence identity >70% to the

query protein will be excluded from the I-TASSER template library.

B. Exclude specific template proteins

Specific template proteins can be excluded from the I-TASSER template library by

uploading a list containing PDB IDs of the structures to be excluded. An example file

is shown in Figure 2.4. As the same protein can exist as multiple entries in the PDB

library, I-TASSER server will by default exclude the specified templates (in Column1)

as well as all other templates from the library that have an identity >90% to the

specified templates. Users can also specify a different identity cutoff, e.g. 70%, where

all templates with identity >70% to specified template proteins will be excluded.
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2.5. Conclusion

The biological usefulness of the predicted protein models relies on the accuracy of the

structure prediction 40. For example, high-resolution models with RMSD in range of 1-2 Å,

typically generated by CM using close homologous templates, usually meet the highest

structural requirements and are sometime suitable for computational ligand-binding studies

and virtual compound screening 41; 42; 43. Medium-resolution models, roughly in the RMSD

range of 2-5 Å are typically generated by threading and CM from distantly homologous

templates, and can be used for identifying the spatial locations of functionally important

residues, such as active sites and the sites of disease-associated mutations 44; 45; 46; 47.

However, many of the functionally important sites are located on the loops that show large

structural variability although the scaffold of the protein structure is conserved. Thus,

accurate modeling of loop regions is still an important yet unsolved problem in template-

based modeling 48; 49. Nevertheless, even models with the lowest resolution, from an

otherwise meaningful prediction, i.e. models with an approximately correct topology,

predicted using either ab initio approaches or based on weak hits from threading, have a

number of uses including protein domain boundary identification 50; 51, topology recognition,

and family/superfamily assignment 52; 53.

Figure 2.4 An example file used for excluding
template during I-TASSER structure modeling
procedure. The first column contains the PDB ID
of the template proteins to be excluded. The
second column is used to specify the sequence
identity cut-off, which will be used for other
similar templates in the template library.
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The success of the I-TASSER methods in the blind CASP experiments 4; 5 and the large-

scale benchmarking tests 6; 30; 37; 53 makes it a useful tool for automated protein structure and

function annotation. In the past 36 months, the online I-TASSER server has

generated >60,000 full-length structure and function predictions for over 20,000 registered

scientists from 103 countries. Compared to a number of other useful on-line structure

prediction tools 17; 21; 54; 55; 56; 57; 58; 59; 60, the uniqueness of the I-TASSER sever is in its

significant accuracy and reliability of full-length structure prediction for protein targets of

varying difficulty and the comprehensive structure-based function predictions. Especially,

the inherent template fragment reassembly procedure has the power to consistently drive the

initial template structures closer to the native structure 6; 16; 61. For example, in CASP8, the

final models generated by the I-TASSER server had a lower RMSD to the native structure

than the best threading template for 139 out of 164 domains, with an overall RMSD

reduction by 1.2 Å (on average from 5.45 Å in templates to 4.24 Å in the final models) 5.

It needs to be mentioned that despite extensive benchmark tests 4; 5; 38, there can be

considerable uncertainty and error in the automated estimation of the quality of structure

and function predictions. The final and essential validation of the predictions should

therefore be made based on the experimental data collected by the users. Before the entire

structure becomes available, other indirect structural information from the data like

mutagenesis experiments, affinity labeling, NMR dipolar coupling, cryo-electron

microscopy, circular dichroism and dual polarization interferometry experiments, can

provide important information for validating the predicted models and help in deciding

whether the predictions can be useful for further experimental design and study.

The purpose of this chapter was to provide a detailed overview of the I-TASSER pipeline,
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because the predicted models will be used for function prediction experiments in the later

chapter. Meanwhile, since the I-TASSER server is based on the general sequence-to-

structure-to-function paradigm, the described methodology can be valuable for the

developers of other similar bioinformatics systems.
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Chapter 3
COFACTOR: predicting protein-ligand binding sites by global structural
alignment and local geometry refinement

Proteins bind with other molecules to bolster or inhibit biological functions. The binding partner,

commonly referred to as ligand, can be metal ions, small organic/inorganic molecules or

macromolecules like proteins or nucleic acids. In all these protein-ligand interactions, only a few

key residues are involved in the partner recognitions and for the affinity that tethers the ligand to

its receptor molecule. Identification of these key residues is imperative for understanding

protein’s function, analyzing molecular interactions and guiding further experimental procedures

1. Although experimental techniques/methods provide the most accurate assignment of the

binding locations, the procedure can be time and labour-intensive.

Computational approaches to recognize these functional sites in proteins are generally

classified into sequence- and structure-based methods. Most of the sequence-based approaches 2;

3; 4; 5 are based on the presumption that functionally important residues are preferentially

conserved during the evolution, because natural selection acts on function. In many cases

however, the sequence or evolutionary conservation of residues does not necessarily translate

into their involvement in ligand binding, as these residues may play a structural role in

maintaining the global scaffold. Nevertheless, the advantage of sequence-based methods is that

3D structure is not a prerequisite and they require negligible time to generate predictions.

Structure-based methods for ligand binding-site identification start with the 3D structure of

protein molecules. Most of the early approaches followed the Emil Fisher’s assumption that

ligand binding in proteins is like “an insertion of key into a lock” 6; hence shape and

physiochemical complementarity are often used to detect concave pockets on proteins surface 7; 8;

9; 10; 11; 12; 13. There are other methods that use calculated interaction energies 14; 15; 16 or protein
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structure dynamics 17; 18 to examine the click of “lock and key”. With the recent increase in

number of known protein-ligand complexes in Protein Data Bank 19, it is becoming evident that

homologous proteins with similar global topology often bind similar ligands using a conserved

set of residues 20. Accordingly, many contemporary methods utilize both geometric match and

evolutionary information to identify binding site pockets and residues. Some of them use known

protein-ligand complexes as templates 21; 22; 23; 24; 25; 26, while others utilize purely sequence-based

homology information 8; 11; 27.

Figure 3.1 Schematic overview of COFACTOR algorithm for ligand binding site prediction.
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Following the sequence-to-structure-to-function paradigm, in this chapter we develop a new

approach named COFACTOR, in which 3D and a combined global-and-local similarity search

scheme is utilized to identify binding pockets and ligand-interacting residues in query protein.

Figure 3.1 shows a schematic diagram describing the procedure of COFACTOR algorithm.

Starting from the query sequence, the 3D structure model is first generated using the I-TASSER

fragment assembly simulations 28; 29. Experimental structure can also be used in the following

steps. Template proteins with bound ligands in the PDB library are collected based on their

global structural similarity to query protein, using the TM-align structure alignment program 30.

Meanwhile, to examine the ligand-binding details, the binding pockets of templates are scanned

through the query model to identify the best local geometric and sequence matches. The binding

pose of the ligand in the query structure is predicted based on the local alignment of predicted

and template binding site residues. Finally, superposed ligands from multiple templates are

clustered to procure the ligand-binding predictions.

The algorithm is evaluated using both the I-TASSER models and the experimental structures

of target proteins. Large-scale benchmarking results show that COFACTOR can correctly

identify ligand-binding locations and interacting residues in a large fraction of test cases for both

natural and drug-like molecules. The algorithm was also tested in the recent community-wide

CASP9 experiments, and the results highlight the potential applicability of the method for

genome-scale functional annotations.
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3.1. COFACTOR algorithm

Figure 3.2 Steps of COFACTOR algorithm for protein-ligand binding site predictions. (1) Template
proteins from the ligand-binding library are identified using TM-align global similarity search. (2)
Conserved residues in query sequence are identified based on Shannon diverge score which are used to
glean local 3D-fragments from the query structure. (3) Each local 3D-motif of query is iteratively aligned
with known binding site residues fragments from template where the binding pocket similarity between
query and template is evaluated using BS-score. (4) The template ligand is transferred onto the query
structure, which is refined by a short Monte Carlo (MC) simulation to improve the local geometry.
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The COFACTOR algorithm consists of four major steps (see Figure 3.2). First, structural analogs

of the query protein are identified by performing a global structure similarity search using TM-

align 30, where the structural analogs are ranked based on TM-score 31. The underlying

hypothesis is that proteins with similar structure usually have similar function, and hence they

may bind similar ligands. However, this is not always true since many observations have

demonstrated that proteins with similar functions can have different global topology. This

necessitates local structural comparisons, since similar ligands often have similar binding

pockets, which is the goal of the next steps.

In the second step, multiple sequence alignment (MSA) for the query sequence is

constructed by PSI-BLAST search through the non-redundant (NR) sequence database.

Conserved residues in query sequence are then identified from the MSA, based on their Jensen–

Shannon divergence score 2. These residues mark potential binding site locations in query

structure. The structures of all combined sets of these marked residues will be used as candidate

binding site motifs.

In the third step, for any given template (t) with known binding site (b), residue triplets (ltb,

mtb, ntb) are selected from binding site residues (Figure 3.3). Similarly, conserved residues

triplets (a, b, c) are selected from query as candidate binding site motif (Figure 3.3B). The

structure of these candidate sites (a, b, c) is superposed on the known binding site residues (ltb,

mtb, ntb). As a pre-filter, we discard any candidate binding site motif for which a pair-wise

residue distance (dab, dbc or dac) > 2r, where r is the maximum distance of any template binding

site residues from the geometric center (Ctb) of template binding site. Furthermore, to increase

the reliability of the structure superimposition, for each residue i, the coordinates of C atom and
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side-chain center of mass of two neighboring residues, i.e. the i-1th and i+1th residues, in both

template and query are also included in the superposition.

Figure 3.3 Schematic diagram showing putative binding residues in template and query sequence. (A)
template binding site (tb) defined using a sphere of radius r from geometric centroid of binding site. The
selected binding site residue triplets (l, m, n) are highlighted in orange. (B) conserved residues triplets (a,
b, c) of query protein with inter-residue distance (d) < 2r. In both query and template, for any residue i,
two flanking residues i-1 and i+1 are also selected.

To account for similar local environment in query and template, a requirement for

accommodating similar ligand molecules, the query structure is superposed onto the entire

structure of the template based on the rotation matrix acquired from the superposition of the

candidate binding site motifs and template residues. A sphere of radius r is then defined around

the geometric center (Ctb). The sphere here represents a probable binding pocket, inside which

the sequence and structural similarity of query and template are compared. Because a sphere

comprising of very small number of residues can easily generate false positive hits, when the

defined binding site region on the template is small (i.e. the number of residues within the sphere

is less than 15), r is gradually incremented by 0.5 Å, until the number of residues inside the

sphere is larger than 15.
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A heuristic procedure, similar to that used in TM-align 30, is then used to refine the local

match between the query and template structures, inside the sphere. Starting from the initial

superposition of query and template protein structures based on the candidate motif, a

Needleman-Wunsch dynamic programming 32 is performed to generate a new alignment within

the selected sphere areas of query and template, where the alignment score Sij for aligning ith

residue in query and jth residue in template is given by.

Sij 
1

1 
dij
d0


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(3.1)

Here, dij is the Cα distance between ith residue in the query and jth residue in the template, d0 is

the distance scale chosen to be 3.0 Å, Mij is the substitution scores between the ith and jth

residues taken from the BLOSUM62 mutation matrix. The element value in the BLOSUM62

matrix was normalized in between [0, 1], in order to keep both the distance and mutation scores

in Eq. 3.1 in the same scale. Gap penalty is empirically set as -1. Based on the initial seed

alignment, the areas within the spheres are re-superimposed and a new scoring matrix Sij is then

constructed, which will result in a newer alignment from dynamic programming. This procedure

is repeated until the final alignment is converged. For each alignment, a raw alignment score is

defined for evaluating the binding site similarity (BS-score):

BS  score 
1
N t

1

1
dii
d0










2 
1
N t

M ii
i1

N ali


i1

N ali

 (3.2)

where Nt represents the number of residues within the binding site sphere of the template, Nali is

the number of aligned residue pairs. The procedure is repeated for all possible candidate binding
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site motifs (a, b, c) and known binding site residues triplets (ltb, mtb, ntb) in this template binding

site. Finally, BS-score, that determines the best local match between query and the known

template binding site, is obtained:
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This marks a binding site prediction from a known binding pocket of one template that was

scanned for all conserved motifs in the query.

The ligand pose will be copied from the template structure by superposing the structure of the

known binding site residues in the template onto the predicted binding site residues in the query.

To remove the overlap between the ligand and the query protein structures, a quick Metropolis

Monte Carlo simulation is conducted to improve the local geometry of ligand-binding, in which

the energy is defined as the sum of the number of contacts made by ligand with predicted

binding site residues, the reciprocal of the number of ligand-protein clashes, and the contact

distance error which is calculated as difference between inter-atomic ligand-protein contact

distance in template and that in query model.

The last step of the procedure is to rank the predicted binding sites based on multiple

templates. To do so, all the locally superposed ligands on the query structure are clustered based

on their spatial proximity (distance cutoff = 8Å). The binding pockets with larger cluster size are

supposed to have higher chance to be correct. As each binding pocket can bind multiple ligands

(for example, an ATP binding pocket in enzymes can also bind MG, PO43- and ADP), ligands

within the same pocket are clustered again based on their chemical similarity (Tanimoto
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coefficient cutoff = 0.7) using the average linkage clustering procedure. From each ligand-

specific cluster, a confidence score is defined as:

FC scoreLB 
2

1 e


N
Ntot
(x0.7)










1, (3.4)

where N is the multiplicity of ligand decoys in the cluster and Ntot is the total number of

predicted ligands using the templates. x is an experience function to combine local and global

structure similarities, and the evolutionary relation between target and template proteins:

x  BS  score 4  TM  score  2.5IDStr 
2

1 D
(3.5)

The BS-score and TM-score measure local and global similarity of the query to the template.

IDstr is sequence identity between the query and the template in the structurally aligned region.

And <D> is the average distance of the predicted ligand to all other predicted ligands in the same

cluster.

The FC-score definition of Eq. 3.5 thus represents a combination of the cluster size and

structural and sequence similarities of target and template proteins. The parameters have been

chosen to keep FC-scoreLB in the range of [0, 1]. The ligand binding prediction with the highest

FC-scoreLB is finally selected.

3.2. COFACTOR binding site library

Constructing a binding site library containing biologically relevant ligands is not a trivial

problem due to the large number of crystallization artifacts in the existing structures in PDB 33.

Utilization of homology information provides some respite to this problem, since in most cases

homologous proteins bind ligands near similar locations 34.
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To construct a comprehensive library with biologically relevant ligands, all protein chains

with ligand interacting residues were first screened through the PDB library. Commonly used

crystallization buffers, non-biological ions and heavy metal were pre-filtered. Protein sequence

was extracted from the co-ordinates file of filtered complexes, while translating modified amino

acids to their parent amino acid. Thereupon, sequences were clustered using CD-HIT 35 at 40%

sequence identity cutoff, with the purpose of grouping them into homologous families. For

orphan protein chains that formed single entry cluster, we tried to identify its homologous cluster

by first performing a PSI-BLAST 36 search against already clustered proteins, else proteins with

similar structure were identified using TM-align 30 search (TM-score >0.7).

The longest protein in each cluster was selected as the cluster representative, and all the

cluster members were structurally superposed on the cluster representative using TM-align. Pair-

wise distance between center of mass of ligands in superposed complexes was calculated. To

judge whether a ligand is biologically relevant or not, we implemented the following filtering

criteria: (a) the ligand should either have at least one ligand present in a superposed homologous

structure (sequence identity <90%) within 5Å; (b) if the ligand is metal or inorganic ions, it

should have at least 3 binding site residues; (c) if it is a non-metal ligand, 5 or more binding site

residues is a prerequisite. Complexes that satisfied any of these three criteria were re-clustered

based on ligand type and redundant binding site were removed by comparing binding site

residues at 90% sequence identity cutoff. We also consulted Binding MOAD database 37, which

contains both drug and natural ligands, to check for ligands that may have been missed during

this automated procedure.

At present, the binding site library contains 45,381 entries, containing 13,763 metal ligands,

1,417 biopolymers and 30,201 monomeric ligands that include both drug-like and natural
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ligands. The library is freely available at

http://zhanglab.ccmb.med.umich.edu/COFACTOR/library.

3.3. Evaluation of COFACTOR algorithm

Benchmarking proteins were collected from ligAsite benchmark set (v9.1) 38, which contains 364

protein chains bound to small molecule ligands, including 63 “drug-like” and 382 “natural”

ligands. To increase the sample size of drug-like compounds, we further added 137 proteins

bound with drug-like molecules from references 39 and 40. Metal ions were filtered out from this

analysis, as the control methods (FINDSITE and ConCavity) could not predict binding sites for

metal ions. We also excluded ligands bound at the interface of protein chains, since the current I-

TASSER protein structure modeling could be performed only for single protein chains and both

COFACTOR and FINDSITE do not incorporate oligomeric state of the protein.

The results are controlled by two recently developed structure-based methods, FINDSITE 22,

and ConCavity 27. FINDSITE predicts binding sites by matching the target structure with

template proteins identified by threading 22, while ConCavity assigns binding residues as those

closest to the spatial cavities surrounding the protein surface 27.

3.3.1. ConCavity and FINDSITE as experimental controls

Two recently developed structure-based methods, FINDSITE 22 and ConCavity 27, are used as

controls in our benchmarking experiments.

ConCavity 27 was designed to identify solvent-accessible pockets formed by surface residues.

The identified pockets are ranked based on sequence conservation of the residues associated with

the pocket. Residues in the predicted pocket are smudged using a Gaussian filter to identify

potential ligand interacting residues. ConCavity program was used to detect ligand binding sites
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in I-TASSER models and experimentally determined structures, using default parameters and by

providing evolutionary sequence conservation information, estimated based on Jensen–Shannon

divergence (JSD) score 2 of residues. JSD scores for each residue were computed using multiple

sequence alignment of query protein with identified homologues in NR sequence database using

PSI-BLAST 36. A predicted pocket by ConCavity is represented by a set of 3D grid points; hence

we used geometric center of predicted grid points as the location of predicted binding pocket.

FINDSITE 34 is a template-based method that first uses PROSPECTOR 41 to identify the

threading template proteins in the PDB library. Then homologous template proteins of the

identified threading templates are collected from the FINDSITE binding site library and

superposed on the query structure (I-TASSER models or experimental solutions) using Fr-TM-

align 42. FINDSITE predicts binding pocket as a single point, calculated as the center of mass of

all the threading template ligands superposed on query structure. Binding site residues are also

predicted based on concurrence of residues that make contact with ligands in the cluster.

3.3.2. Evaluation metrics

The performance of protein-ligand binding predictions can be evaluated based on their ability to

detect the spatial location of ligand binding pocket, competency to delineate protein residues that

interact with the ligand or the shape of the predicted binding pocket. Here, we evaluate

COFACTOR on all these criteria as well as the chemical similarity between predicted and native

ligand.

The binding pocket predictions are evaluated by calculating the distance between the center

of mass of the bound ligand in the experimental structure and the center of the predicted binding

pocket in the query. We used 4.5Å as a cutoff to evaluate correct binding pocket predictions,
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which is close to the average radius of gyration of the 582 experimental ligands in the benchmark

set.

The ligand-binding residue predictions is evaluated mainly by the Matthews Correlation

Coefficient (MCC) between predicted and experimental binding

residues:

MCC 
TP  TN  FP  FN

(TP  FP)(TP  FN ) (TN  FP) (TN  FN )
(3.6)

where TP, TN, FP and FP are abbreviations for true positive, true negative, false positive, and

false negative binding residue predictions. MCC ranges between 1 and −1, where a MCC of 1

indicates a prefect prediction, 0 a random prediction, and -1 an inverse prediction. We also

define the accuracy of the binding site prediction as

AccTP TP FP  (3.7)

which measures the ratio of the correctly predicted binding residues over the total number of

predicted residues. The coverage is defined as

Cov TP TP FN  (3.8)

which measures the portion of the correctly predicted binding residues over the total number of

binding residues in the experimental structure. Here, true binding site residues are defined as

those that have any heavy atom within a distance of 0.5Å plus the sum of the van der Waals

radius of protein atom and ligand atoms in the experimental structure.

The shape similarity between the predicted ligand and the bound ligand in experimental

structure is evaluated based on the volume overlap, measured as Jaccard Coefficient (JC):

JC 
predicted vol.   native vol.
predicted vol.   native vol.

(3.9)
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For FINDSITE, we selected the ligand from a template amongst the clustered templates, that had

highest sequence identity to query protein and best-predicted pocket; while for ConCavity,

predicted pocket grid points were presumed as H-atom of ligand. Volume calculation is done on

3-D grid of 1Å spacing.

Chemical similarity between two compounds (A and B) is evaluated using the Tanimoto

coefficient:

TC 
NA  NB  NAB

NAB
(3.10)

where NA and NB are the number of chemical and structural features that are present in each

ligand and NAB is the number of common features between A and B. Features of all the ligands

were defined using Open Babel package 43.

3.4. Benchmarking results of binding site predictions

The performance of protein-ligand binding predictions can be evaluated based on their ability to

detect the spatial location of ligand binding pocket and the competency to delineate protein

residues that interact with the ligand. In the first evaluation, the prediction errors are evaluated

by measuring the spatial distance between the center of the predicted binding pocket and the

ligand in experimental structure. In the second evaluation, the assignment accuracy of ligand-

interacting residues in the protein sequence is gauged. Here, we evaluate COFACTOR on both

criteria. Two recently developed structure-based methods, FINDSITE 22, and ConCavity 27 were

used as controls for the result. FINDSITE predicts binding sites by matching the target structure

with template proteins identified by threading 22, while ConCavity assigns binding residues as

those closest to the spatial cavities surrounding the protein surface 27.
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3.4.1. Ligand-binding pocket predictions

The ability of the algorithms to identify ligand-binding pocket is tested on 501 benchmarking

proteins, collected from three previous experiments 38; 39; 40 that harbor 582 ligands. The

experimental structures of the protein-ligand complexes were collected from the PDB library 33.

Figure 3.4 shows the cumulative fraction of predicted binding pockets as a function of

distance between the center of mass of the native ligand and the center of the predicted binding

pocket. If we make a cutoff at the pocket distance of < 4.5Å, which is close to the average radius

of gyration of all ligands in the benchmark set (4.41 Å), the binding pocket predictions by

COFACTOR are correct in 67% cases, when the low-resolution I-TASSER structure models

were used. The control methods FINDSITE and ConCavity correctly predicted binding pocket

for 60% and 39% cases, respectively. These differences are statistically significant, where the p-

value of paired student t-test for the COFACTOR prediction is 9.69e-7 to FINDSITE and 1.62e-12

to ConCavity results.

Compared to ConCavity, both COFACTOR and FINDSITE are not very sensitive to the

accuracy of the protein structure predictions, as long as the global topology of the target model is

correct. When the apo-form experimental structures of the target proteins were used, the

accuracy of the binding pocket predictions by COFACTOR and FINDSITE increased only

marginally to 74% and 61%, respectively, whereas that of ConCavity changed significantly

changed 39% to 53%. This difference in structural sensitivity is probably due to the fact that the

cavity-based methods such at ConCavity are sensitive to the local geometry of the target

structures while the template-based methods rely more on the global similarity of the target-

template topologies. Although homologous templates have been excluded from the I-TASSER

template library, majority of I-TASSER models (91%) have a correct topology with TM-
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score >0.5, which explains the independence of the average performance of COFACTOR and

FINDSITE on the models chosen of the target structures.

Figure 3.4 Comparison of different methods in identifying ligand binding pocket using either I-TASSER
models or experimental structures. Results are presented as the cumulative fraction of predicted binding
site pockets versus distance between the center of the native ligand position and the center of the best in
top five predicted ligand-binding poses.

We observed that in 9% of the cases FINDSITE didn’t generate any pocket predictions due

to lack of good threading templates in its binding-site library. As a result, ConCavity shows an

improved performance over FINDSITE in difficult cases, i.e. ConCavity outperforms FINDSITE

in cumulative fraction of binding pocket when the pocket distance increases. If we consider only

the 446 proteins (with 514 binding sites) where all the three methods successfully generated a

prediction, the average binding-pocket distance of the best in top-five predictions by

COFACTOR, FINDSITE and ConCavity using I-TASSER models are 3.9Å, 5.0Å and 6.5Å,

respectively. When the experimental structures are used, the average distance errors are reduced
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to 4.1Å, 5.0Å and 7.0Å, respectively. This data shows that for both easy and hard targets the

binding pockets identified by COFACTOR are on average closer to the actual binding pocket.

3.4.2. Ligand binding-site residue assignments

Figure 3.5 Performance of different methods in detecting ligand interacting residues. (A) Average
Matthews’s correlation coefficient (MCC); (B) average accuracy of predicted binding site residues.

To evaluate the ability of COFACTOR to detect the binding site residues, in Figure 3.5 we

plotted the average Matthews correlation coefficient (MCC) and accuracy of the predicted

binding residues as a function of the coverage of the predicted binding residues under

consideration, where MCC and binding accuracy were defined in Eqs. 3.6 and 3.7, respectively.

When using the I-TASSER predicted models, COFACTOR could identify binding-site

residues for 90% of the targets with an average MCC of 0.61. The average MCC for all targets

was 0.54. The average accuracy of the binding residue prediction was 76% (68%) for 90% (all)

targets. Compared to the control methods (FINDSITE and ConCavity), COFACTOR showed an

overall improvement of 13-46% on MCC (Figure 3.5A), and 33-112% improvement on the

prediction accuracy (Figure 3.5 B). The reason for the obviously low accuracy and MCC for

ConCavity is that the algorithms defines all the conserved residues lining with the predicted
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pockets as potential ligand interacting residue, which although improves the prediction coverage

(Table 3.1), considerably increases the rate of false positive prediction and results in the low

MCC and accuracy. When using experimental structure, the MCC and accuracy of the binding

site residues by COFACTOR slightly improved to 64% (58%) and 80% (72%), for 90% (all)

targets (Figure 3.5).

Table 3.1 Average Matthews’s correlation coefficient (MCC), accuracy (Acc) and coverage (Cov) of

ligand-binding residue predictions by ConCavity, FINDSITE and COFACTOR, using I-TASSER

models and experimental apo structures as receptor structure.

Protein
structure Ligands Methods First prediction Best in top 5

MCC Acc Cov MCC Acc Cov

I-TASSER
models

Natural
(382 ligands)

ConCavity 0.34 0.30 0.58 0.37 0.34 0.62
FINDSITE 0.43 0.47 0.45 0.50 0.55 0.53

COFACTOR 0.46 0.60 0.42 0.55 0.70 0.48

Drug-like (200
ligands)

ConCavity 0.33 0.27 0.56 0.36 0.30 0.58
FINDSITE 0.39 0.38 0.44 0.44 0.43 0.49

COFACTOR 0.45 0.53 0.41 0.54 0.63 049

Overall
(582 ligands)

ConCavity 0.34 0.29 0.57 0.37 0.32 0.60
FINDSITE 0.41 0.44 0.45 0.48 0.51 0.51

COFACTOR 0.46 0.57 0.42 0.54 0.68 0.48

Experimental
structures

Natural
(382 ligands)

ConCavity 0.42 0.35 0.69 0.45 0.38 0.73
FINDSITE 0.44 0.48 0.47 0.52 0.56 0.55

COFACTOR 0.49 0.64 0.45 0.58 0.73 0.48

Drug-like (200
ligands)

ConCavity 0.41 0.31 0.69 0.44 0.34 0.73
FINDSITE 0.42 0.40 0.47 0.47 0.45 0.52

COFACTOR 0.49 0.59 0.44 0.58 0.66 0.52

Overall
(582 ligands)

ConCavity 0.41 0.34 0.69 0.45 0.36 0.73
FINDSITE 0.43 0.45 0.47 0.51 0.53 0.54

COFACTOR 0.49 0.62 0.44 0.58 0.72 0.51

3.4.3. Drug-like versus natural ligands

If we define bio-molecules binding to enzyme active and allosteric sites as “natural” ligands and

artificially designed molecules as “drug-like” ones, 382 out of 582 ligands are classified as

natural ligands, while the remaining 200 are drug-like in our benchmark set. Based on the results

shown in Figure 3.6A, we find that there is little difference in the average MCC of predicted

binding site residues for the different ligand types. The difference becomes notable for prediction
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accuracy (Table 3.1), where ligand interacting residues for natural ligands were predicted with

accuracy 6-7% higher than for drug-like compounds.

Figure 3.6 COFACTOR ligand-binding predictions for natural ligands and drug-like compounds. (A)
Matthews’s correlation coefficient MCC in identifying ligand interacting residues as a function of the
fraction of binding sites. (B) Chemical similarity between the native bound ligands and the predicted
ligands as assessed by Tanimoto coefficient (TC). For both analyses, I-TASSER models are used as the
apo receptor structure.

In Figure 3.6B, we further analyzed the chemical similarity between the predicted ligands by

COFACTOR and the native ligands in experimental structure, measured by the Tanimoto

coefficient (TC). It is worth noting, that for nearly 73% of the proteins with bound “natural”

ligands, the predicted ligands by COFACTOR shared a high chemical similarity (TC > 0.75),

and therefore can be used for a more detailed level elucidation of protein function. For targets

with bound drug-like molecules, even though the predicted residues had an overall high average

MCC (54%), close to that of the natural counterpart, the predicted and solved ligands were

chemically similar in only 22% cases. This observation recapitulates the fact that the majority of

these drugs are targeted near the active/allosteric sites, where even though they are chemically

dissimilar to the substrate molecules, they are tethered by similar set of binding residues. These
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high accuracy predicted binding site residues by COFACTOR therefore can also be used for

creating binding-site based 3D-pharmacophore models for ligand-screening and structure-based

drug design even for proteins with unknown structure.

3.4.4. Ligand shape comparison

In Table 3.2, we compare the shape of the predicted binding pocket/ligand with that of the native

ligands (average volume 743 Å3) bound in the experimental structure, as an assessment of

predicted ligand conformation. Predicted ligands by COFACTOR, FINDSITE and ConCavity

using the I-TASSER model (experimental structure) have an average Jaccard Coefficient (JC) of

0.34 (0.42), 0.27 (0.29) and 0.19 (0.24) respectively, while the average volume of ligand/pocket

predicted by the three methods are 945 (893), 964 (962) and 2208 (2307) respectively. The result

demonstrates that although the volume of predicted ligands by COFACTOR are on average

smaller, the best match for the shape of the predicted ligands match the best with the native

ligands, which is important for shape similarity based studies such as docking and ligand

screening 44. Moreover, the average number of protein-ligand clashes is generally fewer in

complexes generated by COFACTOR (Table 3.2).

Table 3.2 Comparison between predicted and bound ligands.

Protein
structure Methods

Exp. ligand
volume (Å3)

Prediction
volume (Å3)

Jaccard
Coefficient

Average # of
clashes

I-TASSER
models

ConCavity
743

2208 0.19 282
FINDSITE 964 0.27 63

COFACTOR 945 0.34 32

Experimental
structures

ConCavity
743

2307 0.24 287
FINDSITE 962 0.29 49

COFACTOR 893 0.42 20
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3.5. Blind test of COFACTOR in CASP9

The ninth community-wide critical assessment of techniques for protein structure prediction

(CASP9) released 129 query protein sequences for blind test of protein structure and function

prediction methods. The function prediction section was focused on evaluating the ligand

binding-site predictions, where the predictors were asked to identify ligand-interacting residues

in the provided protein sequence.

Table 3.3 Binding site predictions by COFACTOR for 31 CASP9 targets.

Target TM-
score**

Native
ligand(s)

Predicted
ligand(s) C-scoreLB MCC Acc Cov

T0515* 0.89 PLP, LYS ORX, PLP 0.61, 0.45 0.68 0.64 0.75
T0516 0.89 PF1 PF1, HMH 0.79, 0.88 0.84 0.85 0.85
T0518 0.80 NA CA, MN 0.41, 0.39 0.38 0.38 0.43
T0521 0.52 2 CA 4 CA 0.67, 0.76, 0.66, 0.60 0.08 0.10 0.22
T0524* 0.87 GAL GAL 0.75 0.66 0.73 0.62
T0526* 0.88 GLA GAL 0.55 0.46 0.42 0.56
T0529 0.23 MN ZN, AMP 0.72, 0.23 0.55 0.31 1.00
T0533 0.79 PHE 2 PHE 0.88, 0.09 0.88 1.00 0.79
T0539 0.64 ZN, ZN ZN, ZN 0.85, 0.77 1.00 1.00 1.00

T0547* 0.71 PLP, LYS PLP, LYS, AZ1,
ORX, P3T

0.61, 0.61, 0.61,
0.54,0.54 0.77 0.74 0.82

T0548 0.56 ZN SAL, ZN 0.21, 0.67 0.69 0.50 1.00

T0565* 0.74 DGL, ALA DLG, ALA,
UNL 0.88, 0.50, 0.52 0.86 1.00 0.75

T0570 0.88 MG, GOL CA, GOL, PO4 0.83, 0.21, 0.34 0.87 0.88 0.88
T0582 0.85 ZN ZN 0.64 1.00 1.00 1.00

T0584* 0.83 IPR, DST IPR, RIS, MG,
MG, PO4

0.51, 0.25, 0.68,
0.75, 0.58 0.75 0.63 0.92

T0585 0.78 ZN ZN 0.85 0.77 1.00 0.60
T0591 0.89 LLP PLP, PLP 0.83, 0.81 0.76 0.65 0.91

T0597 0.86 ANP MG, ATP,
AMP 0.93, 0.83,0.80 0.70 0.80 0.63

T0599* 0.95 ISC MG, ISC 0.88, 0.83 0.83 0.75 0.92
T0604 0.41 FAD FAD 0.72 0.45 0.54 0.42
T0607* 0.86 ZN, ZN, BES MN, MN, BIB 0.93, 0.83, 0.68 0.50 0.71 0.36
T0609* 0.78 GAL GAL 0.74 0.82 0.75 0.90
T0613* 0.96 GAR, NHS UNL, THH 0.48, 0.58 0.70 0.77 0.67
T0615* 0.71 MN, GPX MN, PO4 0.83, 0.77 0.50 0.83 0.33
T0622* 0.69 NAD NAD,ATP 0.66, 0.71 0.76 0.67 0.93
T0625 0.74 ZN ZN 0.79 1.00 1.00 1.00
T0629 0.34 6 FE ZN 0.45 0.37 1.00 0.14
T0632 0.74 COA COA, PHB 0.68,0.60 0.46 0.67 0.38
T0635 0.91 CA MG, PO4 0.96, 0.90 0.60 0.38 1.00
T0636* 0.93 HAS, PLP HAS, PMP, PMP 0.51, 0.32, 0.51 0.79 0.78 0.82
T0641 0.91 STE PLM 0.82 0.83 0.80 0.89
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Average 0.69 0.72 0.72
*Holo structure of these proteins was solved with non-native ligand, however CASP9 assessors inferred the native
ligand binding information from homologous PDB structures.
**TM-score of I-TASSER models for the target protein.

During CASP9, we first generated the 3D structural models using I-TASSER and the

structure-based ligand binding site predictions were generated using the COFACTOR algorithm.

Although we generated predictions for all the 129 targets, only 31 proteins were solved in their

holo form and were used in the official assessment 45. The definition of the binding site residues

in our analysis follows the CASP9 assessor’s rendition. The COFACTOR prediction results on

the 31 proteins are listed in Table 3.3.

Overall, the models by COFACTOR (named “I-TASSER_FN” in the server section and

“Zhang” in the human section) were ranked at the top 2 positions based on the mean MCC Z-

scores with and without bootstrapping experiment (Figure 3.7). As CASP9 assessors concluded,

among all 33 participant groups “Two groups (FN096, Zhang; FN339, I-TASSER_FUNCTION)

performed better than the rest, while the following ten prediction groups performed comparably

well.”45

Overall, for the 31 evaluated proteins, the binding-site residues were predicted with an

average MCC of 69%, which is slightly higher than the above benchmark test since CASP9 has

more easy targets 45. For the best 24 proteins, more than 50% ligand interacting residues were

correctly identified. We observed that most of the high accuracy predictions are for binding-sites

harboring non-metal ligands (average accuracy of 75.5%), while the binding-site residues for

metal ions have a slightly lower average accuracy 69.8%. The metal ion binding residues also

show large variations in their prediction coverage. One of the major reasons for the moderate

predictions in cases involving metal ions is the relatively lower quality of receptor models. The

average TM-score is 0.66 ± 0.21 for the metal-bound proteins while that for non-metal proteins
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Figure 3.7 Performance of the top 15 groups in the binding site prediction category in CASP9. Data taken
from the CASP9 assessors 46. (A) Mean MCC Z-score. (B) Mean Rank of CASP9 predictors based on
bootstrapping experiment. The top two groups (‘Zhang’ as human group and ‘I-TASSER FN’ as
automated server group) used COFACTOR to predict the binding site residues in protein structures
obtained from I-TASSER predictions.

is 0.82 ± 0.12. Also, in some of these metal-binding proteins COFACTOR additionally predicted

non-metal ligand binding sites (for example PO43- in T0635) and was the source of over-

prediction. Nevertheless, similar to observations in the benchmarking analysis, in most of the

cases, the predicted and native ligands are highly similar, implying the applicability of

COFACTOR for a more detailed elucidation of protein function.

Figure 3.8 shows two representative examples of easy and hard test cases, T0609 and T0518,

for which COFACTOR’s predictions significantly outperformed other groups. Target T0609

(PDB ID: 3os7) is a putative galactose mutarotase crystallized with tartaric acid. Although the

crystal structure was solved without the native ligand, the CASP9 assessors inferred that the

protein binds Beta-D-Galactose (GAL) in the same binding cleft as the crystallized tartaric acid.

Figure 3.8A shows the successful prediction (MCC=0.82, accuracy=0.75) by COFACTOR for

this target, where four of the five binding site residues were correctly identified (shown in

green). This prediction was deduced from a distant homologue protein Gal10 bifunctional

protein (PDB ID: 1z45) from S.cerevisiae, which also binds GAL. Most groups in CASP9
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missed the prediction because the template by threading has a poor alignment quality; while

COFACTOR used the I-TASSER full-length models (TM-score = 0.78), which correctly

detected the template with correct alignment by TM-align. This is an excellent example showing

the advantage of COFACTOR by using a better quality of receptor models generated by I-

TASSER.

Figure 3.8 Examples of successful predictions by COFACTOR in CASP9. (A) T0609; (B) T0518.
Correctly predicted residues are shown in green (true positive), false positive predictions highlighted in
red, and false negatives residues shown in yellow.

T0518 (PDB ID 3nmb) is a putative sugar hydrolase crystallized with sodium ion. Although

the receptor was an easy target for structure modeling (TM-score of I-TASSER model is 0.80)

and a close homolog (PDB ID: 3imm) had a very similar Na+ binding site, most predictors in

CASP9 failed to predict the binding site because Na+ was considered a crystallization artifact.

The COFACTOR template library also missed this template protein. However, a local similarity

was detected between the I-TASSER model and peanut-lectin (PDB IDs 2dv9 and 2tep). Two

binding sites for Mn2+ and Ca2+ were then predicted by COFACTOR although with a low
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confidence score in the same binding cleft. Out of the seven native ligand-binding residues (Fig.

3.8B), three residues were correctly identified (shown in green). Five were incorrectly annotated

as binding residues (shown in red), while four correct residues (shown in yellow) were missed

during the prediction. Nonetheless, T0518 represents a typical successful example, where

although a close template was not present in the template library, COFACTOR correctly

identified a remote homolog of the protein using local comparisons and provided a reasonable

prediction that could be useful for understanding the function.

3.6. Why does COFACTOR work?

An important question is: why COFACTOR outperforms most of the existing state-of-the-art

methods in overall binding site prediction accuracy, although both COFACTOR and these other

methods have exploited the sequence and structural information in their predictions?

Figure 3.9 Dependence of COFACTOR on model quality and structural similarity of template proteins.
(A) Structural accuracy of ligand binding residues versus the accuracy of full-length receptor models.
Ligand binding pocket predictions using higher resolution receptor models are shown in the inset. (B)
Local versus global similarity of template to target structures. The local similarity is evaluated by BS-
score (Eq. 3.3), while global structural similarity is measured by TM-score of template and the I-TASSER
model. In both the plots, the correct predictions with a distance error < 4.5 Å by different methods are
represented by different symbols.
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In Figure 3.9A, we analyzed the dependence of binding pocket predictions by COFACTOR

and the two control methods (FINDSITE and ConCavity) on the accuracy of predicted receptor

structure. The local structure quality of predicted receptors is evaluated by the RMSD of known

ligand binding residues, while that of global structure is measured by the RMSD of full-length

receptor models. For targets with approximately correct global topology (RMSD < 8 Å), all three

methods have a reasonable ability to predict the ligand-binding pocket. Nevertheless,

COFACTOR generates 12% and 98% more correct (distance error < 4.5Å) binding pocket

predictions than FINDSITE and ConCavity (Fig. 3.9A Inset) respectively. Moreover, in these

correct predictions, the average distance error of pocket prediction by COFACTOR is lower (1.9

Å), compared to that by FINDSITE (2.1 Å) and ConCavity (3.0 Å), which highlights the fact that

a combination of local and global structural alignment improves the accuracy of binding site

predictions for easy modeling proteins.

Even for the harder cases, when the global topology of the receptor model is incorrect

(global RMSD > 8Å) but the ligand binding pocket is correctly formed (local RMSD < 8Å),

COFACTOR had 9% and 89% more correct predictions, compared to the control methods

FINDSITE and ConCavity (lower-right area of Figure 3.9A) respectively. Since the topology of

the receptor models is incorrect, methods that rely only on global comparisons will have

difficulty identifying the correct template, which was improved in COFACTOR by using local

structural comparisons.

In Figure 3.9B, we analyzed the performance of COFACTOR in relation to global and local

similarity between target and template structures. When query and template proteins have a

similar fold (TM-score > 0.5) and the local match near the binding pockets is significant (BS-

score > 1.0), in 80% cases the predictions generated by COFACTOR were correct and the
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average distance error was 1.78Å. Conversely, for protein that uses template proteins of the same

fold but with relatively poorer local match (BS-score < 1.0), the prediction accuracy rapidly

decreased to 58% and ligand distance error increased to 2.3Å. This highlights the importance of

local comparisons while selecting templates in template-based binding site prediction methods.

For example, FINDSITE, which does not uses local comparisons, has 9% and 20% lower

correctly predicted cases in these two regions. This inference is buttressed, when we examine

cases in the upper-left region of Figure 3.9B in which COFACTOR used templates that had

different fold (TM-score < 0.5) compared to the query model, as no good template of same fold

was available. When a good match near the binding pocket (BS-score >1) was found, in 61%

cases the binding pocket prediction was correct, which is 31% and 70% higher than the control

methods FINDSITE and ConCavity respectively.

In Figure 3.10, we show a successful example from carnitine CoA-transferase (PDB ID:

1xvt) that demonstrates the strength of local structural matches. In this example, the correct

template protein is from the glucose-6-phosphate dehydrogenase (PDB ID: 2bh9) that however

has a completely different overall fold with a TM-score to the target of 0.36. Nevertheless, the

structure of both template and target contains a pocket with 3-layer (aba) sandwich architecture

in their N-terminal region, which forms a NADP+ (bound NAP in 2bh9) binding site in Glucose-

6-phosphate dehydrogenase and a CoA binding site in carnitine CoA-transferase. Although there

is no global structural similarity, COFACTOR identifies this local structural similarity of the two

proteins with a high BS-score, which results in the first model of ligand-binding residues with an

MCC of 56% and accuracy of 75%. The predicted ligand (NAP) for the query contains the same

adenine and ribo-phosphate moiety as “native” ligand (bound CoA in 1xvt).
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Figure 3.10 A representative example of COFACTOR binding-site prediction based on local structural
comparisons. Binding site residues of the carnitine CoA-transferase (PDB ID: 1xvt) was detected using
glucose-6-phosphate dehydrogenase (PDB ID: 2bh9) as template with MCC 56% and accuracy 75%. The
true positive residues are shown in green and false positive ones are in red. Inset shows that CoA (native
ligand) and NAP (predicted ligand) have similar chemical structure (adenine and ribo-phosphate moiety
shown in red).

3.7. Conclusion
A new approach, COFACTOR, for high accuracy prediction of protein-ligand interaction has

been developed. The anatomy of results obtained on a large-scale dataset containing functionally

diverse proteins, shows that the algorithm could accurately identify binding pockets in 67% of

cases with an average error of 2 Å, when predicted protein structures were used and homologous

templates were completely excluded from both structure and protein-ligand template libraries. In
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90% of the cases, without knowing the ligand a priori, the ligand interacting residues were

assigned with an average Matthews correlation coefficient of 61% and 76% accuracy.

We have analyzed the predicted binding sites for both “natural” and “drug-like” molecules,

but no significant differences were observed between the predictions for the two classes of

molecules. In particular, for 70% of the proteins with bound “natural” ligand, the predicted

ligand shared a high chemical similarity to the bound ligand in native state, which suggests a

potential application of the method for a more elaborate functional elucidation of uncharacterized

proteins. Successful predictions were also observed for “drug-like” compounds, which open up

the possibility for structure-based drug design even for proteins with no available structural

information.

We have compared our benchmarking results with two recently developed structure-based

methods (FINDSITE and ConCavity). Starting from the same set of structural models, the MCC

of ligand-binding residue predicted by COFACTOR is 13% and 46% higher than that by

FINDSITE and ConCavity respectively; while the distance error in locating ligand-binding

pocket by COFACTOR is 1.1 Å and 2.6 Å lower than that by the aforementioned two control

methods. In the recent community-wide CASP9 experiment 45, COFACTOR achieved an

average MCC of 0.69 and accuracy of 0.72, which significantly outperforms all other methods

from 33 participating groups (Figure 3.7).

The major advantage of COFACTOR over the existing methods is the optimal combination

of global and local structural comparisons for identifying ligand-binding sites. Firstly, it

outperforms the popular cavity-based methods 27; 47; 48 in cases where only low-resolution protein

models are available. This is because global topology comparisons can reliably identify the

correct functional templates, as their accuracy is not sensitive to the local structural errors.
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Secondly, for proteins that have functional templates with different global topology but similar

conserved binding pockets, local structural comparisons help COFACTOR to correctly recognize

the ligand-binding residues, which cannot be achieved by the purely global structural comparison

methods 22; 24; 25.

The latter advantage of local structural comparison is particularly important for functional

annotations of proteins in the so-called “twilight-zone” regions, where the protein structure

prediction methods often have difficulties in generating correct global fold due to the lack of

appropriate templates. However, many methods, including I-TASSER 28; 49, can almost always

predict/generate models with correct super-secondary structures 50; 51, especially in the

functionally conserved regions, which provide important insight for local-structure based

functional inferences. Thus, combining the presented method with the state-of-the-art protein

structure predictions represents an automated and optimal method for genome-wide structural

and functional annotations for majority of the proteins that lack experimental structures.
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Chapter 4

Remote homolog detection and function prediction using COFACTOR

Introduction

Various computational approaches have been developed till date to provide clues about the

biological role of functionally uncharacterized gene products accumulating in public databases.

The de facto approach is to identify evolutionarily related proteins of known function using

sequence-based search1; 2; 3 and confer the functional annotation from a close relative (homolog).

However, such annotation transfers are usually error-prone, mainly for three reasons: (a) a

sequence similarity threshold that can warrant the correctness of annotation transfer cannot be

defined since homologous proteins in different species evolve at different rates owing due to

both different selection pressures and mutation rates; (b) even protein pairs sharing very high

sequence identity can exhibit functional divergence4; 5; and (c) many early sequenced genomes

were annotated using homology transfer approach, introducing the distinct possibility of

misannotation of template proteins in function databases6. Nevertheless, provided that the

annotation of the template proteins are correct, it is estimated that reliable functional inferences

can be drawn for nearly 35-50% of open reading frames (ORFs) in a given genome7; 8, using

sequence-based homology transfer, The more challenging problem, however, is to identify the

function of ORFans, for which we either don’t find any hit using sequence-based search or they

don’t share significant sequence similarity to proteins with known function. This problem can be

partially addressed by identifying locally conserved motifs within the sequences using databases

like Prosite9, Print10 and Blocks11. However, the patterns in these databases are mostly generated

using multiple sequence alignments and can only be used to search conserved elements within
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the same protein family and carry little information about functionally conserved residues across

different protein families.

During the process of evolution, nature remembers the protein folding pattern. As a result,

protein structures are found to be more conserved12 compared to sequence and provide much

more information for inferring evolutionary and functional relationships13; 14, especially when the

sequences diverge beyond the twilight zone15 of sequence identity. In most cases, when two

proteins share a common scaffold, they perform same or similar function. However, this cannot

be generalized for all protein folds because proteins inhabiting the same fold but performing

different function has been reported16; thus making the predictions based on normal structure-

function relationship skewed. The reason for functional promiscuity of some folds is that random

mutations occurring during evolution are more likely to change the function first, rather than the

structure.

Natural selection, the primary means for protein evolution, acts to optimize the function. As a

result, functionally important residues remain more conserved than the overall global fold. Many

contemporary structure-based approaches have therefore been devised to identify local structural

similarity for drawing functional inferences17; 18. Depending on whether or not these methods use

a priori knowledge of functional residues/region in the local similarity search, they can be

broadly classified into template-free and template-based methods19. In template-free methods,

the protein-structure pairs are compared to identify similar functional patches (e.g. shape,

electrostatic surface, binding site/clefts profiles etc.). The geometrical and physiochemical

features of these identified patches are then correlated with known biochemical function. In

template-based methods, query protein structure is scanned against a precompiled library of

known active site or ligand binding residues to identify similar functional motifs20; 21; 22. These
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libraries of conserved local 3D-motifs can be compiled either manually23 after doing a literature

search or using automated scripts24. As the manual creation of these local templates is extremely

laborious, time consuming and hence not very comprehensive, methods like PROFUNC20 uses

both available template libraries as well as automatically created tri-peptide fragments created

using query itself (reverse templates) to match against a library of non-redundant structures;

Evolutionary Trace (ET)25 approach uses predicted functional residues to automatically create

the template, while GASP26 method uses genetic algorithm to build the templates based on their

ability to discriminate between different protein families against a background of representatives

from the SCOP27 database. These local similarity search methods have great potential to detect

functional similarity between evolutionarily diverged and sometimes evolutionarily unrelated

proteins. However, the performance of these aforementioned methods is largely dependent on the

resolution of the query structure and the binding state (apo/holo) of the compared protein pairs.

Moreover, there is no gold standard for assessing the significance of local match, and most

methods use similarities between random pairs of structures to fit a distribution and use it as a

background for evaluating the statistical significance20.

As the function of proteins is accompanied by binding, in the current work we extend our

COFACTOR methodology for ligand binding-site detection, to predict two other unambiguously

defined concepts of functions: Enzyme Commission (EC) numbers28 and Gene Ontology (GO)29

terms. Since most of the proteins lack known 3D-structure and anticipating that the comparative

modeling methods will continue to improve as the PDB library saturates30, we will start from the

amino acid sequence and generate low-to-medium resolution 3D-model using the iterative

threading assembly refinement method (I-TASSER)31; 32; 33. The predicted model is matched

against two independent template function libraries for identifying functional homologues using
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a combination of global and local structure-based similarity search algorithms and the

significance of the match is judged based on novel scoring function that combines sequence-

structure similarity scores in a single term. The algorithm is benchmarked on a large benchmark

set of 450 non-homologous proteins collected from PDB library and commonly-used homology

based approaches namely sequence-profile alignment2, profile-profile alignment34 and HMM-

HMM alignment35 as experimental controls. To demonstrate the suitability of this approach for

genome-scale functional annotations, the method is applied to a subset of proteins encoded by

the phylogenetically distinct bacteria, Chlamydia trachomatis and the functional annotations

suggest new insights into this phylogentically distinct bacterium.

4.1 Materials and methods

4.1.1 Definition of function

Although the definition of protein function is subjective and contextual, we have used two

standard vocabularies for defining a protein’s function: (a) EC number and (b) Gene Ontology

terms. For the benchmarking proteins, these annotations were taken from the PDB database.

4.1.2 Data sets

We evaluate our function prediction approach on two different datasets. The first set contains

450 non-homologous proteins collected from the PDB library with diverse functions, while

ensuring that the pair-wise sequence identity is below 30% and there is no non-self BLAST1 hit

within the dataset. In this set, 318 proteins are enzymes, with unique EC numbers covering all

the 6 enzyme classes. The GO term predictions are evaluated on 337 proteins annotated with at

least one GO term. These include 205 enzymes and 132 non-enzymatic proteins. Of these 337

proteins, 308 were annotated with at least one molecular function term; 295 were annotated to be
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involved in a biological process and cellular location was annotated for 213 proteins in the PDB

GOA annotation36. The Gene Ontology predictions are evaluated on each of the three subsets

individually, and also as a combined set.

The second set represents a blind test case on 17 medium-sized proteins taken from the ORFs

of the Chlamydia trachomatis genome. As an experimental control, we include in this set 7

proteins (CT243, CT296, CT381, CT390, CT610, CT780 and CT828) from Chlamydia

trachomatis for which the structure (or that of a very close homologous protein) has already been

experimentally determined. The remaining 10 proteins don’t have known structure and are

ascribed as hypothetical proteins in RefSeq37 database. During the structure modeling and

function prediction experiment of these proteins, no template proteins (except for solved protein

structures belonging to the Chlamydia genus) were excluded from the template library.

4.1.3 Detection of functional homologs

For identifying functional homologs of a query protein, its predicted 3D-structure is scanned

against two representative template libraries of experimentally determined protein structures

associated with (1) Enzyme Commission (EC) number; and (2) Gene Ontology (GO) terms. The

template proteins in these libraries are first scanned based on global structure similarity search

algorithm. In the following step, a local structure similarity refinement search is performed on

selected hits with the purpose of filtering out template proteins that do not share functional site

similarity with the query protein. During both global and local structure similarity search

(described below), template proteins in the database are scored against the query protein

structure using an innovative structure-sequence similarity measure, which is devised to capture

the functional homology between the query and the template protein. As we are using modeled

structures in this study, confidence score of functional annotation using predicted protein
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structure is scaled based on confidence score of structure modeling; in order to provide reliable

functional annotations using identified hits.

4.1.3.1 Global similarity search

In most cases, the function of a protein is dictated by both its structure as well as by its sequence.

Based on this tenet, we extend the popularly used TM-align38 algorithm to quickly search the

function libraries and identify template proteins that have both high structure similarity and

similar sequence profile as the query protein.

TM-align uses TM-score39 rotation matrix and dynamic programming to find the best

structural alignment between two protein structures. The main advantage of TM-align is that it

uses TM-score rotation matrix, over often-used RMSD matrix. TM-align is more sensitive to the

global topology of structure, because TM-score inherently down-weights large distances between

aligned Cα pairs compared to the smaller ones. On the other hand, RMSD weights all the

residues equally, and therefore local errors in the model (e.g. an incorrectly-oriented tail) will

result in a large RMSD value, even when the global topology of the two structures might be

similar. Moreover, TM-score accounts for both the structural similarity in the aligned region and

the alignment coverage in a single parameter, which is important for differentiating alignment

between single-to-single and single-to-multiple domain proteins.

In the modified algorithm, the initial seed alignments (gapless threading, secondary structure

match and the combination of the two) are the same as in the original TM-align program. In

addition to this, a new seed alignment based on profile-profile alignment of query and template

protein sequence has been implemented. These seed alignments are then refined further based on
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heuristic iterations of the Needleman-Wunsch dynamic programming40, where the score for

aligning ith residue of the query to the jth residue in the template is given by:
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where dij is the distance between Cα atoms of query and template, d0 is given by

8.11524.1 3
0  Ld and L is the length of the query protein. F(i,k) is the frequency of kth

amino acid at ith position of the multiple sequence alignment (MSA) of PSI-BLAST hits

obtained for the query sequence against the non redundant sequence database using an E-value

cutoff of 0.001. P(j,k) is the log-odds profile (Position Specific  Substitution Matrix) for the

template protein sequence for the kth amino acid at the jth position with values normalized

between 0 and 1.  is a step function for evaluating sequence identity between the amino-acid

pairs and equals to 1 when k(i) = k(j) and 0 otherwise. w1 (= 0.1) and w2 (= 0.9) are parameters

optimized on a benchmark set of 100 protein structures (both model and experimental) with

distinct functions (EC and GO terms) using an objective function to increase the number of

proteins with similar function in top 1/5/10 ranked hits. For a given pair of structures, the global

similarity (Gsim) to measure both topological similarity and sequence profile conservation is

given as:
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where L is the length of the query protein, Lali is the number of the aligned residue pairs and Sii is

the score obtained from Eq.4.1 for ith aligned residue pair.
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4.1.3.2 Local similarity search

The global similarity search described above can be used for recognizing protein pairs with

highly similar functions. However, some folds are highly promiscuous, especially when function

is analyzed using EC number vocabulary, because even closely related homologues can belong

to entirely different classes of enzymes16. In these cases, function can be predicted precisely only

by evaluating the similarity between constellations of active site residues required for the

catalysis. Moreover, in many cases local-3D functional motif remain conserved during the

evolution to maintain the function, even when the global similarity dwindles or become

undetectable. This begets a need for identifying the local structural similarity, which is

complimentary to the global search and also act as an additional filter for hits obtained using

global search, thus providing a more reliable way of annotating the function of the query

proteins. It needs to be mentioned that proteins can also share same function because of

convergent evolution of protein families (analogs). However, in this work we only focus on

predicting the function using distant evolutionary relatives (homologs).

The local similarity search for identifying functional sites in query structure is done using the

COFACTOR algorithm (discussed in last chapter), where the local similarity (Lsim) score for

evaluating similarity between query and template functional sites is defined as:
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where Nt represents the number of residues present in the active/binding site sphere of the

template, Nali is the number of aligned residue pairs, dii is the Cα distance between residue ith

aligned residues, d0 is the distance cutoff chosen to be 3.0 Å, Mii is the substitution scores

between ith aligned residues taken from BLOSUM62 matrix with values normalized between [0,
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1], in order to keep both the distance and mutation scores in Eq. 4.3 on the same scale.  The

highest Lsim encountered during the heuristic iterations is recorded for each candidate local 3D-

motif of the query. Finally, the motif with highest Lsim is selected for evaluating the local

similarity between the query and the template’s functional site and sequence similarity between

aligned residues of query and known functional site residues in template is recorded as SSBS.

4.1.4 Confidence score of functional annotations

In this study, since we have employed predicted 3D structures the quality of functional inference

relies on the quality of the structural models. Appraising the accuracy of the structure model in

the scoring scheme is necessary to reduce the number of false positive predictions. When the

native structure is unknown, the quality of the I-TASSER model can be estimated using C-

score41, which is defined as:
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where M is the multiplicity of structure decoys in the SPICKER cluster, Mtot is the total number

of decoys submitted for the SPICKER clustering, RMSD is the average RMSD of the clustered

decoys to the cluster centroids, Z(i) is the Z-score of the top threading alignment obtained from

ith server in LOMETS, Z0(i) is the Z-score cutoff to distinguish good and bad threading

alignments for the server, and N is the number of servers used in LOMETS. The C-score value is

typically in the range of [-5, 2], where a higher score reflects a model of better quality. To

normalize the range to [0, 1], we transform the C-score according to C-score=(C-score+5)/7. In a

large scale test of 500 non-homologous proteins, the correlation coefficient between C-score and

the TM-score of the first I-TASSER model is 0.9141.
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The confidence score of functional annotations (FC-scoreEC, FC-scoreGO) using any template

proteins with values ranging between [0, 1] is defined using an exponential function,

mathematically formulated as:

  ,1-
1

2scoreFC xe
 (4.5)

where x is an experienced scoring function to combine local and global similarities between

query and template proteins, defined as:

  .-scoreC simBSsim GSSLwx  (4.6)

Here C-score is the confidence score of predicted I-TASSER structure, Lsim and Gsim are

measures of local and global similarity between the query and the template, SSBS is the sequence

similarity of binding site residues, w is a scaling factor for local similarity, and  is the functional

similarity threshold. The values of w (=0.50) is the weight for local similarity and  (=0.70) is

the inflexion point of the exponential curve; both the values have been decided based on

benchmark training of 100 protein structures with annotated function (GO terms and EC

numbers).

4.1.5 Consensus Gene Ontology predictions

Template proteins in the GO library are mostly associated with multiple GO terms, describing

different aspects of biological and cellular functions. Simply transferring GO annotation based

on identified hits can be error prone, especially when the template proteins have additional

functional domains. Based on the assumption that each domain contributes independently to the

protein function, we reconcile the GO terms ascribed to the top ranking hits, such that the

consensus predictions identifies the intersection of function and provides specific annotation to

the query protein. For reconciling the GO annotations we make use of the hierarchical nature of
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Gene Ontology functions, and consider that when a template protein is annotated with a GO term,

all its ancestor GO terms are automatically ascribed. The following steps provide details of the

consensus approach and is adapted from the PIPA algorithm42.

1. For any query protein we first collect a set F of GO terms from the top N templates,

where each GO term . Each GO term is assigned a confidence score (GOscore),

given by the following equation
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where Nλ is the number of templates which are associated with the GO term λ, and N (=5)

is the total number of templates selected for find the concurrence of function.

2. Next, we score all ancestor GO terms of λ. The score for any ancestor GO term  is

scored as:
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where N & N0 are the number of leaf nodes under node  and the root node.

3. Subsequently, all GO-terms are sorted based on their depth in the Directed Acyclic Graph

(DAG) and GO-terms with GOscore >0.30 are predicted. Once a GO term is predicted its

ancestor GO-terms are automatically eliminated from the sorted list. This is because

ancestor GO-terms are automatically implied based on true-path rule of Gene Ontology,

which states that any gene associated with a GO term is also associated with the ancestors

GO-terms leading back to the ontology root. If this procedure does not yield any

confident GO-term prediction (GOscore <0.30), then the GO-terms are anyways ranked

based on their GOscore and top 10 GO term predictions are reported.

  F
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4.1.6 Template libraries

To represent the functional space, two independent template libraries of protein structures with

known biological function (EC number or GO terms) has been created. These libraries are freely

available from our website http://zhanglab.ccmb.med.umich.edu/COFACTOR/library.

EC template library: With the purpose of annotating enzyme function, a library of template

enzyme structures with annotated EC number(s) has been collected from PDB43 and their

corresponding EC number mapping using PDBSprotEC44. Template proteins which are also

enlisted in Catalytic Site Atlas (CSA)45 are marked as preferred templates because active site

residues are already known for these templates and they can be used for both local and global

structure similarity comparisons. Finally, redundant protein chains having the same enzyme

commission28 (EC) number and >90% sequence identity to other enzymes in the library are

excluded, while preferentially keeping the templates with known active sites, to reduce the

search space and eliminate biased predictions;. At the time of this work, the compiled enzyme

library contained 8392 protein chains with 223 unique first 3 digits of EC number and 1,947

unique 4-digit EC numbers.

GO template library: The gene ontology (GO) is currently the most effective approach for

machine-legible and automatic functional annotation. To this end, a second library of protein

chains that have an associated GO term has been created by downloading the structures from the

PDB along with the GO mapping taken from the Gene Ontology Annotation database

(http://www.ebi.ac.uk/GOA/) and SIFTS project (http://www.ebi.ac.uk/pdbe/docs/sifts/).

Redundant protein chains, annotated with same GO terms and >90% sequence identity to any
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other protein in the library, are excluded. Currently, this library contains 24,035 unique protein

chains associated with 13,757 unique GO terms.

4.1.6.1 Construction of ab-initio signature motifs for template proteins

Even though we preferentially keep templates with experimentally characterized functional sites

while constructing the library, only 72% templates in EC library and 42% templates in the GO

library are imputed with known active/binding sites. This can greatly limit the applicability of

the local approach similarity search to only those proteins for which templates with known

functional sites are identified.

We tackle this problem of template proteins with unknown functional sites by generating ab-

initio signature motifs for the template proteins that lack known functional site information. Here,

we summarize the procedure of identifying potential functional sites in template, which can

thereupon be used for generating local 3D-templates. Identification of potential functional site in

the template, although ab-initio, is still based on the prior knowledge that functional sites in

proteins are constellated by conserved residues, are solvent exposed for ligand binding and form

a concave pocket which in most cases is located towards the protein core i.e. away from the

surface. To identify residues that match the three aforementioned criterions, we first perform a

PSI-BLAST search against the non-redundant (NR) sequence database using the amino-acid

sequence of template protein. The identified hits and alignments are used for creating a multiple

sequence alignment (MSA), and Z-scoreJSD of Jensen–Shannon divergence (JSD) score is

calculated for every template residue i.

Template residues that are located towards the protein core are identified based on spatial Z-

scoreC is calculated based on residue centrality(C) 46 defined as:
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where Lt is the length of template protein and d(i,k) is the shortest distance between residue i and

k.

The accessibility of residue i for ligand binding is evaluated based on its solvent accessibility

SA(i), which is calculated using the DSSP47 program.

Finally, we select potential functional (PF) site residues based on criteria described in

Equation 4.10.
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All residues with PF(i)=1, are clustered together using an average spatial distance cutoff of

15Å. The clustered residues are ranked based on their cluster size and the top 5 clusters are

selected as potential functional sites. The local search procedure described above, constructs the

local 3D-fragments using clustered residues in these potential sites and the best local match is

used for evaluating the local similarity between query and template protein.

4.1.7 Assessment of protein function prediction

For the EC number predictions, we first evaluate the functional similarity between the template

proteins and query protein at different levels of Enzyme Commission nomenclature. A precision-

recall analysis is then performed for the predicted EC number using identified templates and by

varying their threshold of prediction confidence score. We consider a match between the first

three digits of EC number as true positive, because in most cases the last digit of Enzyme

Commission nomenclature represents only substrate specificity or serial number of enzyme.
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Gene Ontology predictions are evaluated by measuring semantic similarity (SS) between GO

terms and functional similarity between gene products48. Semantic similarity measures degree of

relatedness between the GO terms based on the DAG structure of Gene Ontology and

information content of the term. In this analysis, we used Wang et al.’s hybrid approach49 for

measuring SS, as it determines the SS between two GO terms based on their location in the GO

graph and the relation with their ancestor terms. Given this way of measuring SS between two

GO terms, we evaluate functional similarity (Fsim) of predicted GO terms

 mgogogogo 11312111 ...,,GO  with the annotated GO terms of query protein

 ngogogogo 22322212 ...,,GO  using the best match average score strategy49, which is defined

as :
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where ),(max GOgoSS represents the maximum SS between go and any of the terms in the set

GO. Both Fsim and SS range between 0 and 1.

4.2 Results

4.2.1 Overview of function predictions using COFACTOR

We provide an overview of the function prediction (EC numbers and GO terms) methodology

using two example proteins CT867 and CT043 taken from Chlamydia trachomatis serovar D

genome. We specifically select these two proteins, because although they are ascribed as

‘hypothetical protein’ in RefSeq database50, available experimental data aids in objective

assessment of the predicted functions using the previously described COFACTOR algorithm.
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Figure 4.1 EC number predictions for hypothetical chlamydial protein CT867 using I-TASSER model
and COFACTOR algorithm.

Function predictions for CT867: Both structure and function of CT867 is unknown. A simple

PSI-BLAST2 search through the NCBI non-redundant (nr) sequence database annotates it as

glycogen branching enzyme (EC No: 2.4.1.18) based on identified closest homolog with e-value

1e-107. All other identified homologs too have unknown functions. We modeled the tertiary

structure (Figure 4.1) of this protein using the automated I-TASSER pipeline and the model was

predicted with a confidence score (C-score) of -2.84, which indicates a low-resolution predicted

structure41 for this protein. Next, we scanned this model through two independent structure
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libraries annotated with EC number and GO terms using global structure alignment (see

Materials and methods), and the proteins in each library (templates) were ranked based on their

global similarity score (Gsim, Eq. 4.2) to the query model. Here, the global similarity score

measures both topological similarity and conservation of sequence profile. As the confidence

score of the predicted model is low (C-score < -1.5), top 40 scoring templates were selected from

both enzyme and GO template libraries. Using more number of templates helps to improve the

prediction coverage because structural inaccuracies in the model lower the sensitivity of global

structural alignment; as a result, proteins belonging to same protein family/superfamily might get

missed. All these templates were used in the next step of local refinement search

For EC number predictions, we first tried to collect functional motifs of these selected

templates from a pre-compiled library of known active site residues. For most (72%) proteins in

the current enzyme template library, active site residues are already known; for the rest, we

predicted 5 potential functional sites in the template protein, based on spatial clustering of

evolutionarily conserved residues in template protein, and used them for screening against the

query structure. Figure 4.1 shows the procedure of constructing signature motifs for template

protein 2jerD, as its active site was unknown. The predicted model of CT867 was scanned

through motifs gleaned from these functional sites using a local structural similarity search

procedure, which seeks to identify the optimal local sequence-structure match between the two

protein structures. Only 3 template proteins (PDB ids: 1euvA, 1th0A, 2bkrA) exhibited a

significant local match (Lsim > 1.0; Eq. 4.3) with query protein and all of them belong to Cysteine

endopeptidase family (EC No: 3.4.22.-). In the end, the template proteins were ranked based on

combined global and local similarity scores (FC-score; Eq. 4.5 & 4.6) and used to evaluate the

confidence score of function prediction. For CT867, all the three templates with good local
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match were ranked higher, while all the lower ranked template proteins belonged to different

enzyme classes. Also, the locally aligned residues in CT867 model with known active site

residues of the peptidases are identical (Figure 4.1), which further strengthens the prediction as

correct.

Similar to EC number, for GO terms prediction, functional motifs of the selected template

proteins were collected from known ligand binding sites or were predicted where required. Local

refinement search was then performed and the templates were ranked based on their combined

global-local similarity score. CT867 is a single domain protein and all the templates identified in

the GO library are peptidases with single domain. Identifying common function among these hits

is trivial, so we keep the discussion related to consensus GO term prediction for the next

presented example (CT043) described below. Nevertheless, the GO term predictions for CT867

are: Cysteine-type peptidase activity (GO:0008234), binding (GO:0005488) and proteolysis

(GO:0006508).

Experimental characterization of CT828 has shown that the protein possesses deubiquitinating

and deneddylating activity51. This is closely related to the best scoring template (PDB id:

1euvA), which is a yeast ULP1 protease catalyzing: (a) cleavage of SUMO to its mature form;

and (b) deconjugation of SUMO from target protein.

Function predictions for CT043: The second illustrative example is of CT043, which is also

ascribed as a hypothetical protein. However, a recent experimental study52 showed that CT043

encodes a T3SS chaperone that binds to the N-terminal region of the effector TARP53.

I-TASSER predicted the tertiary structure of this protein with a C-score of -1.03, which

suggests that the model may have a correct topology, but the intricate structural details might be

incorrect. Next, potential functional homologs of this protein were identified by performing a
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global structural similarity search through both EC and GO libraries and the template proteins

were ranked based on their global similarity score (Gsim). For CT043, since the model quality

was reliable, only top 20 scoring templates were selected and scanned using the local similarity

search procedure.

In the enzyme library, no template protein had significant global (Gsim > 0.7) or local match

(Lsim > 0.9) to the query structure. Therefore the confidence score of predicted EC numbers based

on both global and local similarity are close to random (FC-score < 0.07), and suggest that

CT043 is probably a non-enzymatic protein.

In the GO library, the CT043 model recognizes multiple template proteins with high global

similarity; most of these proteins function as Type III secretion chaperone in different gram-

negative pathogenic bacteria. However, none of these template protein structures are solved with

a bound ligand and therefore for local similarity comparisons functional sites were predicted.

The model finds significant local matches (Lsim >1.2) using these local 3D-motifs of template

proteins, indicating a similar constellation of conserved residues in both CT043 and these

template proteins, which may or may not be involved in ligand binding.

Each template protein in the GO library is annotated with multiple functions (GO terms) and

we could have adopted the simplest approach of transferring the function (GO terms) from the

top ranked hits, as we did for EC number predictions. However, unlike EC numbers, which

characterize only the catalytic domain of an enzyme, GO terms can have contributions from

other domains as well. Therefore a simple annotation transfer can be erroneous. Reconciling

consensus GO terms amongst the top hit is more appropriate. Also, when query protein is multi-

domain and no template protein with similar domain combination is present in the library,

identifying concurrence of function amongst the weak hits can still provide information about the
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common function contributed by similar domain (for example the frequently occurring PDZ

domain which is involved in protein binding).

Figure 4.2 Illustration of consensus GO term prediction for chlamydial protein CT043. Each box
represents a function (GO term). Red boxes represent rejected functions during consensus prediction and
colored dots beside each box represent a matched function, where the color corresponds to the template
protein from which the GO term was contributed.

In our benchmarking training experiment, we observed that the top5 scoring hits identified by

COFACTOR in the function library share the highest functional similarity (Fsim, Eq. 4.11) with

the query protein. Therefore top5 template proteins (PDB ids: 3epuA, 3kxyA, 1k3sA, 1xkpB,
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1jyoA) with highest global-local match were selected to identify the common function amongst

these hits. Figure 4.2 shows an illustration of the procedure to identify most frequently

represented and most likely functions for CT043 using these hits. Four of the five template

proteins are involved in pathogenesis and are present in the cytoplasm; while three of them are

involved in regulation of protein secretion. Outlier amongst these high scoring hits is 1xkpB,

which is a synN chaperone in Yersinia pestis and is present in both membrane and cytoplasm.

Consensus prediction therefore eliminated the membrane GO term (red box in Figure 4.2); while

all the other three GO terms, namely: pathogenesis (GO:0009405), regulation of protein

secretion (GO:0050708) and cytoplasm (GO:0005886) are retained by a voting procedure (see

section 4.1.5) and predicted with high confidence.

4.2.2 Function predictions in benchmarking experiment

4.2.2.1 Analysis of predicted EC numbers

We first analyze the EC number predictions using direct annotation (EC number) transfer from

the identified remote homologs. The prediction results are obtained on a benchmark set of 368

non-homologous enzymes. EC number predictions by COFACTOR use I-TASSER models

generated after removing template proteins with > 30% sequence identity to the target query

protein. As our experimental controls, we use state-of-the-art methods for homolog detection,

namely: profile-sequence alignment (PSI-BLAST2), profile-profile alignment (MUSTER34) and

HMM-HMM alignment (HHsearch35). All programs searched through the same template library

(EC library described in SI text) for predicting the function. To test the ability of different

approaches, we also filter out template proteins that have >30% sequence identity to the target

protein, because in this work the focus is only on function prediction using remote homologs.
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Figure 4.3 Performance comparisons for EC number prediction. (A) Histogram analysis of functional
inferences drawn for benchmarking enzymatic proteins at different level of Enzyme Commission number.
(B) Precision-Recall analysis for predicting first three digits of EC number.

Figure 4.3A shows the histogram comparison of EC number predictions generated by each

method using their first and best in top 5 hits. If we consider identity of first 3 digits of EC

number as a criteria to evaluate the correctness of prediction, functional annotation was

transferred correctly from the top hit of COFACTOR in 160 test cases, which is approximately

40%, 12% and 15% higher than the results obtained using the top hit of PSI-BLAST (123),

MUSTER (143) and HHsearch (139), respectively. If we leave alone the local similarity search,

and use results only from global search (COFACTORG), the prediction coverage is only slightly

(5%) worse (153 hits). This data suggests that by combining global structural similarity with

sequence and evolutionary profile (COFACTORG), we had already the upper bound of available

template proteins in the library that have similar global topology and function (EC number). For

the best in top 5 hits, COFACTOR still generates higher number (185) of correct predictions and

also shows the largest improvement (25 new correct predictions). For the control methods PSI-

BLAST, MUSTER and HHsearch, the best in top 5 hit provides correct functional inference for

142, 165 and 162 proteins, respectively; that are 30%, 12% and 14% lower than those obtained

using COFACTOR. COFACTORG on the other hand has 8% lower prediction coverage. Despite
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this improvement, overall coverage of the best prediction still appears to be low as the method

failed to identify correct enzyme commission numbers in nearly half of the test cases. We

analyze this by taking the best possible prediction from all the control methods and by running

COFACTOR using experimentally determined structure of the 368 test proteins. After removing

all template proteins with > 30% sequence identity to the query protein, as we did in this

benchmarking experiment, the maximum prediction coverage achieved is 55%. Thus, the

coverage of 50% obtained by COFACTOR using predicted protein structure represents a near-

optimum annotation using the available template library and truly reflects a real-world scenario.

Next, we plot the precision-recall graph (Figure 4.3B), to analyze the ability of each methods

score to identify correct function. In a precision-recall graph, an improved prediction method

would produce a curve closer to the top-right corner. Figure3B shows that predicted EC numbers

with higher score by all methods are more likely to be correct. Nevertheless, COFACTOR shows

a striking performance and maintains a high precision across full recall range. When homologs

are easily detectable by most methods (recall rate is < 0.3), COFACTOR consistently generates

predictions with precision > 0.90, which is much higher than all the control methods. This

improvement in precision is due to functional promiscuity in homologous proteins that can be

distinguished by COFACTOR, by evaluating both binding pocket similarity and similarity of

residue constellation involved in catalysis. This can be emphasized by analyzing the precision (<

0.9) of COFACTORG, which only uses global similarity, and fails to capture the functional

promiscuity of the fold. At a recall rate of 0.5, the precision of COFACTOR, HHsearch,

MUSTER and PSI-BLAST are 0.81, 0.73, 0.80 and 0.72 respectively. More importantly, for the

same precision of 0.73, the recall rates of COFACTOR, HHsearch, MUSTER and PSI-BLAST

are 0.72, 0.54, 0.71 and 0.44 respectively. This tells us that structure-based functional
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annotations are of greatest importance in the twilight zone where sequence based functional

annotation becomes difficult.

4.2.2.2 Analysis of predicted GO terms

Gene Ontology29 (GO) is a widely used vocabulary for describing three different taxonomies or

“aspects” of gene functions: molecular function (MF), biological process (BP) and cellular

component (CC). Each GO aspect is represented as a structured directed acyclic graph (DAG),

where nodes in the graph represent a GO term and describe a component of gene product

function, while the edges between the nodes are equivalent to the relationships (is-a or part-of)

between the GO terms. The GO terms are held in a form of functional hierarchy, where functions

that are more general are present on the top while functions that are more specific are further

down the graph.

Similar to EC number predictions, here we first assess the performance of different methods

to identify proteins with similar function in the same template library. Functional similarity

(Fsim; defined using Eq. 4.11) is evaluated based on annotated GO terms of query protein and

annotated GO terms for the identified template proteins. Table 4.1 shows the average Fsim

values for the predicted GO terms using the best and the best in top5 hit for the 337 tested

proteins by COFACTOR and other control methods. After removing close homologs from the

template library using a sequence identity cutoff of 30%, the average Fsim values of the top hit

identified by COFACTOR, COFACTORG, HHsearch, MUSTER and PSI-BLAST are 0.51, 0.48,

0.45, 0.49 and 0.32, respectively. While using the best template in top5, the average Fsim values

of all the methods significantly improve to 0.60, 0.58, 0.56, 0.59 and 0.37 respectively,

suggesting that all the methods had a difficulty in selecting the best template amongst the top hits .

We further investigate this for different aspects (MF, BP and CC) of GO term. As shown in the
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table, the average Fsim values for all the methods are highest for molecular function aspect,

followed by biological process and least with cellular component. Nevertheless, in all these

aspects COFACTOR has highest Fsim values and also in all the cases, the local similarity

comparisons helped in selecting functionally more similar template proteins.

Table 4.1. GO-term annotation coverage (Fsim) using identified hits by different approaches.

Overall Molecular function Biological Process Cellular component

Method Top Best Top Best Top Best Top Best

PSI-BLAST 0.32 0.37 0.42 0.47 0.34 0.40 0.28 0.32

MUSTER 0.49 0.59 0.55 0.64 0.47 0.55 0.41 0.48

HHsearch 0.45 0.56 0.52 0.62 0.45 0.52 0.40 0.48

COFACTORG 0.48 0.58 0.55 0.65 0.48 0.55 0.41 0.50

COFACTOR 0.51 0.60 0.59 0.67 0.49 0.56 0.42 0.51

Consensus GO term predictions

The general practice for GO term prediction is to identify evolutionary relatives and transfer the

GO terms. However, as we observed for CT043 (in Figure 4.2) even close homologs can have

discrete functions, therefore simply copying GO terms would propagate a lot of false positive

annotations. Finding common ancestral GO terms on the GO DAG are more likely to provide

correct annotation and would result in improved precision. However, this approach sacrifices a

lot of functional information, as more general GO terms would be predicted.

In COFACTOR, we first pool the annotated GO terms from top 5 templates and then assign

each GO term a confidence score equal to the average FC-score of the template proteins with

which these terms are associated (Eq. 4.7). We also propagate these confidence scores to the

ancestor GO terms (Eq. 4.8) and finally pick those terms with GOscore exceeding a certain
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threshold (GOscore > 0.3). Once a deep level GO term is selected, all its ancestor GO terms in

the DAG are progressively eliminated irrespective of their high GOscores. This procedure helps

to balance both precision and recall. Moreover in PDB, GO term annotations for many proteins

are incomplete, for example in Fig 4.2 template protein 1k3sA is only annotated for

pathogenesis. Therefore, taking a consensus from the identified hits would also improve the

coverage of GO term predictions.

Figure 4.4 GO annotations with and without the consensus approach are compared using precision recall
graph. When the consensus is not used, each data point is obtained by selecting a different cutoff of FC-
score, while for consensus predictions different cutoff of GOscore was used.

Figure 4.4 shows the precision-recall plot for functional annotation transfer using top 5 hits

identified by COFACTOR and using the consensus approach. To make sure that we don’t count

predictions that are higher up in the DAG and therefore less specific, we defined true positive hit

only when the predicted and annotated GO term of the query had a semantic similarity >0.5. The

graph clearly shows that consensus GOscore outperforms the simple annotation transfer with a
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significantly high precision and recall. For example, at the recall rate 0.53, GOscore has a

precision of 0.43, which is 48% higher than that by simple annotation transfer (29%). The results

clearly suggest that consensus approach can effectively identify the concurrence of function

among the selected hits to improve the precision of GO annotation.

4.2.3 Application to Chlamydia trachomatis proteome

Bacteria belonging to the Chlamydia genus are implicated in a large number of human diseases,

including those with ocular and genital tract manifestations. Important to this study, these

obligate intracellular organisms are phylogenetically distinct54 and diverged relatively early, over

a billion years ago55. Due to their characteristic developmental cycle that contains numerous

selective stages for successful propagation, the evolution of proteins and their divergence has

been severely constrained56. Furthermore, largely due to the sequestered nature of Chlamydia

(metabolically active forms are contained within a Chlamydia specific vacuole inside a

eukaryotic host cell), genetic exchange with other organisms has been limited. As a result of

these factors, accurate functional assignment of chlamydial proteins using primary sequence

homology has been limited.

To provide a practical assessment and expected application of the described method for

structure and function predictions, 17 proteins from C. trachomatis were analyzed. While there is

a relative paucity of structures available for chlamydial proteins, structure for seven proteins

(CT243, CT296, CT381, CT390, CT610, CT780 and CT828) had already been determined,

while the function has been experimentally characterized for five of these proteins. The structure

and function for all the 17 proteins was modeled after excluding known protein structures from

the same genus (Chlamydia) as the initial template. Figure 4.5 shows the predicted structures of
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these seven proteins with their predicted functional sites and evaluated structural similarity to

experimentally determined structure.

CT243 is a multi-domain protein (2-domains), with a N-terminal UDP binding domain (residue

1-97) and C-terminal domain (residues 98-252) that acts as a UDP-3-O-glucosamine N-

acyltransferase57; 58 (EC: 2.3.1.-) for biosynthesizing lipid poly-saccharides (LPS). The domain

boundaries can be easily recognized based on threading alignment and therefore we split this

protein into its individual domains. The C-terminal catalytic domain is modeled with a C-score

of −0.20 using I-TASSER. A search through the Enzyme can easily recognize H247 as the active

site residue and the correct function of this protein. It is noteworthy that UDP-N-

acetylglucosamine acyltransferase (PDB id: 2jf2) has a higher structural similarity score (TM-

score=0.88) than UDP-3-O-glucosamine N-acyltransferase (PDB Id: 3eho), even though both

templates possess the same catalytic residue. COFACTOR can differentiate between the function

of two proteins based on local similarity and preferentially rank 3eho as the closest functional

homolog in PDB library.

The crystal structure of CT296 was solved recently and it was shown that the ab initio I-

TASSER model was predicted with a Cα RMSD of 2.72 Å (for 101/137 residues) to the

experimentally determined form (PDB id: 3qh6A). Although both CT296 model and native

structure have a structural scaffold similar to non-heme Fe(II) 2-oxoglutarate enzymes, the

authors observed that key enzymatic residues were not conserved in CT296, suggesting a unique

biochemical process is likely associated with CT296 function. We used the same model and ran

COFACTOR predictions. The only reliable prediction was for the GO-term prediction for
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Figure 4.5 Benchmarking of structure and function prediction for chlamydial protein using I-TASSER
model and COFACTOR algorithm. All these seven proteins have been already solved in PDB.
COFACTOR identifies local matches between predicted model and template proteins in the library using
both known and predicted functional sites of template. These matched functional sites were used for
inferring the function and are shown in ball and stick.

oxidation-reduction process. Although none of the EC-number predictions are reliable they all

have 1.14.-.-, which also suggests that CT296 acts on paired donors, with incorporation or
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reduction of molecular oxygen. We further analyzed the functional site matches and found that

CT296 possesed a weak local similarity to di-iron binding site of these template proteins near

His18, I145 and can be used for further analysis on this protein.

CT381 is an arginine binding protein with LAO (Lysine-, Arginine-, Ornithine-) domain. In

our EC template library Cyclohexadienyl dehydratase (PDB id: 3kbr) has a very similar (TM-

score = 0.70) to the modeled structure of this protein. However, COFACTOR can distinguish

that the protein is non-enzymatic because both sequence profile and the local comparisons don’t

find a good match, and has low confidence score (FC-score <0.07) of EC number prediction.

Search within the GO library, retrieves multiple template proteins with this domain, suggesting

that this domain is more commonly utilized amongst non-enzymatic proteins. These template

proteins bind to a wide variety of charged amino acids: namely Arg, Gln, His and Ornithine and

are present in the periplasmic region. A consensus GO prediction can easily identify that all these

proteins have a common function of amino-acid binding, are transporters and are present in the

periplasmic space; and generate these predictions for CT381.

CT390 is II-diaminopimelate aminotransferase, which is used by Chlamydia to bypass three

enzymatic steps in usual lysine biosynthesis pathway59. COFACTOR can easily identify the

closest homolog in the PDB library (PDB id: 2z20) and can predict the correct EC number. Local

comparisons with the templates identified in the GO library reveal an identical match to PLP and

malate ion binding site and consensus GO term predictions suggest that CT390 can also bind

cooper ion. However, we did not find any close homolog crystallized with copper ion, suggesting

that this annotation for the template protein and CT390 might be incorrect.

The exact function of CT610 is still unknown, however the solution structure of CT610 (PDB

id: 1rcw) and experimental investigation has revealed that the protein modulates host cell
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apoptosis and has active site similar to methane mono-oxygenase hydrolase60. We

computationally generated a reliable structural model of this protein with C-score of 0.49 and

used it for both EC and GO term predictions. Although, the fold (heme-oxygenase) of this

protein is functionally promiscuous, COFACTOR identifies a near-perfect local match to TenA

homologs (PDB ids: 2rd3 and 2qcx) and generates high confidence prediction that CT610 act as

thiamine hydrolase (EC: 3.5.99.2) and is a transcriptional regulator. It is noteworthy that active

site residues for both these template proteins are unknown and COFACTOR used ab-initio

templates to find this local match and generate these predictions. The predicted GO term with

highest confidence also suggests that CT610 may possess thiaminase activity (GO:0050334).

While recent patent (Patent ID: 7736898) claims that thiamine and thiaminase genes can be used

for inducing apoptosis in vivo by reducing the level of thiamin in the cell, our predictions using

CT610 provides testable hypothesis for understanding the underlying mechanism of apoptosis

caused by this protein.

Experimental structure of CT780 from C. pneumoniae has been determined (PDB id: 2ju5)

and biochemical characterization has shown that this protein is a protein disulphide isomerase61.

We modeled the structure of CT780 from C.trachomatis without using this homologous structure

as template and the resultant model has a relatively lower confidence score (C-score = −1.04).

The reason for this low confidence structure prediction is because this protein has a large

threading unaligned N-terminal loop of 42 residues. During the structure modeling simulations,

this region possesses large conformational freedom and therefore the sampled conformations

remained diverged; thus lowering the structure density of the clusters and C-score of the

predicted model. Corresponding to the C-score of the model, the functional prediction score was

also low, although the best identified template protein (PDBid: 2bjx) has protein disulphide
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isomerase activity (EC: 5.3.4.1). Similar to the case of CT610, there was no known functional

site information available for the template protein and COFACTOR used ab-initio generated

signature fragments of template and found a good local match. Analysis of this match, reveals

that even though these matches were near the active site (Figure 4.5), none of the known active

site residues in CT780 locally aligned with the template fragments, suggesting that even though

these residues are spatially and evolutionarily conserved they might have a structural or other

functional role in this protein. Gene Ontology molecular function predictions (electron carrier

activity and protein disulphide oxidoreducatase activity) for this protein is also in accord with the

known function.

CT828 encodes the R2 subunit of ribonucleotide reductase (RNR), that is essential for

synthesizing deoxyribonucleotides for DNA replication and is virtually ubiquitous in cellular

organisms 62. All class I RNR enzymes have the same EC number (1.17.4.1), however CT828

forms a distinct subclass as it lacks a tyrosyl radical site which is required for catalysis. The

predicted EC number for CT828 using the I-TASSER model (C-score =0.61) finds top 5 enzyme

homologs with RNR activity and can be used for predicting the correct function. However, the

confidence score of prediction using top two templates (PDB ids: 1biq and 3ee4) is much higher.

A detailed analysis of the prediction scores reveals that these top two ranked templates have an

identical active site residue (F127 in CT828), while other templates (PDB ids: 2rcc, 1jku and

1h0n) have a tyrosine at the same position and therefore get lower scores. This example

illustrates that COFACTOR predictions can be highly specific if accurate active site residue

constellations are known for the template proteins. In combination, these observations

demonstrate the accuracy and ability of this method to predict protein structure and subsequent

function.
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To begin addressing the challenge of functional assignments for Chlamydial proteins and

establish a benchmark for future applications of this method for genome-wide functional

annotation, we modeled all the hypothetical proteins from the Chlamydia trachomatis genome.

Here, we only present results for 17 medium size proteins (7 with known structure and 10 are

hypothetical) for which COFACTOR provides high confidence functional annotations and serves

as a representative example from our genome-scale analysis. Table 4.2 provides a summary for

the predicted structure and function for all the 17 proteins undertaken in this study. Experimental

analyses for some of these proteins are already available and match with our predictions; for the

rest, the predicted active site and binding-site residues can be used as testable hypothesis for

further mutational analysis and better understanding of this organism.

Table 4.2 Predicted function for Chlamydia trachomatis ORFs using I-TASSER model and COFACTOR
algorithm.

Name Mod.
C-score

Detected
closest

homolog
in PDB

Seq.
Id

(%)

FN.
conf.
score

Predicted function using
COFACTOR Predicted functional residues

Annotated
function

OR (Ref)

Chlamydial proteins with known structure

CT243 -0.20 3eh0:A 19.5 0.35 UDP-3-O-glucosamine
acyltransferase H247

UDP-3-O-
glucosamine N-
acyltransferase

CT296 -2.43 2a1x:A 27.0 0.06 Phatanoyl-CoA 2-
hydroxylase H18,I145 Hypothetical

protein

CT381 -0.66 2y7i:A 25.7
0.93,
0.65,
0.93

Transporter activity,
Amino acid transport,

Outer membrane
bounded periplasmic

space

N41,T43,Y44,E48,F82,T99,
G100,M101,S102,R107,Q147,

T150,Y151,Q152,P189

Amino acid
transporter

CT390 0.91 2z20:A 42.0 0.44 LL-diaminopimelate
aminotransferase

G109,A110,K111,Y134,
C176,N180, D208,Y211,
S239,K242; Y77,N281

LL-
diaminopimelate
aminotransferase

CT610 0.49 2rd3:D 21.6 0.21 Pyrroloquinoline-
quinone synthase

Y47,H50,I51,F54,
Y141,F214

Pyrroloquinoline-
quinone

biosynthesis

CT780 -1.04 2bjx:A 20.7 0.99 Disulfide isomerase - Disulfide
isomerase

CT828 0.61 1biq:B 24.0 0.38 Ribonucleotide
reductase F127 Ribonucleotide

reductase
Chlamydial proteins with unknown structure and function

CT043 -1.05 3epu:A 18.6 0.77
0.67

Pathogenesis
Reg. of protein secretion

F13,L17,L19,P20,L32,
D35,Y54,I123,E124

Hypothetical
protein
Ref: 52
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CT047 0.46 1jr3:D 21.7
0.81;
0.71;
0.70

Protein binding; DNA-
directed polymerase activity;
DNA clamp loader activity

R218,F250 Hypothetical
protein

CT077 -0.25 3pnd:C 28.2
0.71;
0.71;
0.30

Thiamine biosynthetic
process; plasma-membrane;

Calcium binding; FAD
binding

M33,I35,R112,I117,K121,
L126,D170,K176,

R241,H245,D254,T286;
T174,D282,T286

Hypothetical
protein

CT263 0.36 1odi:A 22.4 0.29 Purine nucleoside
phosphorylase S160 Hypothetical

protein

CT309 -0.38 1r5z:A 19.9 0.15 V-type ATPase D118,F119 Hypothetical
protein

CT349 1.06 1ex2:A 31.6 0.69,
0.69

Nucleotide binding,
metal ion binding

S10,R14,D31,E34,
K54,K84 Maf-like protein

CT355 -1.38 3gpk:A 9.3 0.44 peptidyl-prolyl cis-trans
isomerase

V199,K203,S238,
S282,K285

Hypothetical
protein

CT373 -0.33 1n2m:C 20.0 0.22 Pyruvoyl-dependent
arginine decarboxylase E120 Hypothetical

protein

CT663 0.19 3epu:A 24.1 0.93
0.81

Pathogenesis,
regulation of protein

secretion
Y116,Y200 Hypothetical

protein

CT867 -2.84 1euv:A 16.2 0.10 ULP1 protease W92,H203,W204,
D220,C282

Hypothetical
protein51

Although functional annotation for a large fraction (68%) of the Chlamydia trachomatis ORFs

has been inferred using sequence based comparisons63, Table 2 for the first time provides many

new functional assignments using the predicted 3D structure. For example, CT043 has been

experimentally characterized to act as a molecular chaperone. Our analysis provided a molecular

three-dimensional structure for this protein, which is also a promising candidate for vaccine

design. COFACTOR predicts CT043 to be a virulence chaperone with high confidence because

ab-initio templates find a good local match between CT043 model and the template proteins.

However, delineating exact binding site residue based on these matches can be erroneous (as we

observed for CT780), therefore we filtered out these local matches by analyzing the protein-

protein interaction between homologous protein ExsC-ExsE (PDBid: 3kxyA) and found that

(F13, L17, L19, P20, L32, D35, Y54, I123 and E124) are likely to be important for peptide

binding and can be targeted in future functional studies on this protein.
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4.3 Conclusion

In this work, we describe a new approach for deducing the biological function (EC number and

GO terms) of protein molecules using predicted protein structures and global-local structural

match to solved structures with known function. A robust approach that can handle both

functional promiscuity of fold and also provide correct functional annotation for multi-domain

protein was presented.

Benchmarking experiment on a comprehensive benchmark set of 450 proteins annotated with

(EC) numbers and gene ontology (GO) terms shows significant advantages of the structure-based

function inference over conventional sequence-based predictions. The method outperforms

commonly used homology based approaches for functional inferences by generating predictions

with higher precision and recall, and with vast improvement in prediction coverage. For EC

number predictions, the method correctly predicts the function for 50% of the test proteins,

where the best possible annotation using the existing template library is nearly 55%. For GO

term prediction, the average functional similarity (Fsim) of molecular function was 0.67, which

was 43% better than most routinely used sequence based method (PSI-BLAST) for functional

inference.

As an illustrative application of the methodology for genome scale prediction, we first

benchmarked the predictions for the 7 chlamydial proteins with already known structures. For 5

of these proteins that have already been experimentally characterized, COFACTOR predictions

show a close agreement with known experimental annotations and for the other two proteins

local structural match by COFACTOR provides new functional insights beyond the sequence-

based annotations. We also present high confidence prediction results for 10 hypothetical
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proteins from Chlamydia trachomatics genome, which can be considered as testable hypothesis

for improving our understanding about this bacterium.

Although the accuracy of the predictions show modest dependency on the global quality of

structure predictions, the combination of the global and local structural searches help generate a

reasonable level of predictions across the entire range of proteins studied, including those with

low resolution structures. Overall, the data demonstrates great promise towards utilization of the

current method for automated, genome-wide structural and functional annotations.
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Chapter 5
Conclusion and Outlook
In this dissertation, we have presented three bioinformatics softwares that have significantly

improved the state-of-the-art computational techniques for structural and functional

characterization of protein molecules. The main parts of this work are briefly summarized below.

5.1Conclusions

5.1.1 Protein structure predictions using the I-TASSER server

Genome sequencing projects have ciphered millions of protein sequences, which require

knowledge of their structure and function to improve the understanding of their biological role.

Although experimental methods provide more detailed and reliable information for a small

fraction of these proteins, computational modeling is needed for the majority of protein

molecules that are experimentally uncharacterized. In chapter 2, we developed a hierarchical

approach for high-resolution modeling of protein structure using multiple threading alignment1

and replica-exchange monte-carlo simulations2. Given a protein sequence, a typical output from

the I-TASSER3; 4; 5; 6 includes secondary structure prediction, predicted solvent accessibility of

each residue, homologous template proteins detected by threading and structure alignments, up

to five full-length tertiary structural models, and structure-based functional annotations:

including Enzyme Commission (EC) numbers7 and Gene Ontology (GO)8 terms and functional

sites (active and ligand binding sites) in the protein. All the predictions are tagged with a

confidence score that signifies how accurate the predictions in the absence experimental data. To

facilitate the special requests of end users, we developed channels to accept user-specified inter-

residue distance and contact maps to interactively modify the structure modelling procedure; it

also allows users to specify any proteins as template, or to exclude any template proteins from
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the structure assembly simulations. The structural information could be collected by the users

based on experimental evidences or biological insights with the purpose of improving the quality

of I-TASSER predictions. The server was evaluated as the best method for protein structure and

function predictions in the recent community-wide CASP experiments

5.1.2 Detection of functional sites in protein using the COFACTOR algorithm

Proteins perform their functions by interacting with other molecules. However, structural details

for most of the protein-ligand interactions and the location of functional sites are unknown. In

chapter 3, we presented a new comparative approach (COFACTOR) to infer protein-ligand

binding site locations and interactions from known protein structures, based on an optimal

global-to-local structural alignment procedure. The method was tested in both benchmark and

blind tests, and has demonstrated significant improvements over the current state-of-the-art

methods. In a large-scale benchmark test on 501 proteins harbouring 200 drug-like and 382

natural ligands, the method successfully identified ligand-binding pocket locations for 67% of

apo receptors with an average distance error of 2 Å. The average accuracy of binding-residue

assignments using this algorithm is 33-112% higher than the two best-performing methods in the

field (FINDSITE9 and ConCavity10). A detailed analysis of the results obtained in the

benchmarking experiment highlighted that for 70% of the proteins with bound “natural” ligand,

the predicted ligand by COFACTOR shared a high chemical similarity to the bound ligand in the

experimentally determined structure, which suggests a potential application of the method for a

more elaborate functional elucidation of uncharacterized proteins. Successful predictions were

also observed for “drug-like” compounds, which open up the possibility for structure-based drug

design even for proteins with no available structural information. In the recent community-wide

CASP9 experiments, COFACTOR achieved a binding-site prediction accuracy of 72% and
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Matthews correlation coefficient of 69% in recognizing ligand-binding residues, for both metal

and non-metal ligands, and significantly outperformed all other state-of-the-art methods. The

above data demonstrates the power of combining global-local structure search procedure for

inferring function using predicted protein structures.

5.1.3 Prediction of EC number and Gene Ontology terms using COFACTOR

Although the definition of protein is context dependent, in chapter 4 we sought to improve the

COFACTOR approach and predict the function of protein molecules. We use two standard

vocabularies for describing the function, namely Gene Ontology and EC number. We added two

new features to COFACTOR: first, a new global search algorithm was developed which

evaluates both topological similarity and conservation of sequence profile; and second, we

developed a method for constructing local 3D-signature motifs of template proteins that lack

known functional sites. This allowed us to perform query-template local structural similarity

comparisons for all template proteins. Benchmarking experiment on 450 non-homologous and

functionally diverse proteins showed that the first three digits of EC numbers can be correctly

assigned for 50% of the test proteins, where the best possible annotation using the existing

template library is nearly 55%. For GO term prediction, the average functional similarity (Fsim)

of molecular function was 0.67, which was 43% better than routinely used sequence based

method for functional inference. We also showed that by identifying the concurrence of function

among the top5 hits, COFACTOR can generates predictions with 48% higher precision than by

simply transferring the annotation from the identified hits. To explore the applicability of the

method, we applied the method to a subset of ORFs from Chlamydia trachomatis and the

function annotations suggest new insights into this phylogentically distinct bacterium.
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5.2Outlook and future directions

5.2.1 Structure modeling using I-TASSER

The automated I-TASSER pipeline for structure prediction described in this work performs very

well for most proteins. Although the reassembly of structural fragments excised from the

threading alignments often results in significantly improved models, the quality of final models

is essentially still dependent on identified threading templates. In general, I-TASSER works very

well when appropriate template proteins are detected, while ab initio folding (e.g. QUARK11,

ROSETTA12) generates better models when there is a lack of good templates. However, correct

determination of target type (TBM or FM) is critical for choosing the appropriate methodology

for structure modeling, especially in the weak-homology modeling region, where reasonable

templates are available but their threading alignment scores are low. During CASP9 experiments,

we observed that combining threading alignment score (Z-score) and structural similarity score

(i.e. average pair-wise TM-score) between the templates identified by different threading

programs provides a more accurate way for classifying the targets.13 A more detailed study is

needed to parameterize the weights of these measures and add new rules that can aid in

improving the coverage of accurate protein structure modeling.

Domain splitting is another long-standing issue. I-TASSER currently uses threading-

alignment to automatically determine the domain boundaries and splits them into individual

domains. Although analysis of threading alignment to identify domain boundaries is a powerful

method, for the extremely difficult targets, iterative threading might become necessary. For

example in CASP9, T0529 was one such example, where the I-TASSER server (as “Zhang

server”) infers incorrect domain boundary because most of the LOMETS programs generate

weak alignments for the entire query sequence.
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Figure 5.1 Example of structure modeling for T0529-D2 by automated I-TASSER server as “Zhang-
Server” (Left) and human group as “Zhang” (Right). Models (thick backbone) are superimposed on the
native structure (thin backbone) with blue to red running from N- to C-terminal.

In the human prediction, region 378L-569L (T0529-D2) emerged as an independent domain

with the alignments of a higher confident score in the second round of LOMETS when threading

was run on the roughly split sequence based on the first round; this eventually results in the

correct detection of the C-terminal domain, a template-based domain target.

Model selection is another classic issue. I-TASSER has the advantage in refining the models

that are on average significantly better than the initial threading templates; mainly attributed to

the use of consensus spatial restraints collected from multiple templates. However, I-TASSER

sometimes fails to select the best model as the first model, when only minority of threading

programs detect the best template and the majority of the threading alignments consistently hit an

incorrect template. Here, the second condition is essential for I-TASSER’s failure in selecting

the best template, while it was observed that I-TASSER could often pick up the best template, if

the templates by the majority of the threading programs are diverged. When the majority of the
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threading programs hit a common (incorrect or second best) template, the consensus restraints

can be too strong and distract the template selection of the I-TASSER modeling.

Figure 5.2 Crystal structure of T0629-D2 which forms the needle domain of bacteriophage T4 long tail
fiber protein . Iron ions are represented as yellow balls. The histidine doublets coordinating the iron ions
are shown in sticks. This figure has been taken from Bartual et al.14

Several proteins are solved in their quaternary structure form. For example in CASP9, T0629-

D2 was a long tail fiber protein from bacteriophage T4, with three identical protein chains

intertwined together to form an elongated six-stranded antiparallel beta-strand structure. The core

of this structure is stabilized by the alternate hydrophilic and hydrophobic regions, where the

hydrophilic residues form coordination site for seven iron ions. All the structure modeling

methods failed to generate a reasonable structure for this domain, highlighting the need to extend

the current tertiary structure modeling method for quaternary structure modeling, to model these

complex protein structures.

5.2.2 Function prediction using COFACTOR

During the benchmarking experiments of COFACTOR (Chapter 3), we observed that the

algorithm can identify the constellation of functional residues with very high accuracy. However

like I-TASSER, the success of COFACTOR is also template library dependent. In chapter 4, we

tried to overcome this problem by predicting functional sites of template and screening them

against the query structure, to identify the best local match. Although this approach helps to

identify remote homologs with similar function, because homologous proteins still share similar



125

spatially located evolutionary conserved residues, the Matthew’s correlation coefficient (MCC)

for predicting known ligand binding site residues is ~30%. We constructed these ab-initio local

signature motifs for the template protein using very simple rules, as observed in known

functional sites. Adding new features using machine-learning methods like SVM would likely

improved the binding site prediction even in the absence of homologous co-crystallized protein-

ligand complexes.

Another important aspect is the curation of already known protein-ligand complexes in PDB

library. Development of automated machine learning methods or a discriminatory function that

can distinguish “real ligand” and “crystallization artifacts” would remove many false positive

predictions. Finally, due to the fact that definition of protein “function” is context dependent,

different research groups have primarily focused on different aspects of protein function and

compiled the structure-function libraries independently. This leads to technical difficulties for

COFACTOR, which can in principle predict all three aspects of functions using the same

common procedure using a universal approach. Unfortunately, since the libraries are not

integrated, COFACTOR needs to separately search through three different libraries to accurately

predict all three aspects. Hypothetically however, since the PDB already represents a common

universal set, creation of an integrated library encompassing all three aspects is technically

possible.

Many proteins perform their physiological function by interaction with DNA and/or RNA,

and constitute a very important aspect of biological function. During this study, we mainly

focused on methodological development of COFACTOR and testing it to predict small molecule

binding sites and enzyme active sites. The same approach was never applied to identify nucleic

acid binding site. Extending the COFACTOR algorithm towards accurately predicting nucleic



126

acid binding sites represents a critical advancement, which can have great significance in the

field.

One of the technical drawbacks of the COFACTOR algorithm is that the search engine is

based on Needleman Wunsch dynamic programming algorithm15. The efficacy of the search is

therefore dependent on the conservation of sequence order in the query and the template-binding

site. While in a majority of cases this may be true, proteins can share similar binding site because

of convergent evolution. Thus, it is imperative to add sequence order independent search engines

like geometric hashing to further improve the COFACTOR algorithm.

Nevertheless, even in the current form all these developed softwares can be used for genome

scale applications and improve our understanding of the bioverse.
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