447 research outputs found

    A survey of variants and extensions of the resource-constrained project scheduling problem

    Get PDF
    The resource-constrained project scheduling problem (RCPSP) consists of activities that must be scheduled subject to precedence and resource constraints such that the makespan is minimized. It has become a well-known standard problem in the context of project scheduling which has attracted numerous researchers who developed both exact and heuristic scheduling procedures. However, it is a rather basic model with assumptions that are too restrictive for many practical applications. Consequently, various extensions of the basic RCPSP have been developed. This paper gives an overview over these extensions. The extensions are classified according to the structure of the RCPSP. We summarize generalizations of the activity concept, of the precedence relations and of the resource constraints. Alternative objectives and approaches for scheduling multiple projects are discussed as well. In addition to popular variants and extensions such as multiple modes, minimal and maximal time lags, and net present value-based objectives, the paper also provides a survey of many less known concepts. --project scheduling,modeling,resource constraints,temporal constraints,networks

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    A single-machine scheduling problem with multiple unavailability constraints: A mathematical model and an enhanced variable neighborhood search approach

    Get PDF
    AbstractThis research focuses on a scheduling problem with multiple unavailability periods and distinct due dates. The objective is to minimize the sum of maximum earliness and tardiness of jobs. In order to optimize the problem exactly a mathematical model is proposed. However due to computational difficulties for large instances of the considered problem a modified variable neighborhood search (VNS) is developed. In basic VNS, the searching process to achieve to global optimum or near global optimum solution is totally random, and it is known as one of the weaknesses of this algorithm. To tackle this weakness, a VNS algorithm is combined with a knowledge module. In the proposed VNS, knowledge module extracts the knowledge of good solution and save them in memory and feed it back to the algorithm during the search process. Computational results show that the proposed algorithm is efficient and effective

    Single-machine scheduling with stepwise tardiness costs and release times

    Get PDF
    We study a scheduling problem that belongs to the yard operations component of the railroad planning problems, namely the hump sequencing problem. The scheduling problem is characterized as a single-machine problem with stepwise tardiness cost objectives. This is a new scheduling criterion which is also relevant in the context of traditional machine scheduling problems. We produce complexity results that characterize some cases of the problem as pseudo-polynomially solvable. For the difficult-to-solve cases of the problem, we develop mathematical programming formulations, and propose heuristic algorithms. We test the formulations and heuristic algorithms on randomly generated single-machine scheduling problems and real-life datasets for the hump sequencing problem. Our experiments show promising results for both sets of problems

    A multistage graph-based procedure for solving a just-in-time flexible job-shop scheduling problem with machine and time-dependent processing costs

    Get PDF
    This paper deals with a new flexible job-shop scheduling problem in which the objective function to be minimised is the sum of the earliness and tardiness costs of the jobs and the costs of the operations required to perform the jobs, the latter depending on the machine and the time interval in which they are performed (as happens in many countries with the costs of electric power or those of manpower). We formalise the problem with a mathematical model and we propose a heuristic procedure that is based primarily on constructing a multistage graph and finding in it the shortest path from the source to the sink. We also describe the generation of the data-set used in an extensive computational experiment and expose and analyse the obtained results.Peer ReviewedPostprint (author's final draft

    Exact and Heuristic Algorithms for the Job Shop Scheduling Problem with Earliness and Tardiness Over a Common Due Date

    Get PDF
    Scheduling has turned out to be a fundamental activity for both production and service organizations. As competitive markets emerge, Just-In-Time (JIT) production has obtained more importance as a way of rapidly responding to continuously changing market forces. Due to their realistic assumptions, job shop production environments have gained much research effort among scheduling researchers. This research develops exact and heuristic methods and algorithms to solve the job shop scheduling problem when the objective is to minimize both earliness and tardiness costs over a common due date. The objective function of minimizing earliness and tardiness costs captures the essence of the JIT approach in job shops. A dynamic programming procedure is developed to solve smaller instances of the problem, and a Multi-Agent Systems approach is developed and implemented to solve the problem for larger instances since this problem is known to be NP-Hard in a strong sense. A combinational auction-based approach using a Mixed-Integer Linear Programming (MILP) model to construct and evaluate the bids is proposed. The results showed that the proposed combinational auction-based algorithm is able to find optimal solutions for problems that are balanced in processing times across machines. A price discrimination process is successfully implemented to deal with unbalanced problems. The exact and heuristic procedures developed in this research are the first steps to create a structured approach to handle this problem and as a result, a set of benchmark problems will be available to the scheduling research community

    Hybrid Genetic Bees Algorithm applied to Single Machine Scheduling with Earliness and Tardiness Penalties

    Get PDF
    This paper presents a hybrid Genetic-Bees Algorithm based optimised solution for the single machine scheduling problem. The enhancement of the Bees Algorithm (BA) is conducted using the Genetic Algorithm's (GA's) operators during the global search stage. The proposed enhancement aims to increase the global search capability of the BA gradually with new additions. Although the BA has very successful implementations on various type of optimisation problems, it has found that the algorithm suffers from weak global search ability which increases the computational complexities on NP-hard type optimisation problems e.g. combinatorial/permutational type optimisation problems. This weakness occurs due to using a simple global random search operation during the search process. To reinforce the global search process in the BA, the proposed enhancement is utilised to increase exploration capability by expanding the number of fittest solutions through the genetical variations of promising solutions. The hybridisation process is realised by including two strategies into the basic BA, named as â\u80\u9creinforced global searchâ\u80\u9d and â\u80\u9cjumping functionâ\u80\u9d strategies. The reinforced global search strategy is the first stage of the hybridisation process and contains the mutation operator of the GA. The second strategy, jumping function strategy, consists of four GA operators as single point crossover, multipoint crossover, mutation and randomisation. To demonstrate the strength of the proposed solution, several experiments were carried out on 280 well-known single machine benchmark instances, and the results are presented by comparing to other well-known heuristic algorithms. According to the experiments, the proposed enhancements provides better capability to basic BA to jump from local minima, and GBA performed better compared to BA in terms of convergence and the quality of results. The convergence time reduced about 60% with about 30% better results for highly constrained jobs

    Random Keys Genetic Algorithms Scheduling and Rescheduling Systems for Common Production Systems

    Get PDF
    The majority of scheduling research deals with problems in specific production environments with specific objective functions. However, in many cases, more than one problem type and/or objective function exists, resulting in the need for a more generic and flexible system to generate schedules. Furthermore, most of the published scheduling research focuses on creating an optimal or near optimal initial schedule during the planning phase. However, after production processes start, circumstances like machine breakdowns, urgent jobs, and other unplanned events may render the schedule suboptimal, obsolete or even infeasible resulting in a rescheduling problem, which is typically also addressed for a specific production environment, constraints, and objective functions. This dissertation introduces a generic framework consisting of models and algorithms based on Random Keys Genetic Algorithms (RKGA) to handle both the scheduling and rescheduling problems in the most common production environments and for various types of objective functions. The Scheduling system produces predictive (initial) schedules for environments including single machines, flow shops, job shops and parallel machine production systems to optimize regular objective functions such as the Makespan and the Total Tardiness as well as non-regular objective functions such as the Total Earliness and Tardiness. To deal with the rescheduling problem, and using as a basis the same RKGA, a reactive Rescheduling system capable of repairing initial schedules after the occurrence of unexpected events is introduced. The reactive Rescheduling system was designed not only to optimize regular and non-regular objective functions but also to minimize the instability, a very important aspect in rescheduling to avoid shop chaos due to disruptions. Minimizing both schedule inefficiency and instability, however, turns the problem into a multi-objective optimization problem, which is even more difficult to solve. The computational experiments for the predictive model show that it is able to produce optimal or near optimal schedules to benchmark problems for different production environments and objective functions. Additional computational experiments conducted to test the reactive Rescheduling system under two types of unexpected events, machine breakdowns and the arrival of a rush job, show that the proposed framework and algorithms are robust in handling various problem types and computationally reasonable

    Scheduling Single-Machine Problem Oriented by Just-In-Time Principles - A Case Study

    Get PDF
    Developments in advanced autonomous production resources have increased the interest in the Single-Machine Scheduling Problem (SMSP). Until now, researchers used SMSP with little to no practical application in industry, but with the introduction of multi-purpose machines, able of executing an entire task, such as 3D Printers, replacing extensive production chains, single-machine problems are becoming a central point of interest in real-world scheduling. In this paper we study how simple, easy to implement, Just-in-Time (JIT) based, constructive heuristics, can be used to optimize customer and enterprise oriented performance measures. Customer oriented performance measures are mainly related to the accomplishment of due dates while enterprise-oriented ones typically consider other time-oriented measures.The authors wish to acknowledge the support of the Fundação para a Ciência e Tecnologia (FCT), Portugal, through the grant “Projeto Estratégico – UI 252 – 2011–2012” reference PEst-OE/EME/UI0252/2011 and FCOMP-01-0124FEDER-PEst-OE/EEI/UI0760/2014info:eu-repo/semantics/publishedVersio
    corecore