1,137 research outputs found

    Influence of petrographic textures on the shapes of impact experiment fine fragments measuring several tens of microns: Comparison with Itokawa regolith particles

    Get PDF
    In 2010, fine regolith particles on asteroid Itokawa were recovered by the Hayabusa mission. The three-dimensional microstructure of 48 Itokawa particles smaller than 120 µm was examined in previous studies. The shape distribution of Itokawa particles is distributed around the mean values of the axial ratio 2:√2:1, which is similar to laboratory impact fragments larger than several mm created in catastrophic disruptions. Thus, the Itokawa particles are considered to be impact fragments on the asteroid's surface. However, there have never been any laboratory impact experiments investigating the shapes of fine fragments smaller than 120 µm, and little is known about the relation between the shapes of fine fragments and the petrographic textures within those fragments. In this study, in order to investigate the relation between the petrographic textures and the shapes of fine fragments by impacts, the shapes of 2163 fine fragments smaller than 120 µm are examined by synchrotron radiation-based microtomography at SPring-8. Most samples are fine fragments from basalt targets, obtained in previous laboratory impact experiments by Michikami et al. (2016). Moreover, two impacts into L5 chondrite targets were carried out and the shapes of their fine fragments are examined for comparison. The results show that the shape distributions of fine fragments in basalt targets are similar regardless of impact energy per target mass (in contract to the shape distribution of relatively large fragments, which are affected by impact energy), and are similar to those in L5 chondrite targets and Itokawa regolith particles. The physical process producing these fine fragments would be due to multiple rarefaction waves in the target. Besides, the petrographic textures do not significantly affect the shapes of fine fragments in our experiments. On the other hand, according to Molaro et al. (2015), the shapes of the fragments produced by thermal fatigue by the day-night temperature cycles on the asteroid surface are influenced by the petrographic textures. Therefore, we conclude that the Itokawa particles are not the products of thermal fatigue but impact fragments on the asteroid surface

    Evaporation experiments of metallic iron in vacuum

    Get PDF
    Evaporation experiments were carried out to examine evaporation kinetics of metallic iron, one of the important materials forming terrestrial planets and meteorites. Platelets of pure metallic iron were heated at temperatures ranging from 1075 to 1312℃ under vacuum (10^ to 10^ Torr) for 0.5 to 96 hrs. The evaporation proceeds by forming evaporation steps, although small wustite crystals were formed on the surfaces by partial oxidation of iron under vacuum. Amounts of evaporated iron estimated from mass loss of experimental charges increased with time at constant temperatures, showing a linear rate law. The evaporation rates, j, can be represented by ln j=22.21±2.29[mol m^s^]-390.6±29.2[kJ mol^]/RT. The evaporation coefficients, α_v, were obtained by comparing the experimental results with calculated rates using the Hertz-Knudsen equation. The value of α_v is close to unity if effects of partial oxidation are taken into consideration. The present results give basic information for discussing chemical evolution of the primordial solar nebula

    Fe-Mg heteorogeneity in the low-Ca pyroxenes during metamorphism of the ordinary chondrites

    Get PDF
    Pyroxenes in nine ordinary chondrites, ALH-764 (LL3), ALH-77214 (L3.4), ALH-77015 (L3.5), Yamato-74191 (L3.6), Hedjaz (L3.7), ALH-77304 (LL3.8), ALH-78084 (H3.9), Yamato-75097 (L4) and ALH-77230 (L4), were examined by an optical microscope, a scanning electron microscope with a back-scattered electron image technique, and an X-ray microprobe analyzer. Characteristic textures due to alternating lamellae of Fe-rich and Fe-poor compositions have been found in the low-Ca pyroxenes in the chondrites irrespective of their chemical groups, H, L and LL. As far as the author knows, this is the first observation of such lamellae textures in the pyroxenes. These textures are common and remarkable in the higher subtypes of type 3 chondrites (L3.6,L3.7,LL3.8 and H3.9), while they are rare in lower subtypes (<3.5) and type 4 chondrites. These textures are considered to have been formed in the Fe-Mg homogenization process of the ordinary chondrites during metamorphism

    Two kinds of “space weathering process” on the surface of asteroid Itokawa.

    Get PDF
    第3回極域科学シンポジウム/第35回南極隕石シンポジウム 11月30日(金) 国立国語研究所 2階講

    Petrological and geochemical study of the Yamato-74359 and Yamato-74360 achondrites

    Get PDF
    Two Antarctic achondrites, Yamato (Y)-74359 and Y-74360,are very similar in bulk chemical compositions to the silicate portions of H chondrites, but the siderophile elements are extremely depleted in comparison to those of H chondrites. They consist of olivine, pyroxene and cryptocrystalline feldspar with minor amounts of chromite, kamacite, and troilite, and the chemical compositions of the constituent minerals are similar to those in H chondrites. Taking into consideration that the two achondrites have oxygen isotopic compositions typical of H chondrites, they were produced from H chondrites or the precursors of H chondrites. Chondrules are not observed, and the texture of the two achondrites is similar to one another, although Y-74360 is coarser-grained than Y-74359. Olivine occurs as euhedral or subhedral grains, mostly smaller than 100 microns in diameter, and they show slight chemical zoning, from magnesian cores (Fo_) to ferroan rims (Fo_). Orthopyroxene occurs as euhedral grains, larger than olivine grains, and also shows slight chemical zoning, from Ca-poorer magnesian cores to Ca-richer ferroan rims. Clinopyroxene occurs as rims of orthopyroxenes and shows remarkable chemical zoning continuously from pigeonitic interiors to augitic rims. Cryptocrystalline feldspar occurs in interstitial spaces between olivine and/or pyroxene, and seems to have crystallized in interstitial liquids in a rapid cooling condition. The cryptocrystalline feldspars in Y-74359 are chemically heterogeneous, classified into three groups, albite (An_Ab_Or_), anorthoclase (An_Ab_Or_), and intermediate alkali feldspar (An_Ab_Or_), and occur in different portions of the thin section. The two achondrites seem to have formed by partial melting from heterogeneous silicate precursors of unequilibrated H chondrites

    Evaporation of Fe and FeS dust in the active stage of the primordial solar nebula, and Fe/S fractionation

    Get PDF
    The evaporation kinetics of troilite and metallic iron was applied to evaporation of dust particles moving toward the protosun in the turbulent solar nebula. In the calculations, it was assumed that dust particles do not grow by collision, evaporated gas and residual dust are not separated, and dust particles move only radially along the midplane or the surface of the nebula. It was found that evaporation of metallic iron would occur almost in equilibrium both along the midplane and the surface. Troilite could survive to higher temperature than the equilibrium evaporation temperature due to its evaporation kinetics. However, the kinetic effects are not so large, and the incongruent evaporation of troilite is also regarded to occur roughly in equilibrium. The timescales for evaporation of metallic iron and troilite were compared with the timescales for drifts along r-and z-directions and that for coagulation to understand general aspects of the effect of evaporation kinetics. Since the temperature of the surface is lower than that of the midplane, dust particle at the surface can get closer to the sun than those at the midplane. This can cause Fe/S fractionation in a wide range of the nebula if effective solid-gas separation occurred

    Antarctic primitive achondrites Yamato-74025, -75300, and -75305:Their mineralogy, thermal history and the relevance to winonaite

    Get PDF
    Three Antarctic primitive achondrites, Yamato (Y)-74025,-75300,and -75305 were mineralogically and chemically studied. They consist of anhedral to subhedral silicate and opaque minerals. The major constituent minerals are typical of equilibrated ordinary chondrites. However, they do not have any relic of chondrule, and the presence of various accessory minerals, such as K-feldspar, schreibersite, daubreelite, phosphate, Nb-bearing rutile, and magnesiochromite, characterizes these meteorites. Y-75305 has a composite grain containing Cu, Mn, and S, probably consisting of alabandite, an unknown Mn-bearing Cu-sulfide, and digenite. Y-74025 has a REE pattern typical of chondrite. Siderophile elements in Y-74025 are depleted relative to Cl chondrites, which is consistent with poor abundance of Fe-Ni metal in Y-74025. Holocrystalline texture, homogeneous mineral compositions, and high equilibration temperatures for pyroxenes, suggest that these primitive achondrites experienced high-temperature metamorphism. Mineralogical and chemical characteristics suggest that they resemble Winona-like meteorites (winonaites). The compositions of pyroxene and olivine, and accessory minerals suggest that winonaites formed under an intermediate redox condition between E-chondrites and Acapulco-like primitive achondrites. The abundance of troilite and Fe-Ni metal varies widely. The metal-sulfide fractions of winonaites probably melted and fractionated, although silicate fractions of winonaites do not have any evidence for melting

    High resolution X-ray computed tomographic (CT) images of chondrites and a chondrule

    Get PDF
    In order to study internal textures of meteorites, images were obtained by X-ray computer tomography (CT). This combined high resolution X-ray radiography and computer tomography system belongs to the so-called third generation type with a micro-focus X-ray source and a linear CCD detector with 2048 elements. This allows a spacial resolution of a few μm in the images. Samples examined include the Moorabie meteorite (L3), Allende meteorite (CV3), and a chondrule removed from Allende meteorite. In images, Fe-Ni alloy, troilite, and silicates can be distinguished clearly, and chondrules can be resolved from their Fe-rich rims in Moorabie meteorite. In Allende Fe-Ni alloy, pentlandite, and silicates can be distinguished, and chondrules, CAI\u27s, and matrix can be recognized. Many euhedral crystals, probably olivine and/or pyroxene, were identified in a chondrule, suggesting that the chondrule has a porphyritic texture. In addition to minerals or their assemblages, holes can be identified by the X-ray CT method and were found in chondrules in Allende

    An electron microscopic study of gas condensates in the system Mg-Si-O-H

    Get PDF
    Condensates of MgSiO_3 and SiO_2 from a gas formed by evaporation of enstatite at an H_2 pressure of 4.4×10^ bar and a temperature of 1525℃ by B. O. MYSEN and I. KUSHIRO (Am. Mineral. (in press), 1988) and I. KUSHIRO and B. O. MYSEN (Advances in Physical Geochemistry, New York, Springer (in press), 1988) were investigated with an analytical transmission electron microscope (ATEM), a scanning electron microscope (SEM) and an electron probe microanalyzer (EPMA). With decreasing temperature at an approximately constant total pressure the Mg/(Mg+Si) atomic ratio of the condensate (mixture of MgSiO_3 and SiO_2 polymorphs) decreases first, then increases, and finally reaches a constant value. This compositional change of the condensate is inconsistent with the equilibrium condensation model. The TEM studies suggest that metastable condensation of coesite and probably of protoenstatite and cristobalite took place. Coesite probably condensed by heterogeneous nucleation on protoenstatite. Fibrous quartz was also formed by heterogeneous nucleation on molybdenum fibers which condensed from a molybdenum vapor by a partial evaporation of a Knudsen cell used in the experiment. Heterogeneous nucleation might have played an important role in condensation process in the solar nebula. The texture of the experimental clinopyroxene condensate is different from that in interplanetary dust particles (J. P. BRADLEY et al., Nature, 301,473,1983)
    corecore