
Old Dominion University
ODU Digital Commons
Engineering Management & Systems Engineering
Theses & Dissertations Engineering Management & Systems Engineering

Spring 2011

Random Keys Genetic Algorithms Scheduling and
Rescheduling Systems for Common Production
Systems
Elkin Rodriguez-Velasquez
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/emse_etds

Part of the Artificial Intelligence and Robotics Commons, and the Industrial Engineering
Commons

This Dissertation is brought to you for free and open access by the Engineering Management & Systems Engineering at ODU Digital Commons. It has
been accepted for inclusion in Engineering Management & Systems Engineering Theses & Dissertations by an authorized administrator of ODU
Digital Commons. For more information, please contact digitalcommons@odu.edu.

Recommended Citation
Rodriguez-Velasquez, Elkin. "Random Keys Genetic Algorithms Scheduling and Rescheduling Systems for Common Production
Systems" (2011). Doctor of Philosophy (PhD), dissertation, Engineering Management, Old Dominion University, DOI: 10.25777/
h18s-2a28
https://digitalcommons.odu.edu/emse_etds/111

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Femse_etds%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse?utm_source=digitalcommons.odu.edu%2Femse_etds%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.odu.edu%2Femse_etds%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.odu.edu%2Femse_etds%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.odu.edu%2Femse_etds%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds/111?utm_source=digitalcommons.odu.edu%2Femse_etds%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

RANDOM KEYS GENETIC ALGORITHMS SCHEDULING AND
RESCHEDULING SYSTEM FOR COMMON PRODUCTION SYSTEMS

by

Elkin Rodriguez-Velasquez

B.S. June 1997, Universidad Nacional de Colombia
M.Sc. June 2000, Universidad Nacional de Colombia

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ENGINEERING MANAGEMENT

OLD DOMINION UNIVERSITY
May 2011

Approved by:

Ghaith Rabadi, (Director)

Shannon Bowling (Member)

Resit Unal (Member)

ABSTRACT

RANDOM KEYS GENETIC ALGORITHM SCHEDULING
AND RESCHEDULING SYSTEM FOR COMMON PRODUCTION SYSTEMS

Elkin Rodriguez-Velasquez
Old Dominion University, 2011

Director: Dr. Ghaith Rabadi

The majority of scheduling research deals with problems in specific

production environments with specific objective functions. However, in many

cases, more than one problem type and/or objective function exists, resulting in

the need for a more generic and flexible system to generate schedules.

Furthermore, most of the published scheduling research focuses on creating an

optimal or near optimal initial schedule during the planning phase. However,

after production processes start, circumstances like machine breakdowns,

urgent jobs, and other unplanned events may render the schedule suboptimal,

obsolete or even infeasible resulting in a "rescheduling" problem, which is

typically also addressed for a specific production environment, constraints, and

objective functions.

This dissertation introduces a generic framework consisting of models

and algorithms based on Random Keys Genetic Algorithms (RKGA) to handle

both the scheduling and rescheduling problems in the most common production

environments and for various types of objective functions. The Scheduling

system produces predictive (initial) schedules for environments including single

machines, flow shops, job shops and parallel machine production systems to

optimize regular objective functions such as the Makespan and the Total

Tardiness as well as non-regular objective functions such as the Total Earliness

and Tardiness.

To deal with the rescheduling problem, and using as a basis the same

RKGA, a reactive Rescheduling system capable of repairing initial schedules

after the occurrence of unexpected events is introduced. The reactive

Rescheduling system was designed not only to optimize regular and non-regular

objective functions but also to minimize the instability, a very important aspect in

rescheduling to avoid shop chaos due to disruptions. Minimizing both schedule

inefficiency and instability, however, turns the problem into a multi-objective

optimization problem, which is even more difficult to solve.

The computational experiments for the predictive model show that it is

able to produce optimal or near optimal schedules to benchmark problems for

different production environments and objective functions. Additional

computational experiments conducted to test the reactive Rescheduling system

under two types of unexpected events, machine breakdowns and the arrival of a

rush job, show that the proposed framework and algorithms are robust in

handling various problem types and computationally reasonable.

V

This dissertation is dedicated to my parents, who taught me the love of learning.

vi

ACKNOWLEDGMENTS

I would first like to express my appreciation for my advisor, Dr. Ghaith

Rabadi. I was fortunate to find that he not only had a shared interest in the field

of scheduling, but was an excellent guide. I thank him for always being there to

talk with me about my research and also for his support, patience, and words of

motivation at those crucial moments.

I would also like to thank the other members of my doctoral committee.

Dr. Resit Unal, Dr. Shannon Bowling, and Dr.Ali Ardalan provided me with their

kind advice.

I am thankful for the support of the Engineering Management and

Systems Engineering Department.

I am also grateful for the support of the Universidad Nacional de

Colombia, which was a great aid to me throughout my doctoral studies.

I thank my friend, Dr. Alexander Correa Espinal, for finding the time to

offer me his statistical advice in the experimental design phase, despite being

occupied with a variety of activities. I would also like to express my gratitude to

the Bedoya-Correa family, who helped me take the first step in this journey at

Old Dominion University. My gratitude goes out to the Padilla-Parra family, for

the invaluable friendship and advice they offered me from the very first moment.

Finally, I am very grateful to the Carvajalino-Palacio family. They brought me the

warmth and happiness of Colombia in both pleasant and tough times.

I would like to show my absolute appreciation for my friend, Professor

William Alvarez Bermudez. William, things started to happen after you explained

the four friends' problem to me during my undergrad years. Thanks for sharing

your knowledge, for your unconditional friendship and for encouraging me to

pursue this goal. This Ph.D. belongs to you too.

I am heartily thankful to have Luz Bibiana by my side. Despite being

thousands of miles away from each other, she has been with me all the time,

and is a great source of motivation and inspiration.

vii

TABLE OF CONTENTS

Page

ABSTRACT ii

LIST OF TABLES x

LIST OF FIGURES xii

1 INTRODUCTION 1

2 BACKGROUND 4

2.1 Field of Study 4

2.2 Scheduling Problem Classification 4

2.3 Problem Solving Techniques for Scheduling Problems 5

2.4 Job Shop Scheduling 6

2.5 Regular and Non-Regular Performance Measures 7

3 LITERATURE REVIEW 11

3.1 Scheduling and Rescheduling 11

3.2 Rescheduling 11

3.3 Concluding Remarks 17

3.4 Research Gap 17

4 RESEARCH PURPOSE AND SCOPE 19

5 A PROCEDURE FOR THE NON-REGULAR MEASURE OF

EARLINESS AND TARDINESS 21

5.1 Minimizing ET in a Single Machine 21

5.1.1 The Unrestricted Single Machine Model with a Common Due Date... 23

5.1.2 The General Single Machine Model (1//ET) 26

5.1.3 Earliness Reduction Procedure for the 1/ /ET problem 28

5.1.4 Pseudo Code of the Earliness Reduction Procedure for the 1/ /ET

problem 29

5.1.5 Example of the Earliness Reduction Procedure for the 1/ /ET

problem 31

viii

5.2 Extending the Earliness Reduction Procedure for the Rm/ /ET

problem 36

5.3 Extending the Earliness Reduction Procedure for the Jm/ /ET

problem 36

5.4 Conclusion 37

6 A GENERIC RANDOM KEYS GENETIC ALGORITHM FOR SHOP

SCHEDULING PROBLEMS 38

6.1 Random Key Genetic Algorithms (RKGA) 38

6.2 RKGA representation and Decoding Procedure 39

6.3 A generalized Random Keys representation for Scheduling

Problems 44

6.4 Incidence of the Move Search procedure to solve jm/ /ET problems.... 47

6.5 Crossover 50

6.6 Selection 52

6.7 Mutation 52

6.8 Stopping Criteria 52

6.9 Evaluation of fitness 53

6.10 Overall view of the GA 53

6.11 Pseudo Code of the RKGA 53

6.12 Conclusions 54

7 COMPUTATIONAL EXPERIMENTS FOR THE PREDICTIVE MODEL 55

7.1 Unrelated Parallel Machines Problems 56

7.2 Integer programming formulation for Rm/ /Cmax 56

7.3 Results for the Rm//Cmax problem 57

7.4 Results for the jm//ET problem 60

7.5 Integer programming formulation for Jm//ET 61

7.6 Results for the problem Jm//ET 62

7.6.1 Runtime for Jm//ET problem 66

8 A REACTIVE RANDOM KEYS GENETIC ALGORITHM APPROACH

FOR SHOP SCHEDULING PROBLEMS 70

ix

8.1 Unexpected events 70

8.2 Rescheduling performance measures 71

8.3.1 Pareto dominance 75

8.4 The weighted sum method 76

8.5 Mode of operation of the Reactive RKGA 76

8.6 The rollback mechanism 77

8.7 Encoding of a non RKGA generated schedule 78

8.8 Integrated Predictive Reactive Scheduling System 80

8.9 Conclusion 81

9 COMPUTATIONAL EXPERIMENTS FOR THE REACTIVE MODEL 82

9.1 Benchmark Problems 83

9.2 Predictive Schedule Generation 83

9.3 Machine breakdown experiments 84

9.3.1 Dimensions of the study 84

9.3.2 Results for Disruption Time 87

9.3.3 Results for Duration of the breakdown 88

9.3.4 Results for Percentage of Affected Machines 89

9.3.5 Results for Rollback Level 90

9.4 Rush Job experiment 91

9.4.1 Dimensions of the study 91

9.4.2 Results for the Arrival Time 92

9.4.3 Results for the Rollback Level 95

10 CONCLUSIONS AND FUTURE RESEARCH 98

10.1 Conclusions 98

10.2 Future Research 99

REFERENCES 101

VITA 108

x

LIST OF TABLES

Table Page

Table 1. Example of solution techniques according to the type of method 6

Table 2. A 2 x 2 Job Shop Problem 7

Table 3. Example of a 1//ET problem 32

Table 4. A 2 x 3 Job Shop problem 42

Table 5. A 5-job 2 parallel machine 45

Table 6. A 2 x 3 Flexible Job Shop problem 46

Table 7. Machine selection for the problem of Table 6 46

Table 8. A J2/ /ET Job Shop problem 48

Table 9. Results for the Rm//Cmax problem 59

Table 10. Average Results for Rm/ /Cmax problem 60

Table 11. Results for the Jm//ET problem 63

Table 12. Average Results for Jm/ /ET problem 65

Table 13. LINGO Rutimes (in minutes) to solve Jm/ /ET benchmark

problems 67

Table 14. Runtime (in minutes) comparison of LINGO and the proposed

RKGA 68

Table 15. Treatment Combinations and average values 85

Table 16. Results for factor: Disruption Time 87

Table 17. Results for factor: Duration of the breakdown 88

Table 18. Results for factor: Percentage of Affected Machines 89

Table 19. Results for factor: Rollback Level 91

Table 20. Additional tests for factor: Rollback Level 91

Table 21. Treatment combinations and average 92

Table 22. Results for the factor: Arrival Time 94

Table 23. Results for the factor: Rollback Level 95

Table 24. Additional tests for factor: Rollback Level 96

xi

Table 25. Additional tests for factor: Rollback Level 96

XII

LIST OF FIGURES

Figure Page

Figure 1 A 2 x 2 Job Shop Problem 8

Figure 2 Earliness/Tardiness ET of job i 10

Figure 3 Example of a Schedule represented on a Gantt chart 13

Figure 4 A breakdown on M4 from time 25 to 28.Operations starting after the

breakdown and disrupted operation are right shifted 6 time units 13

Figure 5 A breakdown on M4 from time 25 to 28. Only the affected operations

are right shifted 6time units 13

Figure 6. Schedule for a single machine problem 22

Figure 7. Three Optimal Schedules for a 1/ /ET problem 22

Figure 8. Optimal Schedule to minimize ET for a single machine problem

with a predefined sequence and a Common Due Date 24

Figure 9. Initial Schedule for a 1/ /ET problem with a common due date 25

Figure 10. An event at time 8 overlapping the schedule in Figure 8 25

Figure 11. Optimal solution for the initial situation of Figure 9 26

Figure 12. Optimal Schedules for the 1/ /ET problem given a predefined

sequence and different due dates 27

Figure 13. Input schedule for the problem in 32

Figure 14. Partial schedule for the problem in Table 3 35

Figure 15. Final schedule for the problem in 35

Figure 16. Schedule for a single machine problem 40

Figure 17. Schedule for the chromosome on Table 4 44

Figure 18. Schedule for a 5-job 2-parallel machine problem 46

Figure 19. A schedule for the problem on Table 6 47

Figure 20. Schedule for the J2/ /ET problem of Table 8 49

Figure 21. Resulting schedule after Earliness Reduction Procedure 50

Figure 22. Runtime comparison for problems with loose due dates 68

XIII

Figure 23. Runtime comparison for problems with moderate due dates 68

Figure 24. Runtime comparison for problems with tight due dates 69

Figure 25. Predictive Reactive Scheduling System 80

Figure 26. Normal Probability Plot for Aggregate Objective Function and

Runtime. Breakdown Experiment 86

Figure 27. Normal Probability Plot for Aggregate Objective Function and

Runtime. The Rush Job Experiment 94

1

1 INTRODUCTION

Scheduling theory is concerned with the allocation of a set of limited resources

over time to process a set of jobs (Baker, 1974). Scheduling in manufacturing

and production environments varies to include most commonly single machines,

parallel machines, flow shops, job shops and their combinations. Depending on

the nature of the business, scheduling problems may have different objective

functions and processing conditions or restrictions. Over the past few decades, it

has been shown that the majority of scheduling problems with various objective

functions are explosively combinatorial in nature (Pinedo, 2008).

Most of the published scheduling research focuses on creating an optimal

or near optimal initial schedule during the planning phase (see, for example,

Muth and Thompson (1963), Conway, Maxwell and Miller (1967), Baker (1974),

French (1982)). However, after production processes start, different

circumstances like machine breakdowns, material delays, urgent jobs, and other

unplanned events may render the schedule suboptimal, obsolete or even

infeasible. In such cases, the scheduling problem turns into a "rescheduling"

problem. In spite of their importance, rescheduling problems have not been

broadly studied in the literature as much as scheduling problems, nor have they

been adequately implemented in practice due to the difficulty of dealing with

unexpected events (MacCarthy and Liu (1993), Mehta and Uzsoy (1999), and

Arnaout and Rabadi (2007 and 2008)).

Rescheduling strategies may be divided into three main categories:

Online Scheduling, Robust Scheduling, and Reactive Scheduling (Mehta and

Uzsoy (1999), Arnaout (2006)). In Online Scheduling, there is no initial schedule

to adhere to; instead, decisions are made locally, using dispatching (heuristic)

rules to select the next job to process when an event disrupts the schedule. The

main weakness of this approach is that quality of the schedule is typically poor,

and it does not allow for resource planning (Mehta and Uzsoy (1999)). Robust

Scheduling, on the other hand, anticipates unexpected events and develops an

2

initial (or predictive) schedule with built-in flexibility (e.g., Esswein, Billaut, and

Strusevich (2005)) or redundancy (e.g., Herroelen and Leus (2005)) to account

for future events. There are two main drawbacks to this approach. First, it is very

difficult to anticipate the type and timing for an event to occur, and, second, it is

quite unlikely for schedulers in practice to voluntarily insert idle time in the

schedule or keep too many redundant resources idle in anticipation of events

that may take place. Instead, they usually deal with events as they occur. This

leaves Reactive Scheduling as the most viable and practical option to deal with

rescheduling problems.

In Reactive Scheduling, a schedule is created in response to interruptive

events and three strategies are commonly applied (Abumaizar and Svestka,

1997): Total Rescheduling, Right-shift Rescheduling and Affected Operations

Rescheduling. Total Rescheduling creates a totally new schedule for the

operations that have been interrupted and for those that have not been started

yet. Right-shift Rescheduling delays the start of all operations in the schedule by

the time required to make it feasible. Affected Operations Rescheduling takes

into account that not all operations may be affected by an event, so it delays only

the ones that are affected by the event (either interrupted or that have been

delayed due to delay in their preceding operations). These rescheduling

methods, however, have been studied under specific problems with specific

objective functions and constraints. There is a clear lack of research in the

literature for a dependable reactive rescheduling system that can effectively

repair schedules in a generic fashion regardless what the production

environment is or what the objectives and constraints are. Most industries

currently resort to manual or semi manual rescheduling when unexpected events

occur. Most research and software scheduling systems focus on creating a good

initial plan or schedule and few worked on or included rescheduling aspects.

This dissertation attempts to close this research gap by introducing

algorithms and methods based on a generic framework that are capable of

repairing schedules in most common production environments and for most

objective functions. The remainder of this document is organized as follows:

3

background is presented in Chapter 2 to introduce the topic of scheduling.

General aspects about scheduling such as problem classification and some

specific examples are presented in order to familiarize the reader with the field.

The third chapter presents the literature review in the area of rescheduling,

covering Online, Robust and Reactive scheduling. The conclusions of this

chapter address the research gap. The research purpose is presented in

Chapter 4, where the scope and the general and specific objectives are

discussed. Chapter 5 introduces a procedure to reduce Earliness and Tardiness

in diverse types of schedules. Chapter 6 presents the generic predictive

scheduling model covering the Random Keys Genetic Algorithms approach and

the theoretical principles upon which such a model is built to generate solutions

for the different production environments and objective functions covered by this

work.

In order to test the predictive model, computational experiments for

different production environments, problem sizes and objective functions are

presented in Chapter 7. In Chapter 8, the generic reactive model is presented to

deal with different unexpected events and the quality and stability of the reactive

solution. The predictive and the reactive model are connected in this chapter.

The computational experiments to test the reactive model under different

unexpected events are presented in Chapter 9. Finally, Chapter 10 discusses

the research conclusions, contributions, and future research.

4

2 BACKGROUND

2.1 Field of Study

Scheduling theory is concerned with the allocation of a set of limited resources

over time to process a set of jobs (Baker, 1974). Although scheduling problems

may be present in long term planning, scheduling has generally been associated

with the short term planning level, which is sometimes called operative planning

(Sipper and Bulfin, (1997)). Over the last few decades, scheduling has become

an area of knowledge for which there are well known textbooks used in

academia and research, like the ones by Baker (1974), French (1982) and

Pinedo (2008), scientific journals dedicated to it such as the Journal of

Scheduling, published by Springer and the International Journal of Planning and

Scheduling by Inderscience, in addition to many Operations Research and

Industrial Engineering journals that publish Scheduling research.

2.2 Scheduling Problem Classification

Graham, Lawler, Lenstra, and Rinnooy Kan (1979) introduced a notation that is

widely accepted in the literature, and is commonly called Graham's notation, for

classifying scheduling problems. It consists of a triple a / p / y. The first symbol,

a, represents the environment of the shop. It can be a single machine (1),

parallel machines (Pm), a flow shop (Fm), a job shop (Jm), an open shop (Om)

or combinations of these where m is the number of machines, p refers to

specificities of the problem and y represents the objective function, which is

typically a function of the jobs' completion times, i.e. the time at which each job

is finished in the schedule. Depending on the instances of a, p and y under

consideration, some problems can be solved by optimal or heuristic techniques.

The next section discusses the differences between such techniques and the

situations in which they can be used according to the problems' characteristics.

5

2.3 Problem Solving Techniques for Scheduling Problems

Most scheduling problems belong to a category for which it may not be possible

to find optimal solutions for large problems, even with the best computational

techniques developed so far (Baker and Trietsch, 2009); these problems are

called NP-hard. For other problems, there are techniques that are able to find

the solution in a reasonable time. These are usually called polynomial time

algorithms and the problems they can solve, polynomial time problems (Pinedo,

2008).

Regarding the solution techniques, there are general purpose methods for

solving combinatorial problems (General) or methods designed to solve specific

scheduling problems (Specific). As for the optimality, there are methods that

guarantee finding an optimal solution (Exact) and approximate methods

(Approximate) that do not guarantee such solutions. Therefore, not all methods

may be used with every problem. While NP-hard problems may be solved only

by approximate methods in a reasonable computational time, polynomial time

problems may be solved by general or specific methods, exact or even

approximate, keeping in mind that optimality can only be guaranteed by exact

methods.

According to such classification, Table 1 shows some examples of the

different methods and problems they can solve. For example, although it is

possible to use an approximation technique to solve a relatively easy problem

(polynomial time problem) like Genetic Algorithms for the J2/ /Cmax problem

(minimizing the makespan in a Job Shop with two jobs), it may not be necessary

since there are general and specific techniques available that guarantee

optimality. In the same vein, it is possible to unnecessarily use a general

purpose method like branch and bound to find the optimal solution to a

polynomial time problem like 1 / /U (minimizing the number of tardy jobs on a

single machine), while the tailored optimal algorithm by Moore (1968), known as

Hodgson's algorithm, can solve it optimally.

6

Table 1. Example of solution techniques according to the type of method

Purpose General Specific

Optimality

Exact Branch and Bound or

Integer Linear

Programming

for 1//U

Approximation Genetic Algorithms or Giffler and Thompson (1960) for

Tabu Search for J2/ /Cmax (not NP-hard) or

J2/ /Cmax (not NP-hard) J100/ /Cmax (NP-hard)

or

J100//Cmax (NP-hard)

In order to present some examples and discussions throughout this

dissertation, and due to the research relevance, the Job Shop Scheduling

Problem and the so-called regular and non-regular performance measures are

briefly explained in the next two sections.

2.4 Job Shop Scheduling

The Job Shop Scheduling Problem has been extensively studied in scheduling

theory since it is a common case in manufacturing. It consists, in the most

classical case, of a finite set of available jobs to be executed on a set of finite

machines that are continuously available. Each job has a sequence of

operations for which the processing times are known and assumed to be

deterministic. Each operation needs to be processed on one machine. The

sequence of operations through the machines is not necessarily the same for all

jobs. The resulting schedule must respect two main constraints: one machine

can process only one operation at a time, and the sequence of operations on the

machines must be respected for each job. The most commonly used objective

function for the Job Shop Scheduling Problem (JSSP) is the makespan (Cmax),

i.e. minimizing the completion time of the job ending last, which represents the

Moore (1968) for 1//U

Johnson (1954) for F2/ /Cmax

Jackson (1956) for J2/ /Cmax

7

time necessary to process all jobs. In terms of Graham's notation, the problem is

classified as Jm/ /Cmax, where Jm denotes a job shop with m machines. Given

its combinatorial complexity (Garey and Johnson, 1979), numerous optimal and

non-optimal approaches have been presented to deal with this problem. An

extensive review can be found in Jain and Meeran (1999).

2.5 Regular and Non-Regular Performance Measures

Most research on scheduling has been devoted to problems with objective

functions that belong to a category called Regular Performance Measures.

These are defined as functions that are not decreasing in the completion times

(Pinedo, 2008). The makespan, explained in the previous section, belongs to

such a class. To familiarize the reader with the concept, an example is

presented below.

Suppose a 2 job, 2 machine JSSP with the processing times and routes

through the machines shown in Table 2.

Table 2. A 2 x 2 Job Shop Problem

Job Processing Time(Operation Routing)

~1 3(1) 5(2}

2 4(2) 1(1)

Job 1 consists of two operations with processing times 3 and 5

respectively; the first operation is processed on machine 1 and the second one

on machine 2. Job 2 has also two operations with processing times 4 and 1

respectively; the first operation is processed on machine 2 and the second one

on machine 1.

A feasible solution for a scheduling problem is usually represented in a

Gantt chart as the one shown in Figure 1 for the example at hand, where the

horizontal axis represents time and the machines (M1 and M2 in this case) are

8

on the vertical axis. The number of each operation in the chart corresponds to

the job to which they belong.

M l

M2

1

2

2

i
3 4 5

time

Figure 1 A 2 x 2 Job Shop Problem

If we want to minimize the makespan, the problem we have, in terms of

Graham's notation, is J2/ /Cmax. In this case, Cmax, the completion time of the

last operation is calculated as:

Cmax = max{Cj} Vi = 1, ...n (1)

where Q corresponds to the completion time of job i and n is the number of jobs.

Therefore, we have:

Cmax = max{C1(C2} = max{9, 5} = 9.

We can see that Cmax is not decreasing in function of C^ C2; that is to

say, after increasing Cx or C2, Cmax will increase or remain the same, but it will

not decrease regardless of the sequence.

Let us use now an objective function called Earliness and Tardiness,

which calculates the summation of the time deviation of each job depending on

whether it finishes earlier or later than its due date, aiming that all jobs finish

exactly on their correspondent due dates. This function, which we will denote as

ET, is defined as:

ET = Zf=1|Ci - dil (2)

9

where: Q corresponds to the completion time of job /,

dj is the due date of job i and

n is the number of jobs.

If we want to minimize ET, the problem we have, in terms of Graham's

notation, is J2/ /ET. Now suppose that both jobs' due dates are equal; that is, dx

= d2 = 9.

Since all jobs have the same due date, this is called a Common Due Date

in the literature. Therefore the value of ET is:

ET = | Cx — di| + | C2 — d2| = |9-9| + |5-9|= 4.

Suppose that we increase Cx by one unit; that is, we start the last

operation of job 1 on time 5 and consequently it finishes on time 10, then:

ET = |10-9| + |5-9|=5.

As in the case of Cmax, the ET objective function increased after

increasing C±. However, if we do not changed, but increase C2, so the last

operation of job 2 starts at time 5 and therefore finishes at time 6, we have:

ET = | d - di| + | C2 - d2| = |9-9| + |6-9|= 3.

So ET decreased when certain Ct increased. Consequently, ET is not a

regular performance measure. While in regular measures the objective function

never decreases as the completion time increases, in non-regular measures the

objective function may decline. Figure 2 represents the behavior of the ET as a

function of the completion time. As the completion time approaches the due date

from the left, the Earliness decreases. When the job is completed just in time, at

the due date, the objective function value is zero. As the completion time starts

deviating from the due date to the right, the Tardiness increases. Non-regular

functions have caught the attention of researchers in the last three decades as

they capture the essence of the Just-In-Time philosophy, but they make

10

scheduling problems more challenging due to the nature of the objective

function.

Non-regular measure

Figure 2 Earliness/Tardiness ET of job i

11

3 LITERATURE REVIEW

3.1 Scheduling and Rescheduling

Several papers (e.g. MacCarthy and Liu (1993)), report the existence of a gap in

scheduling between a previously generated schedule and common real life

unforeseen situations, like machine breakdowns, rush jobs, order cancellations,

delays in the arrival of materials, etc. This gap may be caused by the fact that

scheduling theory has mainly focused on the problem of producing the initial

(predicative) schedule and most of the research assumes that it will be executed

exactly as it was initially created. But, when such a schedule is being executed

unexpected events may make it infeasible, indicating the necessity to update it.

This schedule updating phase has not been as broadly studied as much as the

initial phase. In the same sense, Graves (1981), states that "there is no

scheduling problem but rather a rescheduling problem".

In response to that, some researchers started presenting strategies to

deal with such unexpected events in different shop environments. Scheduling

models can be divided into those that deal with the mentioned unforeseen

events, usually referred to as rescheduling, and those that do not. The vast

majority of research papers have been focusing on traditional scheduling that

does not consider the rescheduling problem.

3.2 Rescheduling

Regarding the research approaches that deal with unforeseen events, three

types of approaches have been identified: online, predictive-reactive and robust

scheduling (Mehta and Uzsoy (1999), Arnaout (2006)).

In online scheduling there is not an initial schedule; the decisions are

made locally, using previously established priority rules (dispatching rules) to

select the next job to be processed on each machine once it is ready after being

unavailable for any reason. In such cases the shop can be modeled by

simulation and different policies can be tested. Since there is no initial schedule,

12

this approach has the weakness of not allowing any resource planning, as Mehta

and Uzsoy (1998) and Arnaout (2006) stated.

In the predictive-reactive scheduling, an initial (predictive) schedule is

generated and then changed according to different policies when an unexpected

event occurs; hence, it is called predictive-reactive scheduling. The original

schedule is changed attempting to minimize the impact on the system's

performance. To produce the reactive schedule, three main policies are reported

in the literature (Vieira, Herrmann, and Lin, 2003): periodic, event driven or

hybrid. Three strategies are known in the literature to generate the reactive

schedule: (Abumaizar and Svestka, 1997) total rescheduling, right-shift

rescheduling and affected operations rescheduling (Other authors like Herrmann

(2006) and Vieira et al., (2003), refer to total rescheduling as complete

regeneration, and affected operations rescheduling as partial rescheduling).

Total Rescheduling consists of solving the new scheduling problem that a

shop has once an unexpected event occurs, taking into account the operations

not yet started and the one(s) interrupted. Right-shift rescheduling delays the

starting of all operations in the schedule by the time required to make the

schedule feasible. In Affected Operations Rescheduling, given a disruption, not

necessarily all the operations in the Gantt chart have to be moved to the right;

only some operations are affected due to the delay in their preceding operation

in their machine or in their job and only those are moved to the right (recall that a

job typically consists of multiple operations).

The differences between right-shift rescheduling and Affected Operations

Rescheduling are presented in Figures 3 to 5. In Figure 3, part of a predictive

schedule for the famous 6 x 6 job shop benchmark problem (i.e. 6 jobs and 6

machines where each job has one operation on each machine) from Muth and

Thompson (1963) is shown in a Gantt chart, where the number of each

operation on the Gantt chart represents the job to which it belongs. The

makespan (completion time of the last operation) is 55. In Figure 4 a breakdown

takes place on machine 4 from time 25 to 28. Assuming the so-called "interrupt

repeat mode", that is, when an operation is interrupted, its processing has to

13

start from scratch when it is rescheduled, the interrupted operation (the one of

job 1 on machine 4) as well as all the operations scheduled to start at or after

time 25 are "right shifted" by 6 time units, corresponding to the amount of time

the start of the interrupted operation had to be delayed. The new makespan is

61 time units. In Figure 5, Affected Operations Rescheduling is applied instead.

Only operations in bold are right shifted, and as can be seen, there is no need to

displace the other ones. The new makespan is 56 time units, much closer to the

predictive schedule's makespan.

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Figure 3 Example of a Schedule represented on a Gantt chart

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

Figure 4 A breakdown on M4 from time 25 to 28.0perations starting after the

breakdown and disrupted operation are right shifted 6 time units

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

Figure 5 A breakdown on M4 from time 25 to 28. Only the affected operations

are right shifted 6 time units

14

Total Rescheduling may produce a very different sequence on the machines in

response to the disruption, while the other two approaches maintain the

predictive sequence. Wu, Storer, and Chang (1993) define stability, in the

context of rescheduling, in two ways: the starting time deviations between the

new schedule and the original schedule and a measure of the sequence

difference between the two schedules. Using these terms, predictive-reactive

scheduling by Total Rescheduling may cause a high level of instability.

Mason, Jin and Wessels (2004) compare the right-shift rescheduling,

affected operations rescheduling (Fixed-Sequence Rescheduling as they call it)

and Total Rescheduling in a Complex Job Shop i.e. a job shop that has different

job release times, batching machines, parallel machines, sequence dependent

setup times and recirculation reentrant product flow through some machines),

when the objective is to minimize the total weighted tardiness. They conduct

diverse experiments with one unplanned machine breakdown happening early

and late in the schedule's span, with different breakdown durations. They

compare all methods in terms of efficiency (in this case, total weighted

tardiness). Due to the production environment complexity, in all cases Total

Rescheduling performs better than both right-shift rescheduling and affected

operations rescheduling despite requiring more computational time.

Abumaizar and Svestka (1997) introduce the Affected Operations

Rescheduling (AOR) algorithm to reschedule job shops when the objective

function is the makespan and compare it to total rescheduling and right-shift

rescheduling in terms of efficiency and stability. They conduct an experiment in

which a breakdown may occur in one of two levels: early or late in the predictive

schedule. The experimental design shows that the AOR algorithm outperforms

the other two methods. Subramaniam and Raheja (2003) study different types of

disruptions in a shop: machine breakdown, process time variation, arrival of an

unexpected job and a job that becomes urgent. They propose repairing the

schedule if one of these disruptions occurs by using AOR as a basis and by

utilizing a set of algorithms oriented to four actions: Insert Idle Time, Insert

Adjustment Time, Insert Operation and Delete Operation. They call their

15

approach Modified Affected Operations Rescheduling (mAOR). In a later work,

Subramaniam, Raheja, and Rama Bhupal Reddy (2005) compare the mAOR to

the right-shift rescheduling, this time simulating multiple disruptions that occur in

a Job Shop using different mean time between disruptions, proportion of

disrupted operations and average duration of the disruptions. According to their

experimentation parameters, they focus on one-disruption-at-a-time scenarios

for their experiments. The experimental results show that mAOR performs better

than right-shift rescheduling.

Match up rescheduling is a special type of affected operations

rescheduling AOR. Match up uses different strategies to repair a schedule up to

a certain point in time in which the repaired (reactive) schedule matches the

predictive schedule. There is little research on this approach. It was proposed

and studied first in the context of a single machine by Bean and Birge (1986).

Later on, Bean, Birge, Mittenthal, and Noon (1991) address a case of parallel

machines from the automobile manufacturing industry and find that match up

outperforms right-shift and online rescheduling. Akturk and Gorgulu, (1999)

study a cellular manufacturing system where each cell is what they call a

Modified Flow Shop, a flow shop where not all jobs start at the same machine

and/or leave the system at the same machine. Moratori, Petrovic and Vazquez

(2008) propose a match up strategy to include new rush jobs in a flexible job

shop's schedule. In the experiments they compare their match up approach with

right-shift and total rescheduling. They report that the algorithm produces

stability similar to the one of right-shift and a performance similar to the one

produced by total rescheduling.

Robust scheduling, on the other hand, tries to anticipate unexpected

events by using different strategies like the following:

• Schedule flexibility: As defined by Esswein et al. (2005), it is achieved

by generating a schedule composed of sequences of groups of

permutable operations on each machine. They use the concept of

groups based on the former work of Erschler, Roubellat, and Vernhes

16

(1976). Artigues, Billaut, and Esswein (2005) use this approach to

solve the JSSP where ready times are not necessarily zero and the

objective function becomes a compromise between the quality of the

schedule and a flexibility measure that they defined. In their case, the

schedule quality was defined by the maximum lateness Lmax where

Lateness is defined as the difference between the completion time of a

job and its due date.

• Redundancy: It can be oriented either to the resources or to time

(Herroelen and Leus (2005)). In the first case, it can be accomplished

by introducing multiple machines, tools, personnel, etc. ready to

absorb the disturbance. In the second case, idle time is inserted in the

initial schedule between activities so that, if a disruption happens, a

simple adjustment can be made, maintaining system performance. As

for the time redundancy, the idea is to insert idle time to obtain a pre-

schedule, able to be reconstructed after a breakdown. Mehta and

Uzsoy (1998) propose an approach to insert idle time in a predictive

schedule for a Job Shop where the objective function is to minimize

the maximum Lateness, assuming the probability distribution of the

time between machine breakdowns and their duration are known.

Arnaout (2006) presents a robust rescheduling architecture for the

Unrelated Parallel Machine Scheduling problem to minimize the

makespan (Rm/ /Cmax) where he used a rule to insert idle time to

generate the predictable schedule. He states that the architecture

could be adapted to other environments different from parallel

machines.

In some cases, operations are started as soon as they become

available as in Mehta and Uzsoy (1998) to absorb idle time, while in others

the predictive schedule is respected when it is possible as in Arnaout and

Rabadi (2008). To achieve robustness, the first option (starting operations as

soon as they are available) may be desirable, but to avoid earliness penalties

the second option (trying to hold on to the preemptive schedule's starting

17

times) is more appropriate. Pinedo (2008) confirms that there is a trade-off

between starting operations early, in order to have robustness in the

schedule, and starting them as late as possible to avoid holding costs.

Another strategy to implement robust scheduling, according to Pinedo

(2008) is to keep the bottleneck machines fed. Regarding the concept of

robustness in general, he states that little research has been done on this topic.

3.3 Concluding Remarks

The previous literature points out some important facts. Although the online

rescheduling is a more appropriate option when disruptions are too frequent

(Bean et al. 1991) it is disadvantageous in the sense that it does not provide any

resource planning (Arnaout, 2006).

When there is available information on the disruptions (like the time

between breakdowns and their duration), this may be used to produce a robust

predictive schedule as in Mehta and Uzsoy (1998) and Arnaout (2006), among

others.

There are, however, other classes of uncertainties in manufacturing

environments, like the ones McKay, Buzacott and Safayeni (1989) call "complete

unknowns", which are unpredictable and may cause multiple disruptions on the

machines like a power outage or a sudden strike. Consequently, it is difficult to

take into account situations like those by a robust approach.

The Predictive-reactive approach, on the other hand, does not require

previous information about the disruptions. However, the reviewed literature

shows that the research has focused on "one disruption at a time" scenarios for

their experiments (see for example: Abumaizar and Svestka, (1997) and

Subramaniam et al. (2005)), and to our knowledge, no prior research on

rescheduling describes the study of simultaneous breakdowns.

3.4 Research Gap

The previous section shows some important gaps. Most of the current

scheduling research solves scheduling problems using methods that are tailored

18

to specific problems with specific objective functions and constraints. There is a

need for general representations that can be used for reactive scheduling in

different shop environments and for various objective functions.

As was shown, the research has focused on "one disruption at a time"

scenarios. There is a lack of research studying simultaneous disruptions. To our

knowledge, no prior research addresses simultaneous breakdowns in the

context of reactive scheduling.

Most of the work published has focused on regular objective functions.

The literature review shows a lack of research on reactive scheduling

considering both regular and non-regular measures (specifically the non-regular

objective function of minimizing the total Earliness and Tardiness).

This research will address the previous research gaps and develop a

Predictive- Reactive Scheduling system usable in different shop environments

and with different objective functions.

19

4 RESEARCH PURPOSE AND SCOPE

It is the overall objective of this research to develop a predictive - reactive

scheduling system that is capable of repairing schedules for the most common

production environments when unexpected events take place. The purpose is to

coherently integrate new and existent approaches for rescheduling by

implementing a higher level tool to repair a schedule once disrupted by

unforeseen events such as (multiple) machine breakdown, job priority change,

arrival of urgent jobs, and longer than expected processing times among other

typical events. The scope will encompass solutions for single machine, parallel

machine, flow shop, and job shop environments with regular and non-regular

objective functions. The specific objectives of the project can be summarized as

follows:

1. Introduce a coding schema general enough to approach scheduling

problems in the most common production environments including: single

machines, parallel machines, flow shops, and job shops with the most common

regular performance measures (objective functions) including: the makespan,

total tardiness, maximum lateness, and total completion time, in addition to the

non-regular objective function of the total earliness and tardiness.

2. Develop and implement an encoding/decoding algorithm to translate a

solution representation into a schedule and vice versa based on the coding

scheme in objective 1.

3. Develop and implement a Meta-heuristic schedule repair algorithm that

will be able to react to unexpected events in various production environments.

Specifically, a Random Key Genetic Algorithm (RKGA) will be the Meta-heuristic

of choice for reasons that will be discussed in Chapter six in which the Predictive

model is presented.

4. Perform experiments to test the individual components of the proposed

scheduling systems as well as the whole system. The experiments will mostly be

based on randomly generated data that will cover realistic and common

20

manufacturing and production systems (listed earlier) as well as different types

of disruptions and objective functions.

21

5 A PROCEDURE FOR THE NON-REGULAR MEASURE OF EARLINESS

AND TARDINESS

Most of the body of literature on scheduling has been dedicated to problems with

Regular Performance Measures (see, for example, the books of French (1982),

Pinedo (2008) and Baker and Trietsch (2009)). The introduction of the just-in-

time (JIT) production approach brought to attention an important fact to

scheduling theory which is that it is not necessarily always beneficial to complete

the jobs as early as possible as this may increase the holding cost. Therefore, it

became necessary to minimize both earliness and tardiness for jobs from their

due dates. Minimizing tardiness would reduce the cost of missing due dates or

the loss of customers while minimizing earliness would reduce the holding or

inventory cost. This problem is known in the literature as the early/tardy (ET)

problem. Although JIT entails more detailed concepts, the ET problem seems to

mathematically capture the scheduling essence of it. In this chapter we study

some characteristics of the 1 / /ET problem when the due date of all jobs is

common in order to propose a procedure that aims to reduce the ET of a

schedule by delaying the start time of some operations.

5.1 Minimizing ET in a Single Machine

Consider the problem of scheduling four jobs on a single machine with

processing times 3, 4, 5 and 2 for jobs 1, 2, 3 and 4 respectively. Suppose we

decide to process them in the sequence: 4 - 3 - 1 - 2 . If the objective function

is a regular measure such as Cmax, we must build a schedule where all

operations must be started as early as possible. In the single machine case the

resulting schedule will not have any idle time between operations.

The resulting schedule can be represented in the Gantt chart in Figure 6,

where M1 is the only machine in the problem.

22

Figure 6. Schedule for a single machine problem

Such a solution is reasonable when optimizing a regular function since

schedules without inserted idle time determine a dominant set for any regular

measure of performance (Baker and Trietsch, 2009). However, if the objective

function is not regular, it may be desirable to have idle time before some or all of

the jobs start processing. Consider the same set of jobs, but in this case all of

them have the same due date, d = 15, and the objective function is the non-

regular measure of Earliness/Tardiness as defined in expression (2) of Chapter

2.

In this case, any optimal solution will have some idle time inserted on

machine 1 before the first job starts processing (Baker and Trietsch, 2009).

Three optimal solutions for the problem with ET = 11 are shown in Figure 7.

Ml

l i 15 17 20

M l

10 13 15 19

M l

7 12 15 17

Figure 7. Three Optimal Schedules for a 1 / /ET problem

with a Common Due Date= 15

21

23

5.1.1 The Unrestricted Single Machine Model with a Common Due Date

Regarding the 1 / /ET problem with a common due date (CDD) problem Baker

and Scudder (1990) defined a problem as unrestricted as follows.

If we sequence the jobs in a longest processing time order, we can call A

to the summation of every other processing time. If the common due date CDD £

A, then the problem is unrestricted.

They list four dominance properties identified by Kanet (1981) for the

unrestricted problem:

/. "There is no inserted idle time in the schedule. (If job j immediately

follows job i in the schedule, then Cj = Ci + pj.)

II. The optimal schedule is V-shaped. (Jobs for which Cj < d are

sequenced in non-increasing order of processing time; jobs for which

Cj > d are sequenced in non-decreasing order of processing time.)

III. One job completes precisely at the due date. (Cj = d for some j.)

IV. In an optimal schedule, the bth job in sequence completes at time d,

where b is the smallest integer greater than or equal to n/2."

If we call P[j] the processing time of the job in position / in the sequence,

according to the definition, the problem is unrestricted if CDD > A, where:

A = fP[i] + P[3] + - + P[n] if n is odd

lP[2] + P[4] + ••• + P[n] if n is even

Pfi] < P[2] < P[3] - ^ P[n] (4).

Notice that the condition for a problem to be unrestricted, CDD ^ A,

guarantees that there is enough time for the bth job to complete on the CDD.

Notice that given any predefined sequence, properties I, III and IV can be

used to reduce the ET value (Baker and Trietsch, 2009). Suppose that we have

a predefined sequence. First we must check if the problem is restricted or not in

order to know if we can utilize the properties. In this case since the sequence is

predetermined we must check that the summation of processing times of jobs in

24

positions from 1 to b is not greater than the due date. If the condition holds, we

can proceed to find the start times of all jobs. According to properties I and III,

our schedule must not have inserted idle time and there must be a job that

finishes exactly at the due date. Finally, property IV will let us determine which

job should finish at the due date; therefore, we can determine the start and finish

time of all jobs in the schedule.

As an example, suppose we have three jobs to schedule on a single

machine with a common due date of 9 and processing times 1, 3 and 2 for jobs

1, 2 and 3 respectively. Suppose as well that we have decided to process them

in the natural sequence 1 - 2 - 3 . First note that, according to property IV,

position b is obtained as the smallest integer greater than or equal to 3/2, which

is 2. That corresponds to job 2 which is in the second position. The summation

of processing times of jobs 1 and 2 equals 4 which is less than or equal to the

common due date; therefore, the problem with a fixed sequence is unrestricted.

By property III we know that job 2 must complete on 9 and property I states that

no idle time should be inserted, which lets us determine the rest of the start and

completion times in the schedule, as shown in Figure 8.

CDD

• J!P,Ji:j
5 6 9 11

Figure 8. Optimal Schedule to minimize ET for a single machine problem with a

predefined sequence and a Common Due Date

The previous properties have another application. Suppose that an initial

feasible schedule is provided for the problem; that is, not only a predefined

sequence is given but also the start or completion times. We can use the

properties to check whether the schedule can be improved in terms of earliness

25

and perform the correspondent changes in the start times if so. As an example,

suppose the initial schedule in Figure 9 is provided.

CDD

M1
- B ' 'WJIWWH'I

1 3 5 6 8 9

Figure 9. Initial Schedule for a 1//ET problem with a common due date

and a fixed sequence

We already checked that the problem is unrestricted, so we can use

Kanet's properties above to find the best starting times for all jobs. According to

property I the solution does not have inserted idle time. Using properties III and

IV we find the same schedule as the one in Figure 8.

Definition 1: Let the "optimal completion time" C0 be the completion time

of the last job of a job sequence that has been scheduled in a way such that the

bth job completes at the common due date, satisfying property IV.

According to definition 1, in Figure 8 the optimal completion time C0 =11 .

Suppose now that we obtain the schedule shown in Figure 8. However, due to

an event such as a maintenance job, the machine cannot be used starting from

a time B, which we will refer to as a "boundary time", that is earlier than C0, that

is B < C0 , in which case the schedule in Figure 8 cannot be completed. An

example of the second scenario is shown in Figure 10.

M1
5 6

CDD

i'l i H

9 10 11

Figure 10. An event at time 8 overlapping the schedule in Figure 8

26

As can be seen, there is an event taking place from time B=10 to time 11

that prevents the schedule in Figure 10 from being completed.

Let us denote qt] as the completion time of the job in position /' in the

sequence.

Regarding Kanet's property IV, from the work of Rabadi, Mollaghasemi

and Anagnostopoulos (2004), it can be seen that when CDD > C[b], as the jobs

move to the right in the schedule so that C[b] gets closer to CDD, ET decreases

or remains the same. Therefore, when the last job cannot be completed beyond

a boundary time B < C0 it is always convenient to move the block of jobs to the

right in the Gantt chart so the job in position b completes as close to the

Common Due Date (CDD) as possible. This will decrease the ET value and may

create idle time to the left that may be useful as will be explained later.

Therefore, in our example coming from the situation in Figure 9, it is still a

good idea to start job 1 at time 5 so job 3 completes at time 10, although it

cannot complete at C0, as shown in Figure 11.

5 6 8 10

Figure 11. Optimal solution for the initial situation of Figure 9

The previous properties are used as building blocks of an improving

strategy to solve single machine sub problems present in more general problems

such as single machine, parallel machine, flow shop or job shop problems where

there is not a common due date.

5.1.2 The General Single Machine Model (1//ET)

In the 1 / /ET problem, a set of simultaneously available jobs whose processing

times and due dates are known in advance is given. Unlike the previous case,

27

the due dates are not necessarily the same. In this case, the optimal sequence

may not be V-shaped, and it may have inserted idle time (Baker and Scudder,

1990).

As an example, suppose we have four jobs to schedule on a single

machine with processing times 1, 3, 2 and 2 for jobs 1, 2, 3 and 4 respectively.

Additionally, jobs 1, 2 and 3 have a due date of 7, while job 4 has a due date of

12. Suppose again that the natural sequence of jobs 1-2-3-4 is used. Given that

predefined sequence, a solution for the problem is shown in Figure 12.

M1

Due Date
jobs 1,2,3

Due Date
job 4

9 10 12

Figure 12. Optimal Schedules for the 1//ET problem given a predefined sequence

and different due dates

Note that in this case, jobs 1, 2 and 3 form a common due date sub

problem and job 4 does not interfere which, according to Kanet's property IV,

lets us anticipate that the solution provided is optimal. However, it may not

always be the case. Job 4's processing time could have been 4 time units, or its

due date could have been 10 or earlier, which would give us a situation similar to

the one presented in Figure 10. Another important thing to notice here is that we

can see the problem as formed by two common due date problems not

interfering with each other in this case, the first one with three jobs and a

common due date = 7, and the second one with only one job and a "common"

due date of 12.

An Earliness Reduction Procedure based on the previous properties is

presented below.

28

5.1.3 Earliness Reduction Procedure for the 1//ET problem

Using an existing schedule as an input, the Earliness Reduction Procedure

consists of exploring all jobs from right to left in the Gantt chart, identifying

groups of jobs that share the following characteristics:

1. Are adjacent,

2. Have the same (common) due date,

3. Complete earlier or at due date.

It is important to notice here that as a result of the procedure, for a

problem with n jobs, there may be at the end n unitary sets in one extreme case,

no sets at all on the other extreme, or something in between.

Notice as well that if all jobs from a group complete earlier or at the due

date, at most one can complete at the due date; otherwise there would be an

overlap. Moreover, that means that Ei=i,...n Pi - CDD; consequently, from

expression (3), A ^ CDD; therefore the problem of the group of jobs is

unrestricted.

The procedure is described via pseudo code below and starts by

determining the previously described groups of jobs, and the initial boundary

time up to which the jobs in the group can be shifted to the right without

overlapping with other jobs. That is done in steps 1 and 2 of the algorithm. In

step 3 the idle time between jobs of the same group, if there is any, is eliminated

by displacing all jobs to the right as close as possible to each other. In step 4,

each group, starting from right to left in the Gantt chart, is moved to the right so

its bth job (according to the definition given in property IV), completes as close

as possible to the group's due date. Each group's boundary time is updated

every time a group is right shifted.

The variables, functions and operations used by the procedure are

described next. Then, the pseudo code of the procedure is presented.

29

Variables:

CurrDueDate: Stores the due date of the group currently being analyzed.

GC : Group counter in steps 1 and 2. After that stores the total number of

groups.

BoundGc Variable that stores the boundary time of group number GC.

Due_DateGc '• Variable that stores the due date of group number GC.

GGc '• Stores chronologically the set of jobs belonging to group GC.

Complementary Functions:

Job [x]: Returns the job in position x in a sequence.

Position_of(x): Returns the position of job x in sequence.

Due_Date(x): Returns the due date of job x.

Start_time_of(x): Returns the start time of job x.

Completion_time_of(x): Returns the completion time of job x.

EarliestJob_of_group (g): Returns the earliest job in the schedule of group g.

LatestJob_of_group (g): Returns the latest job in the schedule of group g.

Operations:

Include x in GGC to the left: Inserts job x to the left of the set GGC displacing the

other members to the right.

Inputs:

Number of jobs in the sequence (Number_ofJobs).

An initial schedule.

5.1.4 Pseudo Code of the Earliness Reduction Procedure for the 1/ /ET

problem

Step 1. Find the boundary of the first group, if such a group exists.

Find the first early job LJ starting from right to left in the Gantt chart.

If there are no early jobs then, stop. The schedule does not change.

30

Create group counter GC. Set GC =1

Create: group GGC, BoundGC, DueJDateGC, CurrDueDate

Set CurrDueDate^ Due_Date(LJ)

Include LJ in GGC to the left

If Position_of(LJ) = Number_ofJobs then

Boundac =infinity

Else

BoundGC =Start_time_of(Job[Position_of(LJ) + 1])

End If

Set 0ue_DateGC = CurrDueDate

Step 2. Find the boundary of the rest of groups, if such groups exist.

Search for the next early job CJ to left.

If any job CJ is found then

If Due_Date(CJ) = CurrDueDate and Position_of(CJ) = Positionof (LJ) -1 then

Include CJ in set GGCto the left

Set LJ=CJ

Else

Set GC = GC+-\,

Create: GGC, BoundGC, Due_DateGC

Set BoundGC = Start_time_of(Job[Position_of (CJ) + 1])

Set CurrDueDate= DueDate(CJ), Dtye_DateGC = CurrDueDate

Include CJ in set GGcto the left

Set LJ=CJ

End If

End If

If All Jobs have been explored then go to Step 3, otherwise, Go to Step 2.

Step 3. Delete idle time inside groups.

5=1

Do while g <= GC

PLJG= Positionof (Latestjob_of_group(g))

PEJG= Position_of (EarliestJob_of_group(g))

CurrStartTime = Start_time_of{Job[PUG])

31

j= PLJG-1

Do while; >= PEJG

Right shift Job[y] a time = CurrStartTime - Completion_time_of(Job[j])

CurrStartTime = Starttimeof'(Job[j])

y=y-i

End while

0 = 0 + 1

End While

Step 4. Displace groups to the right to reduce Earliness.

For /' = 1 to GC

Set b = bth job of group /', according to property IV

Set Cb= Completiontimeof(b)

If Bound, =infinity then

Right Shift Jobs in set / a distance DueDate, - Cb

Else

Bound, = Start_time_of(Job[Position_of(LatestJob_of_group(G)) + 1])

Set PTA = Summation of processing times after bth job in set /, according to

property IV

If Bound, > Di/e_Date; + PTA then

Right Shift Jobs in set /' a distance Due_Date, - Cb

Else

Right Shift Jobs in set / a distance Bound, -{Cb + PTA)

End if

End if

Next /

5.1.5 Example of the Earliness Reduction Procedure for the 1//ET problem

Consider the 1 / /ET problem data in Table 3.

Table 3. Example of a 1 / /ET problem

Job 1

processing time 2

due date 14

2

2

2

3

3

14

4

2

14

5

3

2

6

1

18

And suppose the input schedule is given in Figure 13.

Figure 13. Input schedule for the problem in Table 3

Stepl

The first early job to the left is LJ =6

We create group counter GC. Set GC =1

And create also: Gi, Bound?, DuejDateu CurrDueDate

Set CurrDueDate= 18

G, = {6}

Position_of(6) = Number_ofJobs then we set Bound? infinity

Set Due_Date? = 18

Step 2.

The next early job to left is CJ = 4

Due_Date(4) is different from CurrDueDate, then

We set GC = 2,

And create: G2, Bound2, Due_Date2

Bound2 = Start_time_of(Job[5 + 1]) = 12

33

We set: CurrDueDate^ 14, Due_Date2 = 14

G2 = {4}

Set LJ=4

Not all Jobs have been explored then we go to Step 2.

Step 2.

The next early job to left is CJ=3

Due_Date(3) = 14 and Position_of(3) = Position_of (4) -1 then

G2={3,4}

Set LJ=3

Not all Jobs have been explored then go to 2.

Step 2.

The next early job to left is CJ=1

Due_Date(3) = 14 and Position_of(1) = Position_of (3) -1 then

G2 = {1,3,4}

Set LJ= 1

Not all Jobs have been explored then go to 2.

Step 2.

There is not any other early job to the left. All Jobs have been explored then go

to 3.

Step 3. Delete idle time inside groups.

0=1

g <= 2 then

PLJG= 6

PEJG= 6

CurrStartTime = 12

j= 6-1 = 5

since 5 is not >= 6 we set g=g+1 = 2

34

g <= 2 then

PLJG= 5

PEJG= 3

CurrStartTime = 10

y'= 5-1 = 4

y >= PEJG then

We right shift job in position y a distance = 1 0 - 1 0 = 0

CurrStartTime = 7

j=3

j >= PEJG then

We right shift job in position j a distance = 7 - 7 = 0

CurrStartTime =5

1=2

j is not >= PEJG anymore, then we set g = 3

g is not <= 2 anymore, then we go to step 4.

At this point we have defined our groups: G? = {6} and G2 = {1, 3, 4}. Additionally,

we have:

Bound? infinity, Bound2 =12 and Due_Date? = 18, Due_Date2 = 14

Now in step 4 we are going to move each group to the right so its bth job,

according to property IV, finishes as close as possible to the group's due date.

Step 4. Displace groups to the right to reduce ET.

/ '= 1

Set o = first job of group 1, according to property IV.

Set Cb= 13

Bound? infinity, then we right shift Jobs in set 1 a distance of 18-13 = 5

So far the schedule would look like the one in Figure 14.

35

M1 1

0 3 5 7 10 12 17 18

Figure 14. Partial schedule for the problem in Table 3

i=2

Set b = second job of group 2, according to property IV

Set Cb= 10

Bound, is not infinity then

Bound2 = Start_time_of(Job[Position_of(job 4) + 1])=17

Set PTA = Summation of processing times after second job in set 2, according to

property IV

Therefore PTA=2

17 > 14+ 2 then we right Shift Jobs in set 2 a distance of 14-10 = 4

M1 °^$kl.M&$M>.
1 11 in?: n i i I

0
6

3 5 9 1 1 14 16 17 18

Figure 15. Final schedule for the problem in Table 3

i=3, then we stop.

The final schedule will be as shown in Figure 15.

36

5.2 Extending the Earliness Reduction Procedure for the Rm/ /ET problem

A schedule for a parallel machine problem allocates each job to a machine and

determines its start and completion times on that machine. Using such a

schedule as an input, the Earliness Reduction Procedure is performed to

improve the ET value in a similar way as for the 1/ /ET problem, except that in

this case the procedure is applied to the schedule of each machine

independently as shown in the following pseudo code.

For each machine m

Set Numberjofjobs = Number of jobs allocated to m

Perform Earliness Reduction Procedure for schedule of machine m

End for.

5.3 Extending the Earliness Reduction Procedure for the Jm/ /ET problem

A job shop schedule is expected to have idle time between some operations

even when the objective function is a regular measure as some operations will

be dependent on the completion of preceding operations. Similar to the parallel

machine problem, the Earliness Reduction Procedure is performed for each

machine independently, but in this case each machine will have scheduled some

operations that are the last ones of their job and some that are not. If we right

shift one operation that is not the last one of its job, additional computational

work will be required to find out the time up to which the operation can be shifted

without affecting the schedule's feasibility, and the move by itself will not improve

the value of the ET. If, on the other hand, we right shift one or more groups of

operations that are the last ones of their jobs, after having identified the group's

boundary, this will not affect the feasibility of the schedule and may in fact

improve (decrease) the ET value.

Therefore, in this particular production environment, we need to include a

fourth characteristic to form groups of operations in the adjusting procedure.

Consequently, the procedure consists of exploring all operations from right to left

37

in the Gantt chart, identifying groups of them that share the following

characteristics:

1. Are adjacent.

2. Belong to jobs with the same (common) due date.

3. Belong to jobs that complete early or at the common due date.

4. Are the last operation of its job.

Taking into account the four characteristics, the pseudo code for the

Jm/ /ET problem is the same as the one for the Rm/ /ET case presented in the

former section.

5.4 Conclusion

We studied some characteristics of the 1 / /ET problem when the due date of all

jobs is common. Based on that, we proposed an Earliness Reduction Procedure

to reduce the ET to be performed on a schedule produced for a single machine,

parallel machine, flow shop or job shop problem when the objective function is

the ET and the due dates may be distinct.

Notice that the input schedule to perform the Earliness Reduction

Procedure is not necessarily one produced by the Random Key Genetic

Algorithm (RKGA) (which will be explained in the next chapter) but a feasible

one. This makes the procedure more general and usable by other scheduling

models once an initial schedule has been produced.

38

6 A GENERIC RANDOM KEYS GENETIC ALGORITHM FOR SHOP

SCHEDULING PROBLEMS

A wide variety of exact and heuristic methods exists in the literature to address

specific scheduling problems for specific environments, objective functions and

problem characteristics.

Among the great body of literature dedicated to scheduling problems with

Regular Performance Measures, the work of Bean (1994) and Norman and Bean

(1997) stands out as their approach can be used to solve scheduling problems in

different production settings. Bean (1994) proposed a Random Keys Genetic

Algorithm (RKGA) encoding to solve single and parallel machine problems, while

Norman and Bean (1997) proposed another version for the classical Job Shop

Scheduling Problem considering the regular performance measure of the

makespan. In this chapter we present a generalization of the RKGA approach to

address single machine, parallel machine, flow shop and job shop problems

when the objective function is a regular measure. Then, a connection will be

made with the Earliness Reduction Procedure discussed in Chapter 5 to

consider the non-regular measure of Earliness and Tardiness.

6.1 Random Key Genetic Algorithms (RKGA)

Genetic Algorithms (GA) is a search technique used to solve optimization

problems based on the principles of natural selection. Many versions of GA have

been proposed to solve scheduling problems based on different solution

representations (schedules) by means of diverse types of chromosomes, which

encode the genetic information of an individual or solution. Once a

representation is established, a fitness function is required to evaluate the quality

of each solution. The process starts by generating an initial population of

individuals, evaluating their fitness, and repeatedly applying a set of genetic

operators to produce new solutions (offspring). Based on fitness values, the

selection operator probabilistically chooses individuals for inclusion in the next

39

generation and/or as parents. The crossover operator recombines parents to

produce offspring that will form the next generation. In order to improve the

species, the fittest individuals are preferred to be recombined. Through a

mutation operator, some individuals are randomly altered to guarantee

population diversity. The evolution process continues until the GA converges to

its best solution.

Despite the diverse GA approaches that have been used to solve

scheduling problems based on different representations, most of them have the

weakness of producing infeasible solutions after applying the crossover operator

to recombine partial solutions, especially for complex environments like Job

Shops, where not all jobs have the same route through the machines. The

RKGA approach has the advantage that all offspring produced after the

crossover operations are feasible solutions. Another advantage of RKGA is that

schedules for different environments can be represented in a generic fashion,

which will make it possible to represent scheduling problems in various

production environments without the need to have too many customized

representations for the different problems under consideration. Therefore, we

favored the use of RKGA as opposed to other meta-heuristics for our Predictive

Reactive scheduling algorithms. The selection of RKGA has also been

supported by the fact that it has recently been successfully implemented for

different scheduling problems such as the work by Valente and Gongalves

(2009) for the single machine problem of minimizing the earliness and quadratic

tardiness, as well as the work by Okada et al. (2009) and Mendes, Gongalves,

and Resende (2009) for project scheduling.

6.2 RKGA representation and Decoding Procedure

RKGA representation encodes solutions with uniformly generated random

numbers between 0 and 1 called random keys. For a single machine problem

with n jobs, for example, a chromosome consists of n random numbers between

0 and 1, one for each job. A decoding procedure is used to find the schedule

that corresponds to a chromosome. Such a decoding procedure for a single

40

machine problem consists of sorting the random keys in ascending order of their

random keys. Starting jobs processing in that order as early as possible will

produce a schedule where the objective function can be evaluated to calculate

the chromosome's fitness.

As an example, suppose we have four jobs to schedule on a single

machine with processing times 3, 4, 5 and 2 for jobs 1, 2, 3 and 4 respectively.

According to the representation, a possible chromosome for the problem will be:

Job 1 2 3 4

Random Keys 0.682 0.726 0.096 0.084

After ordering the random keys in ascending order we obtain the

sequence: 4 - 3 - 1 - 2. Assuming that all jobs are processed as early as

possible the corresponding schedule can be represented in the Gantt chart in

Figure 16, where M1 is the only machine in this problem:

"••wtwwtwiamatttiHiBiii.il mini mmiiimimiii.iiiMn I' t : z | _ _
2 7 10 14

Figure 16. Schedule for a single machine problem

In parallel machine problems, there is a set of n one-operation jobs to be

processed on m parallel machines which can be identical, with different speeds

irrespective of the jobs, or with a speed depending on the job.

To create a chromosome that encodes a solution for a n-job, m-machine

problem, we generate, for each job, a random integer number between 1 and m

and add to it a uniform random (0,1) number. While decoding the chromosome,

the integer number will represent the machine to which the operation is

http://��wtwwtwiamatttiHiBiii.il

41

assigned, and the fractional part will determine the order on each machine in the

same way as for the single machine problem. Processing the jobs in that order

as early as possible on their corresponding machines will produce a schedule

from which the chromosome's fitness is calculated.

In more complex cases like the Job Shop Scheduling Problem (JSSP), a

job consists of multiple operations that follow a specific route and different jobs

may have different routes. A chromosome is formed by pairs of uniformly

generated random numbers between 0 and 1, a pair for each operation. As in

the previous cases, the first number, the random key, is used as a sorting key to

decode a solution. At each step the decoding procedure takes the random key

of the next unscheduled operation of each job and chooses the one

corresponding to the lowest value and schedules it next. The second number,

called the delay factor, gives the possibility of exchanging the winner operation

with respect to the random key value criterion, with another operation competing

for the same machine since that could produce a better schedule at the end. The

resulting solution will belong to the set of semi active schedules and eventually

to the subset of active schedules. In a semi active schedule it is not possible to

start any operation earlier without altering the sequence on any machine. In an

active schedule no operation can be started earlier without either delaying some

other operation or violating the constraints (French, 1982). In other words, it is

not possible to drag an operation and drop it in a hole, earlier in the schedule

keeping the feasibility. That characteristic of the decoding procedure is

especially useful for regular measures of performance (or objective functions),

since it is known that the set of semi active schedules is dominant for them

(Baker and Trietsch, 2009).

As an example, consider a 2 job, 3 machine job shop problem where the

objective is to minimize Cmax, (J3/ /Cmax). Each job is ready to be processed at

time zero, and all machines are continuously available. The processing time and

machine routing of each operation of each job are given in Table 4. In this case

job 1's route through the machines is: 1-3-2, and job 2's route is 3-2-1.

42

Table 4. A 2 x 3 Job Shop problem

Job Processing Time(Machine)

i 2(1) 3(3) 2(2)
2 3(3) 4(2) 1(1)

An example of a chromosome for the problem is given below:

(Job, Operation) (1,1) (1,2) (1,3) (2, 1) (2, 2) (2, 3)

Random Key 0.039 0.634 0.075 0.141 0.901 0.857

Delay Factor 0.231 0.553 0.732 0.593 0.489 0.934

Since a job has different operations which may be processed on different

machines, in order to distinguish them the triple (/, j, k) is used, where /

represents the job,/ the operation and k the machine.

The random key of each operation will be presented in brackets []. The

procedure to decode the previous chromosome in a solution is as follows.

Initially the first operation of all jobs is programmable, i.e. ready to be scheduled.

So, among them we select the one with the minimum random key. In this case

we have two programmable operations (1, 1, 1) [0.039] and (2, 1, 3) [0.141].

The minimum random key is 0.0390 corresponding to (1, 1, 1). The operation

does not create idle time on its machine, so it is programmed to start at time 0

and end at time 2 (since the processing time is 2). It is then removed from the

set of programmable operations.

The new set of programmable operations is formed by (1, 2, 3) [0.634]

and (2, 1, 3) [0.141]. The candidate operation this time is (2, 1, 3) which does not

create idle time on its machine, so it is programmed from time 0 to 3.

The new programmable operations are (1, 2, 3) [0.634] and (2, 2, 2)

[0.901]. The candidate operation this time is (1, 2, 3). The operation does not

create idle time on its machine; therefore it is programmed from time 3 to 6.

43

The new programmable operations this time are: (1, 3, 2) [0.075] and (2,

2, 2) [0.901], and the candidate operation is (1, 3, 2). If we scheduled such an

operation it would start at 6 and complete at 8 creating idle time on machine 2

from 0 to 6. Since the candidate operation would create some idle time the Move

Search is invoked. Such a procedure aims to improve the quality of the resulting

schedule. We check if there are other programmable operations 0(i,j,k) on the

same machine as the candidate operation. That is the case of operation (2, 2,

2). Then we check the condition of the move search to replace the candidate

operation:

If S(i,j,k)+ DF(i,j,k) * p(i,j,k) < Sco then OO.IM), becomes the candidate operation

Where:

So,i,k) is the start time of the programmable operation,

DF(i,),k) is the delay factor of the programmable operation,

po.M is the processing time of the programmable operation,

Sco is the starting time of the candidate operation.

In our case we have: (l,j,k) is (2, 2, 2), S(2,2,2) =3, DF(2,2,2) = 0.489,

P(2,2,2) = 4 and Sco = 6. The condition holds, and (2, 2, 2) becomes the

candidate operation and is scheduled from 3 to 7.

The new set of programmable operations is formed by (1, 3, 2) [0.075]

and (2, 3, 1) [0.857]. The candidate operation this time is (1, 3, 2). If we

schedule such an operation, it would start at 7 and complete at 9, not creating

idle time on machine 2, which means it is programmed.

Finally, the only remaining programmable operation (2, 3, 1) is scheduled

from 7 to 8. The resulting Gantt chart is shown in Figure 17.

44

(1.1,1)

| (2.2,2)

S-JPll I I n.2.3)

(2,3,1)

(1,3,2)

0 2 3 6 7 8 9

Figure 17. Schedule for the chromosome on Table 4

6.3 A generalized Random Keys representation for Scheduling Problems

To have a representation that embraces the four production settings targeted in

this dissertation, a chromosome must allow for recording of information for the

different operations of a job in case there are multiple operation jobs, including

their machine allocation in the case of parallel machines.

Let us define for each operation, a machine list Lo as:

Lo = (m-L.m^ ...mt0) (5)

where Lo\s the set of machines in which operation ocan be processed, and to

is the total number of machines in which operation ocan be processed.

A chromosome will be formed by triplets of random numbers for each

operation o, namely, the machine key, the random key and the delay factor. The

machine key is a random integer number between 1 and to that will determine a

position in the operation's machine list, thus the machine selected to process the

operation. The random key and the delay factor are defined and used in the

same way as discussed earlier. As an example, suppose we have five jobs to

process on two parallel identical machines (same speed). The processing times

are given in Table 5.

Table 5. A 5-job 2 parallel machine

Job

Processing time

1

3

2

4

3

5

4

2

5

4

According to the introduced representation, since all jobs can be

processed on either of the two machines, the machine list for each operation will

be the same: (1, 2), and the equivalent chromosome will be as follows:

Job 1 2 3 4 5

Machine Key 2 1 1 1 2

Random Key 0.548 0.380 0.693 0.639 0.497

Delay Factor 0.448 0.973 0.397 0.392 0.732

Note that as all jobs have one operation, no idle time is created when

scheduling each of them; therefore, it is not necessary to use the delay. The

resulting schedule is the same as the one in Figure 18.

This representation has an advantage. Consider a job shop in which there

may be one or several machines of the same type. That is, jobs may have

several operations that may be processed over a set of parallel machines. In this

case we can think of a job shop with different work centers with a series of

parallel machines in each one. This is a more general environment called in the

literature a Flexible Job Shop (Pinedo, 2008). Since we are considering both the

list of machines for each operation and the random keys and delay factors, the

representation can be used with Flexible Job Shop Problems as well.

As an example, consider the job shop problem of Table 4, but in this case

each operation can be processed on the machines listed as shown in Table 6.

0 4 6 7 11

Figure 18. Schedule for a 5-job 2-parallel machine problem

Table 6. A 2 x 3 Flexible Job Shop problem

Job Processing Time(Machine List)

~ 2(1,5,6) 3QA) 2(277)

2 3(3,4) 4(2,7) 1(1,5,6)

According to the generalized representation, a possible chromosome for

the problem is shown next:

(Job, Operation) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3)

Machine Key 2 1 1 1 1 2

Random Key 0.039 0.634 0.075 0.141 0.901 0.857

Delay Factor 0.231 0.553 0.732 0.593 0.489 0.934

That corresponds with the machine allocation presented in Table 7.

Table 7. Machine selection for the problem of Table 6

Job Operation

1 5 3 2

2 3 2 5

47

Once we know the machine selection for each operation, we can follow

the decoding procedure explained for the case of job shop problems. The

resulting schedule is presented in Figure 19.

(2,1,3)

(1,1,5)

(2,2,2)

(1,2,3)

(1,3,2)

0 2 3 6 7 8 9

Figure 19. A schedule for the problem on Table 6

Notice that the decoding procedure will build a feasible solution based on

the chromosome for any objective function, regular or non-regular, that can be

evaluated. However, the solution produced is a semi active schedule, which will

compact to the left. This is advantageous for regular measures but may not

always be advantages for non-regular measures as was explained in chapter 5

for the case of ET where the optimal solution may not necessarily be a schedule

that is compact to the left. Therefore, when the objective is to minimize ET, the

Earliness Reduction Procedure is applied to the schedule produced by the

decoding procedure before evaluating the fitness of a chromosome.

6.4 Incidence of the Move Search procedure to solve Jm/ /ET problems

As explained previously, the Move Search is a procedure invoked every time a

candidate operation, if scheduled, would create idle time on its respective

machine. Depending on the Delay Factor value, if there are other programmable

operations that could start before the candidate operation, one of them may

become the new candidate and be scheduled before the former candidate

48

operation, even if it delays the start of the former candidate. However, if one of

these operations can start and complete prior to the start of the candidate

operations, it will then be scheduled first regardless of its delay factor value due

to the condition of the Move Search (If S(ij,k)+ DFoj.k) * puk) < Sco then opj.k),

becomes the candidate operation). Note that If S(ij,k)+ puk) < Sco, then the

condition will always hold; thus, 0(\,\M) becomes the candidate operation.

The way in which the Move Search is designed implies that for certain

problems some sequences will never be produced by the RKGA. As an

example, consider the small J2/ /ET problem instance in Table 8.

Table 8. A J2/ /ET Job Shop problem

Job Processing Time(Machine) Due date

1 3(1) 4(2) 9

2 2(2) 9

According to the RKGA decoding procedure, the first operation to

schedule will be either (1, 1, 1) or (2, 1, 2) since (1, 2, 2) is the second one of its

job.

If (1, 1, 1) is scheduled first, either (2, 1, 2) or (1, 2, 2) may be the next

candidate. If (2,1, 2) is the candidate it will be scheduled first on machines 2 and

the final sequence on that machine will be (2, 1, 2) - (1, 2, 2) as shown in Figure

20.

49

M1

M2

d1=d2=9

(1,1,1)

(1,2,2)

0 2 3 7 9

Figure 20. Schedule for the J2/ /ET problem of Table 8

If (1, 1, 1) is scheduled first but (1, 2, 2) is the next candidate, the

condition for the Move Search procedure holds in this case: S(2,i,2) + DF(2,1,2) *

0(2,1,2) < S(1,2,2) that is: 0 + DF(2,1,2) * 2 < 3 (recall that by definition 0< DF <

1). Therefore, (2, 1, 2) is scheduled first, and the final sequence on machine 2

will be again (2,1, 2) - (1, 2, 2), as shown in Figure 20.

If (2, 1, 2) is scheduled first, it will start at time 0 on machine 2, then

(1, 1, 1) and (1, 2, 2) will be scheduled in that order since they belong to the

same job. Consequently, the final schedule will correspond to the one shown in

Figure 20.

In conclusion, for this problem, regardless of the random keys and delay

factors that are randomly generated, the schedule yielded by the RKGA will be

the same in all cases. Notice that this schedule is active, which is very

convenient for the case of regular objective functions. However, if we consider

the ET measure and therefore apply the Earliness Reduction Procedure to such

a schedule, we obtain only one group, formed by operations (2, 1, 2) and (1, 2,

2), which will be compacted and right shifted until operation (2, 1, 2) completes

at time 9, the group's common due date, as shown in Figure 21.

50

M1

M2

d1=d2=9

(1,1.1? I , _ _ _
B H I (1,2,2)

0 3 7 9 13

Figure 21. Resulting schedule after Earliness Reduction Procedure
for figures 15's schedule

As can be seen, the ET value for this schedule is 4. However, this is not

the optimal solution. If we schedule (1, 2, 2) from 5 to 9 and (2,1, 2) from 9 to 11

the ET value is 2. But as was just shown, the sequence (1, 2, 2) - (2,1, 2) will not

be yielded by the RKGA since the Move Search procedure will prevent some

solutions from being obtained. To avoid that some potentially optimal solutions

are discarded for ET problems in this work; the decoding procedure does not

perform the Move Search if the objective function is ET.

In the following section the genetic operators and the GA dynamics are

explained.

6.5 Crossover

The crossover operator recombines two parents P1 and P2 to produce two

offspring, C1 and C2, that compete to be included in the next generation. As was

stated earlier, one of the main advantages of the RKGA approach is that all

offspring produced after the crossover operations are feasible solutions. The

presented generalized representation maintains that characteristic.

Specifically, parameterized uniform crossover is applied in the RKGA as

used by Norman and Bean (1997). In this type of crossover, a uniformly

distributed (0, 1) random number is generated for each operation of the problem.

If the number is greater than a value called the crossover probability (0.7 in this

work), the first child solution, C1, will have the same triplet (machine key,

random key and delay factor) as P1 for this operation, and child solution C2 will

have the same triplet as P2 for this operation. Otherwise, C1 takes P2's triple,

51

and C2 takes P1's triple. An example with two randomly generated

chromosomes for the previous flexible job shop problem is presented below. The

Random Numbers shown after the two parent chromosomes correspond to the

value to compare against the crossover probability. The value for this probability

is taken from Norman and Bean (1997).

Parent 1

Machine Key 3 1 1 1 1 2

Random Key 0.591 0.790 0.930 0.130 0.687 0.934

Delay Factor 0.995 0.082 0.939 0.007 0.882 0.851

Parent 2

Machine Key 2 2 1 2 1 1

Random Key 0.786 0.987 0.570 0.166 0.694 0.743

Delay Factor 0.990 0.799 0.239 0.600 0.929 0.041

Random Number 0.176 0.996 0.719 0.378 0.341 0.590

Offspring 1

Machine Key 2 1 1 2 1 1

Random Key 0.786 0.790 0.930 0.166 0.694 0.743

Delay Factor 0.990 0.082 0.939 0.600 0.929 0.041

Offspring 2

Machine Key 3 2 1 1 1 2

Random Key 0.591 0.987 0.570 0.130 0.687 0.934

Delay Factor 0.995 0.799 0.239 0.007 0.882 0.851

Notice that any chromosome will inherit a valid machine key, random key

and delay factor, therefore, all offspring will represent feasible solutions.

52

After generating both offspring, fitness is evaluated, and the best one is

selected to become part of the next generation.

6.6 Selection

The selection operator acts in one of two forms. In the first form, pairs of

individuals are randomly selected from the entire population to produce two

offspring by using the crossover operator. The fittest one is selected to become

part of the next generation. Therefore, there is no guarantee that individuals with

the best fitness found so far will survive to each subsequent generation. To

overcome this problem, there is a second form of selection, used as a

complement in which a certain percentage of the fittest individuals are selected

directly to survive to the next generation. This second form is referred to as

reproduction. As a consequence, the best solution improves (decreases)

monotonically. The fittest individuals of the current population are selected to

survive to the next generation by reproduction. The percentage of the fittest

individuals that will survive will be referred to as the Reproduction_%. Another

percentage of the next generation, that we will call Cross_%, is created by

crossover as was explained.

6.7 Mutation

The objective of mutation is to diversify the species. Traditionally, mutation is

done by altering part of the genetic information of some individuals. Following

the line of Bean (1994)'s work, in order to add diversity to the population, a

percentage of new individuals, which we will refer to as Mutation_%, is created

to become part of the next generation. This type of mutation is sometimes called

immigration.

6.8 Stopping Criteria

Two stopping criteria are used here:

53

1. A limit of generations (Generations) is completed.

2. The limit of iterations without an improvement (IWI) in the best solution

found so far has been reached.

6.9 Evaluation of fitness

The fitness of all individuals is evaluated by using the decoding procedure to

build the schedule. If the objective function is ET, the Move Search is not

performed while decoding the chromosome into a schedule and the Earliness

Reduction Procedure (discussed in Chapter 5) is applied to the resulting

schedule. Otherwise, the Move Search is performed, and the Earliness

Reduction Procedure is not invoked.

6.10 Overall view of the GA

The GA uses two inputs: the problem data and the parameter values

(Reproduction_%, Cross_%, Mutation_%, Generations, IWI, crossover

probability) and creating an initial population (Recall that IWI is the limit of

iterations without an improvement). The fitness of all individuals is evaluated.

Then the population is subjected to the genetic operators of reproduction,

crossover and mutation until the stopping criterion is reached. Pseudo code for

the algorithm is presented below.

6.11 Pseudo Code of the RKGA

Generate initial population

Evaluate fitness of all individuals

Order the population based on their fitness

Repeat until the stopping criterion is met

Copy the Reproduction_% best individuals to next generation

54

Generate Cross_% individuals by crossover. Copy them to next

generation

Generate Mutation_% individuals. Place them in the next generation

Evaluate fitness of new individuals

Order the population based on their fitness

End Repeat

Return the individual with the best global objective fitness

6.12 Conclusions

We have reviewed the RKGA approach for scheduling problems where the

objective function is a regular measure. We presented an integrated encoding

approach to be used in the four different production settings targeted in this

dissertation. Then we explained how to connect to the Earliness Reduction

Procedure with the RKGA when the objective function is the ET. The final

version of the RKGA, which we have called the predictive model, allows for

generate predictive (or initial) schedules for problems coming from different

environments with regular measures or the non-regular Earliness and Tardiness

measures, with common or distinct due dates. The experiments to test this

predictive model are presented in the next chapter.

55

7 COMPUTATIONAL EXPERIMENTS FOR THE PREDICTIVE MODEL

As discussed in earlier chapters, two models are presented in this dissertation.

What we have called the "predictive model" to the generalized RKGA presented

on Chapter 6, creates a predictive (or initial) schedule. A second RKGA, called

the "reactive model", which will be introduced in Chapter 8, produces a schedule

in response to a disruption. Both models were implemented in Visual Basic 2008

and tested on a 2.5 GHz Intel Core Quad running Windows Vista.

Since the model can be used in four different basic production

environments, for regular and non-regular measures, two representative types of

problems were selected to test its quality. The first problem consists of

minimizing the maximum completion time of a set of one operation jobs over a

set of unrelated parallel machines, which are machines that are capable of

processing any of the available jobs but the processing times for the same job

may differ from one machine to another. In Graham's notation the problem is

represented as Rm/ /Cmax. The second problem, a Job Shop type, consists of

minimizing the total Earliness and Tardiness for a set of multiple-operation jobs

which have to be processed on a set of machines, each of which is unique in the

shop. In Graham's notation the problem is represented as Jm/ /ET. The problem

is similar to the one presented in the example in section 2.5 but the due dates

are not the same for all jobs.

The first type of problem is representative in the sense that it will let us

know how the predictive model behaves in the most general case of parallel

machine environments with a regular measure such as the makespan (Cmax).

The second type of model is representative in the sense that it will let us know

how the predictive model behaves in the more general case of jobs with multiple

operations, such as the Job Shop Scheduling Problem, when using the non-

regular measure of Earliness and Tardiness, which will let us test the quality of

the Earliness Reduction Procedure proposed on chapter 5 to solve problems

with such objective functions.

56

7.1 Unrelated Parallel Machines Problems

Sets of problems with two, four and six machines and 20, 40 and 60 jobs, with

three problem instances per problem size, were generated. Using the same

distribution as in Martello, Soumis and Toth (1997) and Arnaout (2006), the

processing times were randomly generated following a discrete uniform

distribution U[1,9].

Based on preliminary tests and the work of Bean (1994), the reproduction,

crossover, and immigration rates were set as follows. A reproduction rate of 20%

is used. 84% of the next generation is obtained by parameterized uniform

crossover as explained in Chapter 6. 6% of the population is mutated by

applying the concept of immigration, where at each generation a certain number

of individuals is randomly generated to become part of the new generation. The

parameter values for the stopping criteria and population size, found to be

appropriate by Norman and Bean (1997), are used here. The GA stops when a

maximum number of 250 iterations has been reached or 75 generations have

passed without any improvement of the best solution found so far. Norman and

Bean (1997) used for Jm/ /Cmax problems a population size of 300 plus two

times the number of operations to be scheduled. Pilot tests on representative

problems for the Rm/ /Cmax problem showed that a size of 300 individuals plus

one time the number of operations to be scheduled is enough for the problem

set under consideration. Therefore, since Rm/ /Cmax problems are composed of

one-operation jobs, for problems with 20, 40 and 60 jobs the population size was

set to 320, 380 and 420 individuals respectively. Each instance was run for 15

replications using the previously mentioned parameters.

7.2 Integer programming formulation for Rm/ /Cmax

The Rm/ /Cmax problem can be formulated as follows (Potts, 1985).

57

Objective: Minimize Cmax

Subject to

Pij * x^ < Cmax, Vi = 1,..., m (C1)

Xtj = l,Vj = l,...,n (C2)
i= i

*0- 6 {0,1}, (i = l,...,n;y = l,.. . ,m) (C3)

Where:

/?/>: processing time of joby on machine /.

. (1 if job / is assigned to machine i
Xif. binary decision variable = \ „ ' .

[0 Otherwise

Constraints (C1) guarantee that the makespan is at least as large as the

total completion time of any machine.

Constraints (C2) and (C3) ensure that each job will be assigned exactly to

one machine.

The previous mixed integer programming model was used to formulate

and obtain the optimal solution of all the generated instances in LINGO 12.0, a

tool provided by Undo Systems, Inc.

7.3 Results for the Rm/ /Cmax problem

Table 9 summarizes the results over the 15 runs for each of the

benchmark problems. The fourth column presents the optimal solution obtained

in LINGO. The Best found (the fifth column) is the best solution found over the

15 runs. The deviation from the optimum (OF Deviation) for each run is

calculated as:

„ „ ^ . ^. [RKGA Solution-Optimal Solution]x 100 ,_.
OF Deviation = :—7—— (6).

Optimal Solution '

58

The values in the sixth and seventh columns correspond to the average

and standard deviation of the OF Deviation calculated over the 15 runs

according to equation 6 above. The last two columns report the average and

standard deviation of the runtime over the 15 runs of each instance.

For the instances tested, the deviation from the optimal value is, in all

cases, no greater than 3.8%. The optimal value was found in at least one run for

all problems. The RKGA behaves very well for problems with two machines

finding the optimal solution in all runs for all problems. As the number of

machine increases, and since there are more feasible solutions, the RKGA takes

more iterations and, consequently, more time to find a final solution.

Table 10 presents the average deviation values for the different sizes of

the Rm/ /Cmax problem, and we see that the overall average deviation from the

optimum is 0.9%.

Although for the studied problem sizes the instances are solved by

LINGO in a second, we should take into account that the problem is NP-hard.

Furthermore, for other objective functions such as total tardiness (Rm/ /T) and

maximum lateness (Rm/ /Lmax) the problem is NP-hard as well, and the use of

mathematical programming is computationally demanding and the results not

practical even for small problem instances, as reported by Pfund, Fowler and

Gupta (2004). On the other hand, the computational effort taken by the RKGA to

run using such objective functions instead of Cmax, is similar, since calculating

the fitness value consists of a sequential search on an array with a size equal to

the number of jobs in all cases.

Table 9. Results for the Rm/ /Cmax problem

Jobs Machines
number

;m

er

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Optimal

Value

39

44

39

11

17

14

7

7

11

57

78

67

27

24

21

10

13

14

109

118

107

37

39

33

21

18

18

Best

found

39

44

39

11

17

14

7

7

11

57

78

67

27

24

21

10

13

14

109

118

107

37

39

33

21

18

18

Deviation from

Optimum (%)

Average

0.0

0.0

0.0

0.0

0.0

0.5

3.8

1.0

3.0

0.0

0.0

0.0

0.0

1.4

1.6

0.0

0.0

3.8

0.0

0.0

0.0

0.9

0.9

2.6

2.5

0.7

0.4

Std.

Dev.

0.0

0.0

0.0

0.0

0.0

1.8

6.5

3.7

4.4

0.0

0.0

0.0

0.0

2.0

2.3

0.0

0.0

3.7

0.0

0.0

0.0

1.3

1.3

1.1

2.5

2.0

1.4

Runtime (minutes)

Average

3.8

4.0

3.9

4.5

4.5

4.7

5.4

5.1

5.1

11.0

11.3

11.2

14.1

15.0

14.5

14.6

15.7

17.5

22.5

23.9

22.5

28.7

29.7

28.3

32.6

32.0

35.3

Std.

Dev.

0.1

0.1

0.1

0.2

0.1

0.2

0.9

0.3

0.4

0.2

0.6

0.5

0.6

1.2

0.8

0.4

0.7

2.5

0.8

0.8

0.5

2.3

2.2

1.4

2.9

2.8

3.1

20

40

60

Table 10. Average Results for Rm/ /Cmax problem

Jobs

20

40

60

Machines

Average

2

4

6

2

4

6

2

4

6

Deviation from

Optimum

Average

0.0

0.2

2.6

0.0

1.0

1.3

0.0

1.5

1.2

0.9

i (%)

Std.

Dev.

0.0

0.6

4.9

0.0

1.5

1.2

0.0

1.2

1.9

1.3

Runtime

(minutes)

Std.
Average

Dev.

3.9

4.6

5.2

11.2

14.5

16.0

23.0

28.9

33.3

15.6

0.1

0.2

0.5

0.4

0.9

1.2

0.7

2.0

2.9

1.0

7.4 Results for the Jm/ /ET problem

Three sets of problems with five jobs and five machines, seven jobs and seven

machines, and nine jobs and nine machines and with 12 problem instances per

set were generated. The processing times were randomly generated following a

discrete uniform distribution U[1,9] as in Demirkol, Mehta and Uzsoy (1998). In

order to have all jobs visiting all machines in some random order, the job routes

were generated from another discrete uniform distribution U[1 ,m] where m is the

number of machines.

As in Blocher, Chhajed and Leung (1998) the due dates are set as a

multiple of the total job's processing time. Such multiple determines the tightness

of the due date. Three levels of tightness were used to calculate the due dates of

the jobs: 3, 1.4 and 0.7. The first one is a loose due date factor The last multiple,

0.7 is considered a tight due date factor in the sense that guarantees in advance

that the job is going to be late in any solution. The third multiple, 1.4, was chosen

arbitrarily as something in between, for which there is no certainty that the job

61

will be able to complete on time or not. Among the 12 instances of each problem

size, four problems with each of the three tightness levels were solved.

7.5 Integer programming formulation for Jm/ /ET

Based on the disjunctive graph representation of the Jm/ /Cmax problem (see

Pinedo (2008)), the Jm/ /ET problem can be formulated as follows.

ETj
7 = 1

Subject to

yhj - ytj > ttj V(i,y) -+ (h,j)eA, (C4)

Cj- yij = tij v(i,y>yv, (C5)

Yij - ytk ^ kk or yik - ytj > ttj V(i, k) and (i,j), i = 1, ...m, (C6)

Cj - dj < ETj V; = 1,..., n, (C7)

dj - Cj < ETj V; = 1,..., n, (C8)

ytj>0 V(i,j)eN, (C9)

Where:

yif. starting time of operation (/, J), that is, operation on machine / of job /

tif. processing time of operation /of job/

Cf. completion time of job/

df. due date of job /

FT/. Earliness/Tardiness objective for job/

FT. total Earliness/Tardiness

/V;Set of all operations (i,j)

A: Set of precedence constraints (i, j) —> (h, j), this denotes two consecutive

operations of job /

Constraints (C4) guarantee the precedence relations between any two

consecutive operations of each job.

62

Constraints (C5) express the completion time of any job as its starting

time plus its processing time.

Constraints (C6) ensure that there are not overlaps between any pair of

operations of different jobs on the same machine. They are implemented in

Linear Programming as follows:

Va ~ Vtk > ttk - Mb (C6)

yik - ytj > tu - M(i - b) (C7)

where M is a big constant such that M>tik and M>tik, and b is an integer binary

variable. If b =1, the second constraint is executed and the first one becomes

redundant; if b=0, the first constraint is executed and the second one becomes

redundant.

Constraints (C7) and (C8) imply the minimization of the absolute deviation

between each job's completion time and its due date.

The previous integer programming model was used to formulate and

obtain the optimal solution of all the generated instances in LINGO 12.0.

7.6 Results for the problem Jm/ /ET

Table 11 presents the results of the 15 runs for each instance. The fourth

column presents the optimal solution obtained by LINGO.

The Best found (fifth column) is the best solution found by the RKGA over

the 15 runs. The deviation from the optimum is calculated in the same way as

explained in equation 6 section 7.3.

Similarly to section 7.3, the values in the sixth and seventh columns

correspond to the average and standard deviation of the Objective Function

Deviation calculated over the 15 runs. The last two columns report the average

and standard deviation value of the runtime over the 15 runs of each instance.

Table 11. Results for the Jm/ /ET problem

Jobs, Due date
machines tightness

5,5 Loose

Moderate

Tight

7,7 Loose

Moderate

Tight

9,9 Loose

Moderate

Tight

Problem
number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Optimal
Value

0

0

0

0

7

8

15

4

75

67

67

67

4

0

4

5

2

9

3

8

166

163

151

144

0

65

0

69

210

336

304

269

2555

2479

2730

2410

Best
found

0

0

0

0

7

8

15

4

75

67

67

67

4

0

4

5

2

9

3

9

166

163

151

144

0

65

0

69

252

374

368

322

2574

2529

2730

2526

Deviation from
Optimum (%)

Average ^ d .

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

6.7

0.0

0.0

13.3

0.0

0.0

0.0

0.0

0.0

0.0

0.0

9.0

35.7

13.4

29.0

27.6

1.6

4.2

0.9

6.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

17.6

0.0

0.0

3.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

34.8

9.5

3.5

5.4

10.5

0.5

2.3

1.3

1.1

Runtime (minutes)

Average ^ d .

0.30

0.00

0.10

0.10

4.50

4.40

4.30

4.40

3.90

4.00

3.80

4.00

12.50

2.90

13.50

13.00

17.30

15.00

13.70

16.60

15.20

15.80

18.00

13.90

10.50

37.30

11.20

35.90

58.70

56.60

49.50

50.20

46.20

47.30

50.00

46.20

0.10

0.00

0.10

0.10

0.00

0.10

0.10

0.10

0.10

0.10

0.00

0.20

0.70

1.10

0.70

0.90

2.80

0.80

0.70

3.00

3.00

3.00

4.00

1.30

2.20

8.80

1.30

7.50

7.00

7.30

9.90

12.20

11.80

10.10

9.10

10.40

64

For 5 jobs / 5 machines and 7 jobs / 7 machines problems, the algorithm's

performance is excellent. The deviation from the optimal solution is zero in 22 of

24 cases, meaning that it found the optimal solution in all 15 runs for all those 22

instances. The two instances for which the optimum was not found in all runs

correspond to the moderate value of the due date tightness, instances 17 and 20

in Table 11, with average deviation from the optimum of 6.7% and 13.3%

respectively. In this case the general average of the deviation from the optimal is

higher (5%) for the problems with a moderate level of due date than that for

problems with loose and tight due dates (0%) as can be seen in Table 12. Such

a pattern is more obvious for the 9 jobs / 9 machines problems, where the

averages of the Deviation from the optimal for the problems with loose and tight

due dates are 2.2% and 3.2% respectively, while the correspondent value for the

moderate due date type is 26.4%. The results show that problems with such a

tightness level are harder to optimize for the proposed RKGA than problems

belonging to the other two levels. For instances with tight due dates, it is known

in advance that all jobs are late, so the problem becomes a Total Tardiness one.

The total tardiness belongs to the set of regular measures in which case the

solution space is restricted to the set of active schedules (Baker and Trietsch,

2009). Such knowledge is included in the algorithm, by enabling the Move

Search, explained in Chapter 5, and disabling the Earliness Reduction

Procedure as there is no need to move any operations to the right. The Move

Search causes the RKGA to produce semi active schedules that are more

compact to the left. However, we cannot do the same for non-regular measures

like ET as was explained in section 6.4. Therefore, for problems with moderate

and loose due dates the RKGA has to search in the more general set of all semi

active schedules, which affects its performance. We conjecture that this explains

why the results for problems with a tight due date are better (1.1% in average for

all 12 instances with a tight due date) than those for problems with moderate due

dates (10.5% on average for all 12 problems with a moderate due date).

65

Table 12. Average Results for Jm/ /ET problem

Jobs i

machines

5,5

7,7

9,9

Due date

tightness

Loose

Moderate

Tight

Loose

Moderate

Tight

Loose

Moderate

Tight

Average

Deviation from

Optimum

Average

0.0

0.0

0.0

0.0

5.0

0.0

2.2

26.4

3.2

4.1

i (%)

Std.

Dev.

0.0

0.0

0.0

0.0

5.2

0.0

8.7

7.2

1.3

2.5

Runtime

(minutes)

Average

0.1

4.4

3.9

10.5

15.6

15.7

23.7

53.8

47.4

19.5

Std.

Dev.

0.1

0.1

0.1

0.8

1.8

2.8

5.0

9.1

10.3

3.3

Regarding the moderate and loose due dates we observe the following. For

certain sequences, some jobs that could not complete on time to meet a

moderate due date may make it on time when such a due date is sufficiently

extended by using a higher (loose) tightness multiple factor. Therefore, some

sequences that were not optimal when using a tighter (moderate) due date may

be optimal in the new problem resulting from extending the due dates by using a

loose tightness multiple and keeping the rest of the data (processing times, and

routing) unchanged. Therefore, as the due date becomes looser, the number of

alternative optimal sequences may increase. When there are more alternative

optimal solutions, it will be easier for the RKGA to find an optimal one, which

explains why the algorithm performs better for loose due dates than for

moderate due dates.

Conversely, as the due date level goes from loose to moderate for the

same sequence jobs have a more limited time to complete. We conjecture that

as there is less time between the jobs' release times and their due dates (in all

our cases the release times are zero), the optimal schedules must be more

66

compact to the left to meet the due dates, and fewer combinations may be

optimal, which explains why the problems with loose due dates are better than

the ones with moderate due dates.

Finally, we must acknowledge that the proposed generalization of the

RKGA is able to find optimal or near optimal solutions for the Jm/ /ET problem

for the problem sizes studied in this dissertation producing good results mainly

for problems with tight and loose due dates. Although the results were not as

good for problems with moderate due dates, the proposed generalized RKGA is

a starting point for further research.

7.6.1 Runtime for Jm/ /ET problem

Unlike the Rm/ /Cmax problems, where the runtimes to find the optimal solution

were less than one second, LINGO may take a considerable amount of time to

solve the MlP for some instances of the Jm/ /ET problem.

Table 13 presents the time taken by LINGO to solve the 36 generated

instances.

Table 14 resents a comparison between the times taken by LINGO to find

the optimal solution for all problems with loose, moderate and tight due dates,

and the average times observed for the proposed RKGA over all the 15 runs for

the corresponding problems.

Based on Table 14, Figures 22, 23 and 24 show the behavior of runtimes

for each type of due date. For problems with a loose due date, LINGO finds an

optimal solution in less time than the average taken by the proposed RKGA,

which in the worst case, problems with 9 jobs and 9 machines, is 23.7 minutes.

In the case of moderate and tight due dates, the behavior is similar for

problems with up to 7 jobs and 7 machines. However, for problems with 9 jobs

and 9 machines, the average runtime for the proposed RKGA grows more softly

than LINGO runtime. Recall that Jm/ /ET is an NP-hard problem and the

proposed RKGA becomes important if we think, for example, of a situation of a

job shop manager waiting 23 hours and 13 minutes in the case of problem 33,

for LINGO to find the optimal schedule for the next 8 hour shift. This may be

67

totally impractical compared to waiting 46.2 minutes (on average) for the

proposed RKGA to produce a schedule that has an average deviation from the

optimal solution of 1.6%.

Table 13. LINGO Rutimes (in minutes) to solve Jm/ /ET benchmark problems

Due date type

Loose

Moderate

Tight

Instance

1

2

3

4

5

6

7

8

9

10

11

12

Runtime

0

0

0

0

0

0

0

0

0

0

0

0

Instance

13

14

15

16

17

18

19

20

21

22

23

24

Runtime

0

0

0

0

0

240

60

300

269

146

113

20

Instance

25

26

27

28

29

30

31

32

33

34

35

36

Runtime

0

0

0

0

505

278

535

317

1393

837

1006

529

The equivalent situation for the case of moderate due dates with 9 jobs

and 9 machines problems, is not as clear as the average deviation from the

optimal solution is 26.4%. Thus, there is a tradeoff between the runtime and the

deviation from the optimal. Nevertheless, as was previously mentioned, the

proposed RKGA is a starting point for more research and some improvements

may be accomplished in the future.

Table 14. Runtime (in minutes) comparison of LINGO and the proposed RKGA

Due date type
Problem Size

Loose Moderate Tight
(Jobs/Machines)

LINGO RKGA LINGO RKGA LINGO RKGA

5/5 0 0.1 0 4.4 0 3.9

7/7 0 10.5 2.5 15.6 2.3 15.7

9/9 0 23.7 408.8 53.8 941.3 47.4

5/5 7/7 9/9
Problem size (Jobs/Machines)

— — « LINGO {Loose} RKGA floose}

Figure 22. Runtime comparison for problems with loose due dates

120 •

5/5 7/7 9/9

Problem size poos/Machines)

Figure 23. Runtime comparison for problems with moderate due dates

— — - LINGO f Loose) — RKGA {Loose)

69

960
^ 8 4 0 -
£720 -*•
£ 600 •
J-480 1-
E 360 >
1 240 J

120 !

0

. . .

_ /

J
t

........ $
' *..........

5/5 7/7 9/9

Problem size (Jobs/Machines}

»LWGO (Tight) RKGA (Tight)

Figure 24. Runtime comparison for problems with tight due dates

70

8 A REACTIVE RANDOM KEYS GENETIC ALGORITHM APPROACH FOR

SHOP SCHEDULING PROBLEMS

In this chapter, a RKGA able to react to unexpected events in the production

environments targeted in this dissertation, which we will call the reactive RKGA,

is presented. A similar algorithm to the one previously developed to produce the

predictive schedule is presented here to generate a reactive schedule once an

unexpected event occurs.

8.1 Unexpected events

Hall and Potts, (2010), Vieira et al. (2003), Subramaniam and Raheja (2003),

and Abumaizar and Svestka, (1997), review the different unexpected events

reported in the rescheduling literature. Among them we find: urgent job arrival,

rework (or quality problems), job cancellation, delay in the arrival of materials,

change in job priority, due date change, machine breakdown, tool breakdown,

operator absenteeism, process time variation and changes in release times.

They reference rescheduling approaches designed for a specific production

setting and a specific type of disruption event, or several events as in the case of

Vieira et al. (2003) and Subramaniam and Raheja (2003) for the Jm/ /Cmax

problem.

The model proposed here considers some of the previous disruptions and a

specific case not addressed in the reviewed literature, which is the study of

simultaneous breakdowns. The disruptions considered by our reactive RKGA

are:

1. Urgent job arrival.

2. Job Rejection implying immediate reprocessing of operations.

3. Delay in the arrival of materials.

71

4. Machine unavailability. This covers the specific situations of machine

breakdowns, tool breakdowns, and operator absenteeism, all of which

imply that one or several machines will become unavailable.

8.2 Rescheduling performance measures

It is our objective in this phase to generate a reactive schedule that deviates

from the predictive schedule as little as possible. This can be measured in two

ways in the literature: how much the reactive schedule changes compared to the

predictive one (a measure of stability) and how much its performance changes

(a measure of efficiency). The resulting reactive schedule should therefore be as

efficient and stable as possible. We use the concept of efficiency in the sense of

measuring the change in the schedule's performance. Subramaniam and Raheja

(2003) and Subramaniam et al. (2005) measure the efficiency, e, of the reactive

schedule as a percentage of change in the value of objective function under

consideration, the makespan:

([Mnew — Mo]) 1 Wo—jxl00% <7>

where Mo is the makespan for the predictive schedule, and Mnew is the

makespan of the reactive schedule. In the same line we can define in general

the inefficiency as ratio as follows:

. , . . [cf)new-<po]
ineficciency = (8)

00

where cfjo is the value of the objective function for the predictive schedule, and

c|>new is the value of the objective function of the reactive schedule.

In the context of reactive scheduling, stability is referred to providing a

reactive schedule that deviates from the predictive one as little as possible

(Herroelen and Leus, 2005). The stability is measured in two dimensions. First,

there is the starting time deviation, used by authors like Abumaizar and Svestka

72

(1997), Subramaniam and Raheja (2003) and Subramaniam et al. (2005). It is

defined as:

f.g-CI(g-*)l (9)
YIj=1nOj

where:

£ is the normalized deviation,

nOj the number of operations of job/,

k the number of jobs,

Sji* the starting time of /th operation of job/ in the repaired schedule,

Sji is the starting time of rth operation of job/ in the original schedule.

Under the strategies of right shift and modified affected operations

rescheduling, in which the predictive sequence is kept unchanged and only the

starting time may change, calculating the starting time deviation of operations in

both the predictive and reactive schedules gives a measure of the reactive

schedule's stability. From production perspective, however, measuring the

instability by the starting time deviations may be useful when secondary

resources (like tools in the manufacturing situation) are expected to be used by a

machine during an operation in the predictive schedule and then delivered to

another machine. However, there is a second way to measure instability based

on the sequence deviation. Having a reactive schedule that does not deviate

much from the initial sequence may be very useful especially in that a series of

setups and queues of material organized according to the predictive sequence

may have to be changed when a disruption occurs. Changing the sequence of

the material in the queues or the setup order may turn out to be costly.

Moreover except from the right shift approach, a reactive schedule does not

necessarily produce the same predictive sequence. That is why we favor the use

of a sequence deviation based stability measure.

Abumaizar and Svestka (1997) define a sequence deviation stability

measure based on the summation for each operation j of the amount of

73

operations processed before j in the predictive schedule which are processed

after j in the reactive schedule. Based on that, Moratori et al. (2008) propose the

following way to measure the sequence deviation based on the following

concept. Let M be the number of machines and Ot the number of operations that

have to be processed on machine i = l,...M. Let fy;=1 if the immediate

successor of operation / = 1,... Ot on machine l in the initial schedule remains a

successor in the new schedule but not necessarily an immediate one and 0

otherwise. To each machine i a measure of sequence stability fye [0, 1] is

assigned in (10):

^ = 1 ; ^ do).

Similarly, and using the same definitions of M and Ot, let us define a

sequence deviation ratio Sequence_Dev as:

l^Li^t1 Precl}

Sequence_Dev = —=^ (11)

where Prectj = 1 if operations i and / remain on the same machine in the

reactive schedule and the immediate successor of operation / on machine i in

the predictive schedule remains a successor in the reactive schedule but not

necessarily an immediate one; otherwise, Precti = 0.

The previous index measures how much the precedence was respected

in the reactive schedule. In cases of parallel machines, we want to measure as

well the machine allocation changes. Let OCC be the set of all operations that

can be processed on more than one machine and TOCC the cardinality of OCC.

Let us define the machine deviation ratio as:

yTOOCg

Machine Dev = =*=*—- (12)

where

74

!

1, if operation j 6 OCC changed machine
allocation in the reactive schedule

0, otherwise

Our reactive scheduling problem consists, therefore, of obtaining a

reactive schedule that is stable and whose performance degrades as little as

possible with respect to the predictive schedule. In other words, we want to

produce a reactive schedule that minimizes the inefficiency and the instability

expressed in terms of the sequence deviation and machine assignment

deviation. In order to do this, we will consider in our objective function the three

ratios defined earlier.

8.3 Multi objective optimization

Our rescheduling problem is then a multi-objective optimization problem. That

is, a problem which has two or more objectives that need to be simultaneously

optimized. In the context of multi objective optimization, a compromised solution

is one that is as close as possible to the Utopia point. That is, a point that

simultaneously succeeds in optimizing each objective.

Without loss of generality, the multi optimization objective problem MOOP

may be described as follows: if x is a p-dimensional vector of decision

variablesx = (xlt...,x2,...,xp) in the decision space X, and f(x) evaluates the

quality of a specific solution x by assigning to it an objective vector

(AW./2W.-, / /cOO).and we require the simultaneous optimization of k

objectives, the general MOOP can be stated as:

Min fix) = (A(*),/2(*), ...,/*(*))

Subject to giix) < biti = 1,2 ...,c (C9)

x> 0

where (C9) are certain inequality constraints.

75

8.3.1 Pareto dominance

Assuming a minimization problem as in our case, a vector u = (Ui,u2, -,up) is

considered to dominate another vector v = (yx,v2, ...,vv) if no component of u is

greater than the corresponding component of v and at least one component is

smaller. A solution xu e X is considered to be Pareto-optimal or non-dominated

if and only if there is no xv EX for which v = f(xv) = (yx,v2,... ,vv)

dominates u= f(xu)= (u^ i^ , ...,up).

Fonseca and Fleming (1998) classify multi objective optimization methods

into the following three categories depending on how the decision processes and

the computation are articulated in the search for a compromise solution.

Apriori methods

Before running the optimization algorithm, the decision maker indicates the

relative importance of the desired goals in terms of an aggregating scalar

function that combines all of the objective function terms, making the problem,

according to Fonseca and Fleming (1998), a single-objective one prior to

optimization.

A posteriori methods

Before expressing any preferences, the optimizer presents a set of candidate

non-dominated solutions to the decision maker who chooses from that set.

Progressive articulation of preferences

At each step of the optimization process, and by an interactive process between

the decision maker and the optimizer, the optimizer provides a non-dominated

solution for which the decision maker expresses his/her preferences, which

defines a new search direction for a better alternative. The process goes on until

a satisfactory solution is reached.

By using an a priori approach, the weighted sum method will be utilized

by the reactive RKGA to minimize an aggregating scalar objective function of

efficiency and instability. The method is described in the following section.

76

8.4 The weighted sum method

Using the weighted sum method to solve a multi objective optimization problem

requires selecting scalar weights wt and the minimization of an aggregating

objective function as follows:

U = l$=1wtfi(x) (13).

The weighted sum method has been used in the literature in two ways.

First, a posteriori, to provide numerous solution points by systematically altering

the weights to explore the Pareto optimal set. Second, apriori which provides a

single solution point that reflects preferences of the decision maker in a single

set of weights. For this work we consider the second approach, in which the

decision maker expresses from the beginning her/his preferences in a single set

of weights apriori.

Unlike the posteriori approach that uses a set of weights that add up to 1,

there is no need for such restriction, which makes it easier to determine the

appropriate weight values (Marler and Arora, 2010).

Finally, our objective function will be expressed as follows:

Min Z = W-L x inefficiency + w2 x Sequencejdev + w3 x Machinejdev (14)

where wlt w2, and w3 represent the decision maker preferences. Note that in

general the objective functions may have different units in (13). In our cases the

inefficiency measure as well as the two types of instability proposed are

formulated as ratios, so the three of them are dimensionless and can be

consistently aggregated.

8.5 Mode of operation of the Reactive RKGA

The mode of operation of the reactive RKGA is as follows. There is a predictive

schedule being executed. At a certain time t a disruption occurs. Such disruption

may be of two types. In the first type the processing of one or more operations

77

suddenly stops and the operations will need to be repeated once it is possible.

We will refer to these operations as "affected operations". Situations like

machine breakdowns, tool breakdowns or a power failure that affects one or

several machines belong to this category. Under the second type, the operations

that are being processed in the time when the unexpected event happens, may

complete before the schedule execution is stopped. To this category belong all

other unexpected events considered for the present reactive model.

The pool of jobs that need rescheduling includes the information of the

new jobs that must be included in the reactive schedule, plus the information of

the jobs not yet finished for which all the affected and not yet started operations

must be included.

The new machine availability times and the information of the new job

pool, as well as the predictive schedule, are used as inputs by the RKGA to

produce the reactive schedule minimizing the inefficiency and instability.

8.6 The rollback mechanism

Since the predictive schedule is the result of the evolutionary process of the

RKGA, the genetic information of that schedule may prove useful in the search

of a stable and efficient reactive solution. Therefore, a certain percentage of

chromosomes with the genetic information of the predictive schedule may be

inserted in the initial population. More specifically, the chromosome of the

predictive schedule, which is the best schedule produced by the predictive

RKGA as a result of the evolutionary process, is cloned a certain number of

times as determined by a parameter called Rollback Percentage and inserted as

a part of the initial population of the reactive RKGA. Some experiments with

different values of the Rollback Percentage it are presented in the next chapter.

In the case of new jobs that enter the reactive job pool, new values of

random keys and delay factors are created for them to complete the genetic

information of the chromosomes to be inserted by the rollback.

78

Except for the multiple objective function and the inserted chromosomes,

the rest of the RKGA, namely the problem representation, genetic operators and

stopping criteria, work in the same way as the predictive schedule.

8.7 Encoding of a non RKGA generated schedule

In case there is a predictive schedule produced by a mean other than the RKGA

(e.g. manual schedule), the reactive algorithm should be able to use it as an

input to produce a reactive solution. Such predictive schedule and its objective

function value are used as an input for the reactive RKGA.

The predictive sequence may be used as well to produce surrogate

chromosomes to input by rollback as explained in the previous section. A triplet

of machine key, random key and delay factor is created then for each operation

of the predictive schedule. The machine key value is an integer that must

coincide with the position that occupies the machine assigned to each operation

in the predictive schedule on its machine list, as defined in expression (5) of

Chapter 6. A total of ops (0, 1) uniformly distributed random numbers is created,

where ops is the total of operations in the predictive schedule. The random

numbers are ordered increasingly. The operations are ordered chronologically

as they were scheduled. Each random number is assigned then to each

operation, so the same sequence results on each machine once the decoding

procedure is applied to the chromosome. The delay factor is randomly created

and not used in the process of creating the surrogate chromosome as the

predictive schedule may be any feasible sequence of jobs. The encoding

process for a non RKGA generated schedule is presented below.

Inputs:

ops: total of operations to schedule

ScheduleQ: Array of two dimensions(ops, 3), with the schedule information

Schedule^, 1): Stores an operation number

Schedule^, 2): Stores the start time of Schedule^, 1)

Scheduled, 3): Stores the machine key of Scheduled, 1)

79

Variables:

Co: integer to store current operation

Random_Key():One dimensional array of size ops, where Random_Key(i)

stores the Random Key of operation /

Delay_Factor(): One dimensional array of size ops, where Delay_Factor(i) stores

the Delay Factor of operation i

MachineQ: One dimensional array of size ops, where Machine(i) stores the

machine key of operation /

Random_Val(): Two dimensional array of size ops x 2, where:

Random_Val(\, 1) stores operation i's surrogated random key and

Random_Val(\, 2) stores operation i's surrogated delay factor

Complementary Functions:

Random(0,1) Returns a random number between 0 and 1.

Pseudo Code of the Schedule Encoding Procedure

For /= 1 to ops

For/=1 to 2

Random_Values(\, j)=Random(0,1)

Next/

Next /'

Order ScheduleO increasingly by column 2 (Start time)

Order Random_Values() increasingly by column 1 (Random keys)

For /= 1 to ops

Co =Schedule(i, 1)

Random_Key(Co) = Random_Values(i,1)

DelayJFactor(Co) = Random_Values(i,2)

Machine (Co) = Schedule (i, 3)

Next /

80

8.8 Integrated Predictive Reactive Scheduling System

In Chapter 6 we presented the predictive model, capable of producing initial

schedules for problems coming from different environments with regular

measures or the non-regular measure of Earliness and Tardiness. In this chapter

we presented the reactive model, which is able to produce a reactive schedule

when different unexpected events occur during the execution the predictive

schedule. A flow chart representing the integration of both models in a whole

system is presented in Figure 25.

At first, an initial schedule is produced by the predictive model and

adopted as the current schedule. Then, the schedule execution starts. If an

unexpected event occurs, such as those explained in section 8.1, which makes

the initial schedule infeasible or obsolete, the reactive model is used to generate

a new efficient and stable schedule in response to the event. The new schedule

includes the disrupted and not yet started operations and becomes the current

schedule.

f Start J

* r
Generate a Schedule
by Predictive Model

i
r

Set Current Schedule =
Last generated schedule

1
Execute Current Schedule

<X Do

Y(

^

ie? X>—No

3S

^ _ *
ia i

4 Nn

/ A
- •Xunex f

xEve

Y(

)ectedp>
nts?/

3S

Generate a Schedule
by Reactive Model

Figure 25. Predictive Reactive Scheduling System

81

8.9 Conclusion

We have presented a reactive RKGA that is able to produce a reactive schedule

that minimizes inefficiency, and instability when different unexpected events

occur in the various production environments targeted in this dissertation.

At the end of this chapter the integrated view of the Predictive Reactive

Scheduling System was presented. The next chapter presents some

computational experiments to test the reactive model.

82

9 COMPUTATIONAL EXPERIMENTS FOR THE REACTIVE MODEL

According to characteristics of the reactive model, it can be used in four different

basic production environments, for regular and non-regular measures and under

different types of disruptions. We must make a choice among all the embraced

environments, objective functions and disruptions to test how the reactive RKGA

works. Based on the representation proposed in section 6.3, it is possible to

cover hybrid environments, such as flexible flow shops and flexible job shops.

Since the flexible job shop is the most general case that the proposed

representation can account for, it has been selected to conduct our experiments

as the environment of choice. Regarding the objective function, most of the

literature reviewed for reactive approaches focuses on regular objective

functions, and the case of ET has not been researched enough although it has

recently become an important objective in the literature in general. Therefore,

the ET will be our objective function choice on which the experiments will be

conducted. Concerning the disruptions, we select two types that are

representative of the unexpected events covered by this research, namely

machine breakdowns and the arrival of a rush job that is, a job that arrives after

the execution of the predictive schedule has started and must be included in it

when it arrives. The first disruption implies that some operations will be

interrupted. The second one, on the other hand, is of the type in which the

operations being processed may complete before the predictive schedule

execution is stopped. Each of those types of unexpected events has different

experimental factors and levels to take into account such as: disruption time,

duration of the disruption and number of affected machines in the case of

machine breakdowns. Additionally, we want to study the effect of the rollback

mechanism at different levels in the reactive RKGA.

83

9.1 Benchmark Problems

In order to experiment with different levels of those factors, we consider one size

of flexible job shop with seven jobs that must be scheduled in a shop with seven

work centers with three unrelated parallel machines on each. Recall that a

flexible job shop is a job shop with possibly multiple parallel machines at each

work center, and not necessarily just one machine per work center. A set of 120

benchmark flexible job shop problems with those characteristics was generated.

In order to have all jobs visiting all work centers in some random order, the job

routes were generated following a discrete uniform distribution U[1 ,wc] where wc

is the number of work centers. The processing times over the different machines

of each work center were randomly generated from a discrete uniform

distribution U[1,9] as in Demirkol et al. (1998) and Brandimarte (1993). The due

date of each job is set as a multiple TF of the summation of the minimum job

processing time on each work center. Such multiple determines the tightness of

the due date and was generated following a uniform distribution U[0.7,1.4]. In the

case of the arrival of a rush job, it will have the same characteristics explained

above, namely routing through the work centers, processing times and due date.

9.2 Predictive Schedule Generation

Each problem was run by the predictive model to minimize ET using the same

genetic operators, parameter values, and stopping criteria as those of the

experiments of the predictive model (a reproduction of 20%, a uniform crossover

84% and a mutation by immigration of 6%). Likewise, the reactive RKGA stops

when a maximum number of 250 iterations has been reached or 75 generations

have passed without any improvement of the best solution found so far. The

population size is set to 300 plus two times the number of operations to be

scheduled.

84

9.3 Machine breakdown experiments

The first experiment consists of one or multiple machine breakdowns that occur

during the execution of the predictive schedule. The dimensions of the study are

presented next.

9.3.1 Dimensions of the study

The following factors and levels are used to generate the experiments.

• Disruption time: Refers to the moment in which the breakdown

occurs expressed as a percentage of the makespan of the predictive

schedule Cmaxp and is set at two levels: Early, that corresponds to a

value generated from a uniform distribution U[0.05 Cmaxp, 0.4 Cmaxp]

and Late, corresponding to a value generated from a uniform distribution

U[0.6 Cmax/7,0.9 Cmaxp]

• Duration: Refers to the duration of the breakdown and is expressed

as a percentage of the makespan of the predictive schedule, Cmaxp and

set at two levels: Short and Long, corresponding to values generated from

uniform distributions U[0.05 Cmaxp,0.2 Cmaxp] and U[0.4 Cmaxp,0.6

Cmaxp], respectively.

• Percentage of Affected Machines: Refers to the number of

machines affected by the breakdown. It is expressed as a percentage of

the total number of machines /nthat may be busy at any time t and is set

at two levels: Low, taking a value from a uniform distribution

U[0.01/», 0.33/77] and High, taking a value from a uniform distribution

U[0.67/77, 777]

• Rollback Percentage: Refers to the percentage of chromosomes

with the genetic information of the predictive schedule to be inserted in

the initial population. Three levels were considered for the experiments:

0%, 10% and 20%.

The response variables considered for the study are the Aggregate

objective function as given in expression (14) of Chapter 8, and the

Runtime.

85

Since we are studying flexible job shop problems with 9 jobs, 9 stages

and 3 unrelated parallel machines, five instances were used for each treatment

combination and each of them was run five times. Table 15 presents the

experimental combinations for this experiment and the average values for the

aggregate objective function, the instability, inefficiency and runtime.

Table 15. Treatment Combinations and average values

Rollback

Level

(%)

0

0

0

0

0

0

0

0

10

10

10

10

10

10

10

10

20

20

20

20

20

20

20

20

Disruption

Moment

Early

Early

Early

Early

Late

Late

Late

Late

Early

Early

Early

Early

Late

Late

Late

Late

Early

Early

Early

Early

Late

Late

Late

Late

%

Affected

Machines

High

High

Low

Low

High

High

Low

Low

High

High

Low

Low

High

High

Low

Low

High

High

Low

Low

High

High

Low

Low

Duration

Long

Short

Long

Short

Long

Short

Long

Short

Long

Short

Long

Short

Long

Short

Long

Short

Long

Short

Long

Short

Long

Short

Long

Short

Aggregate

objective

2.60

0.62

0.95

0.25

1.30

0.09

0.15

0.08

3.34

0.80

0.33

0.15

0.89

0.32

0.16

0.05

2.77

0.61

0.89

0.16

0.92

0.17

0.33

0.05

Instability

0.59

0.27

0.45

0.14

0.36

0.00

0.00

0.00

0.56

0.16

0.13

0.05

0.43

0.00

0.01

0.00

0.88

0.18

0.30

0.06

0.01

0.00

0.10

0.00

Inefficiency

2.00

0.35

0.50

0.11

0.94

0.09

0.15

0.08

2.77

0.64

0.20

0.10

0.46

0.32

0.15

0.05

1.89

0.43

0.59

0.09

0.91

0.17

0.22

0.05

Runtime

(sec)

723.16

656.68

797.72

849.08

73.04

41.12

49.44

78.60

751.00

546.76

371.60

332.96

84.40

59.48

23.00

30.24

671.44

770.72

392.84

359.48

94.80

66.08

27.48

46.52

86

In order to compare the behavior of the RKGA at different factor levels, we must

check the assumption of normality for parametric analysis methods. This was

done by examining the residuals of the response variables (aggregate objective

function (Aggregate) and runtimes (Runtime)) produced by the ANOVA model

through a normal probability plot and Kolmogorov-Smirnov normality tests in

SPSS statistical software. The results, presented in Figure 26, show that none of

them follow a normal distribution (p < 0.05). Thus, the statistical significance of

performance among the experimental factors can be analyzed by the

nonparametric Kruskal-Wallis test.

3

TJ 2-

o
z
•o 1-«
«
x 0-
Ul

- 1 -

Normal Q-Q Plot of Aggregate

/ 1 1 2"

Jr / «

[/ a

- 2 -

0 0 2.5 SO
Observed Value

Tests of Normality

Aggregate

Kolmogorov-Smirnov(a)

Statistic

.236

df

600

Sig.

.000

a Lilliefors Significance Correction

Normal Q-Q Plot of Runtime

0 500 t.000 1 500
Observed Value

Tests of Normality

Runtime

Kolmogorov-Smirnov(a)

Statistic

.224

df

600

Sig.

.000

a Lilliefors Significance Correction

Figure 26. Normal Probability Plot for Aggregate Objective Function and Runtime.

Breakdown Experiment

87

Nonparametric statistical methods do not make assumptions about the data

distribution. That makes them particularly useful under situations of non-

normality. The Kruskal-Wallis test is a nonparametric alternative to the analysis

of variance, used "to test the null hypothesis that k treatments are identical

against the alternative hypothesis that some of the treatments generate

observations that are larger than others" (Montgomery, 2009). The test uses the

rank of the observations rather than the actual observations for the analysis. The

Kruskal-Wallis tests are performed using SPSS 14.0 statistical software.

Besides the two mentioned response variables of Aggregate objective function

and Runtime, the Instability (summation of expressions (11) and (12)) and the

Inefficiency are analyzed by the Kruskal-Wallis test as well.

9.3.2 Results for Disruption Time

Regarding the disruption moment, the results in Table 16 show that there is a

statistical difference (P < a=0.05) for the Aggregate objective function and for the

Runtime between the Early and Late levels.

Table 16. Results for factor: Disruption Time

Response
Factor Mean

Level Rank

Runtime 0.000
Late 167.3

Early 410.16
Instability 0.000

Late 190.84

Early 355.97
Inefficiency 0.000

Late 245.03

Early 378.87
Aggregate 0.000

The mean rank suggests that late disruptions result in better values of the

Aggregate objective function and Runtime. That is explained by the fact that

88

when a breakdown occurs late in the schedule execution, most of operations of

the schedule have been completed and therefore the reactive schedule will have

mainly the same sequence and machine allocation. In fact, in a late breakdown,

it is more likely that some jobs have completed and efficiency is not as hardly

affected compared to when a breakdown occurs early on in the schedule. In a

similar vein, since most schedule operations will have been completed, the

required runtime to schedule the remaining operations will be less.

9.3.3 Results for Duration of the breakdown

According to the results in

Table 17, it cannot be concluded that there exists a significant difference in the

Runtime under short and long breakdowns (P > a=0.05). In terms of the

problem, under a long duration some machines simply become available later

than in a short breakdown, which does not imply any additional effort for the

decoding procedure to produce a schedule compared to that of building a

schedule where some machines are available earlier.

The results show as well that there is a statistical difference for the

Aggregate objective function under short and long breakdowns (P < a=0.05).

Table 17. Results for factor: Duration of the breakdown

Response

Runtime

Instability

Inefficiency

Aggregate

Factor

Level

Short

Long

Short

Long

Short

Long

Short

Long

Mean

Rank

292

309

249

352

233

368

232

369

P

0.221

0.000

0.000

0.000

89

The mean rank suggests that short breakdowns produce lower values of

the Aggregate objective function. Longer breakdowns imply either displacing

more operations to the right which will affect the efficiency or doing more

changes on machine allocation, which will deteriorate the stability. Conversely,

shorter breakdowns may be solved with less operation right shifts and/or less

machine allocation changes so the RKGA is able to produce a reactive schedule

more similar to the predictive one which represents more stability and efficiency.

9.3.4 Results for Percentage of Affected Machines

Regarding the percentage of affected machines, the test results in Table 18

show that there is a statistical difference in the Runtime, Instability, Inefficiency,

and Aggregate objective function at the two levels of affected machines. At low

percentages of affected machines, the runtime required is less as fewer

operations are hit and, therefore, fewer operations need to be rescheduled.

Likewise, less affected operations will cause less instability and inefficiency and

therefore a better value of the Aggregate objective function.

Table 18. Results for factor: Percentage of Affected Machines

Factor Mean
Response P

Level Rank

Low 264
Runtime

High 337

Low 260
Instability

High 341

Low 211
Inefficiency

High 390

Low 219
Aggregate

High 382

0.000

0.000

0.000

0.000

90

9.3.5 Results for Rollback Level

The results of the Rollback Level, which was defined as the percentage of

chromosomes cloned from the one of predictive schedule and inserted in the

reactive RKGA's initial population, are given in Table 19. It cannot be concluded

that there exists significant difference between the three levels for the Instability,

Inefficiency and the Aggregate objective function.

An interesting observation, however, is present in the results for the

rollback level regarding the runtime. The results show that there is a statistical

difference in the runtime at the different levels of rollback. However, the test

does not reveal which means differ significantly. Thus, pair tests need to be

performed and their results in Table 20 show that the levels of 10% and 20%

imply less runtime for the RKGA than the 0% level. This means that inserting a

number of individuals in the initial population of the reactive problem with the

genetic information of the predictive schedule speeds up the search for a

reactive solution. However, it cannot be concluded that there exists significant

difference between the rollback levels of 10% and 20%.

The average of the runtimes taken over the three rollback levels in Table

15 shows that the average time taken by the RKGA to generate a reactive

solution at a 20% rollback level (303.67 seconds) is 74.3% of the time taken at a

0% of rollback level (408.61 seconds); the average time taken by the RKGA to

generate a reactive solution at a 10% rollback level (274.93 seconds) is 67.3%

of the time taken at a 0% of rollback level. Using those average times, the level

of 10% of rollback seems to be adequate.

Table 19. Results for factor: Rollback Level

Response

Aggregate

Instability

Inefficiency

Runtime

Factor

Level

0%

10%

20%

0%

10%

20%

0%

10%

20%

0%

10%

20%

Mean

Rank

305.58

290.2

305.73

316.55

286.29

298.66

290.21

298.2

313.1

330.56

274.36

296.59

P

0.584

0.181

0.400

0.005

Table 20. Additional tests for factor: Rollback Level

and Runtime as response variable

Response

Runtime

Levels

0%

10%

Mean

Rank

218.9

182.1

P

0

Levels

10%

20%

Mean

Rank

192.8

208.2

P

0.180

Levels

0%

20%

Mean

Rank

212.1

188.9

P

0.04

9.4 Rush Job experiment

In the second experiment, an urgent job arrives during the execution of the

predictive schedule, and the schedule execution must be stopped in order to

include the new job. The dimensions of the study are presented next.

9.4.1 Dimensions of the study

The following factors are used to generate the experiments.

92

• Arrival time: Refers to the time point in which the new job arrives

and needs to be scheduled. It is expressed as a percentage of the

makespan of the predictive schedule Cmaxp and is set at two levels:

Early, that corresponds to a value generated from a uniform distribution

U[0.05 CmaxjO, 0.4 Cmax/?] and Late, corresponding to a value generated

from a uniform distribution U[0.6 Cmax/?,0.9 Cmaxp]

• Rollback Percentage: The same three levels were considered for

the experiments: 0%, 10% and 20%.

The response variables considered for the study are the Aggregate

objective function and the Runtime.

Five instances were used for each treatment combination, and each of

them was run five times. Table 21 presents the experimental combinations for

this experiment and the average values obtained for the experiments.

Table 21. Treatment combinations and average

values for the Rush Job experiment

Rollback

Level

(%)

0

0

10

10

20

20

Arrival

time

early

late

early

late

early

late

Instability

0.08

0.00

0.00

0.00

0.00

0.00

Inefficiency

0.04

0.06

0.00

0.20

0.01

0.17

Aggregate

0.14

0.06

0.00

0.20

0.01

0.17

Runtime

(sec)

1069.24

68.64

222.96

143.28

399.76

49.08

As was done in the breakdown case, in order to compare the behavior of

the RKGA at the different factor levels and to check the assumption for

parametric analysis methods that the observations are normally distributed, the

residuals were tested by a normal probability plot and Kolmogorov-Smirnov

normality test in SPSS statistical software for the aggregate objective function

93

(Aggregate) and for the runtimes (Runtime). The results, presented in Figure 27,

show that none of them follow a normal distribution (p < 0.05). Thus, the

statistical significance of performance between the algorithms can be analyzed

by the nonparametric Kruskal-Wallis test. Besides the two mentioned response

variables of Aggregate objective function and Runtime, the Instability, calculated

as a summation of both types of instability (expressions (11) and (12)), and the

Inefficiency are analyzed by the test as well.

9.4.2 Results for the Arrival Time

Regarding the rush job arrival time, the results in Table 22 show that there is a

statistical difference at its two levels in all of the response variables, namely:

Runtime, Instability, Inefficiency and Aggregate.

Regarding the Runtime, at the arrival of a late job most of the operations

will most likely be completed, and so, fewer operations remain to be rescheduled

together with the new job, which takes less time for the RKGA to produce a

reactive schedule. As for the instability, at the arrival time of a late job, most of

the operations are completed and, therefore, fewer changes in the sequence or

in the machine allocations will be needed in the reactive schedule. The best

value in the inefficiency for early jobs is explained by the fact that the earlier the

job arrives to the system, the more time it will have to complete by its due date,

which was generated using the same parameters used for the rest of jobs.

94

Normal Q-Q Plot of Aggregate

2.5i

•0
a 0.0*
« a. x

Ui

-2 5-

-0.3 -0 2 -01 0.0 0.1 0 2 0.3 0 4
Observed Value

Normal Q-Q Plot of Runtime

3-

o 1
z
•q
2 0

S--1
Ul

-3-

-600 -300 0 300
Observed Value

600

Tests of Normality

Residual for

Agregate

Kolmogorov-Smirnov(a)

Statistic df Sig

.158 150 .000

a Lilliefors Significance Correction

Tests of Normality

Residual for

Runtime

Kolmogorov-Smirnov(a)

Statistic

.142

df Sig.

150 .000

a Lilliefors Significance Correction

Figure 27. Normal Probability Plot for Aggregate Objective Function and Runtime.
The Rush Job Experiment

Table 22. Results for the factor: Arrival Time

Response Level
Mean

Rank

Runtime

Instability

Inefficiency

Aggregate

Early

Late

Early

Late

Early

Late

Early

Late

96.59

54.41

84.00

67.00

61.7

89.3

65.93

85.07

0.000

0.000

0.000

0.004

95

9.4.3 Results for the Rollback Level

Regarding the Rollback level, it cannot be concluded that there exists a

significant difference between the three levels for the Aggregate objective

function nor for the Inefficiency as shown in Table 23.

Table 23. Results for the factor: Rollback Level

Response

Runtime

Instability

Inefficiency

Aggregate

Level

0%

10%

20%

0%

10%

20%

0%

10%

20%

0%

10%

20%

Mean

Rank

92.32

69.49

64.69

91.16

67.00

68.34

74.49

81.29

70.72

83.81

76.57

66.12

P

0.003

0.000

0.389

0.091

Concerning the Instability and the Runtime, the results show that there is

a statistical difference at the different levels of rollback; however, the test does

not reveal which means differ significantly. Thus, pair tests need to be

performed.

The results of the additional tests presented in Table 24 show that there is

no statistical difference between the levels of 10% and 20%, but both differ

statistically from the level of 0%; the means suggest that both of them yield less

instability than the level of 0%. Therefore, inserting a number of individuals in the

initial population of the reactive problem with the genetic information of the

96

predictive schedule seems to help the RKGA to build schedules similar to the

predictive one in terms of sequence and machine allocation.

Table 24. Additional tests for factor: Rollback Level

and Instability as response variable

Response

Instability

Levels

0%

10%

Mean

Rank

58.50

42.50

P

0.000

Levels

10%

20%

Mean

Rank

50

51

P

0.317

Levels

0%

20%

Mean

Rank

58.16

42.84

P

0.000

Since the results of the Kruskal-Wallis test for Runtime in Table 23 show

a statistical difference at the different levels of rollback, additional pair tests were

conducted, and their results are shown in Table 25.

Table 25. Additional tests for factor: Rollback Level

and Runtime as response variable

Response

Runtime

Levels

0%

10%

Mean

Rank

58.59

42.41

P

0.005

Levels

10%

20%

Mean

Rank

52.58

48.42

P

0.473

Levels

0%

20%

Mean

Rank

59.23

41.77

P

0.003

According to the results of the additional tests, it cannot be concluded that

there is a statistical difference between the levels of 10% and 20%; however,

both of them differ statistically from the level of 0%. The means suggest that

both take less runtime than the level of 0%. Therefore, inserting a number of

individuals in the initial population of the reactive problem with the genetic

information of the predictive schedule seems to speed up the search for a

reactive solution.

97

It is important to notice here that the average runtime taken over the three

rollback levels in Table 21 shows that the average time taken by the RKGA to

generate a reactive solution at a 20% rollback level (224.4 seconds) is 39.4% of

the time taken at a 0% of rollback level (568.9 seconds); and the average time

taken by the RKGA to generate a reactive solution at a 10% rollback level (183.1

seconds) is 32.2% of the time taken at a 0% of rollback level, which emphasizes

the importance of the rollback mechanism proposed in this dissertation in order

to produce a reactive solution more rapidly. Although it cannot be concluded that

there exists a significant difference between the rollback levels of 10% and 20%,

according to the observed data, the level of 10% of rollback seems to be

adequate.

98

10 CONCLUSIONS AND FUTURE RESEARCH

10.1 Conclusions

The main contribution of this dissertation is the introduction of a generic

scheduling and rescheduling system with models and algorithms that can

produce predictive (initial) schedules and react to disruptions in the most

common production environments and objective functions. Namely, the

introduced system can handle single machine, parallel machines, flow shops,

and jobs shop scheduling problems or combination of these environments. The

objectives can be regular such as the makespan, the total tardiness, total

completion time, etc, and non-regular such as the total earliness and tardiness

(ET) with a common due date or distinct due dates. The algorithms are based on

the Random Keys Genetic algorithms (RKGA) that were introduced by Bean

(1994) and intended to solve problems with regular objective functions. The

combination of the generalized representation and the Earliness Reduction

Procedure results in a more generalization of the RKGA where different

environments and objective functions, not only regular but also the non-regular

measure of Earliness and Tardiness, can be addressed by one scheduling

system. To accomplish this generic system, several important modifications

were introduced in this dissertation to the RKGA including changes in the

chromosome and decoding procedure depending on the environment in which it

is applied. Depending on the production environment (Single Machine, Parallel

machines, Flow Shop, Job Shop or hybrids of them like Flexible Flow shop and

Flexible Job Shop) information can be embodied with one type of chromosome

and decoding procedure.

We also proposed and implemented a reactive RKGA that is able to

produce a reactive schedule that minimizes the schedule's inefficiency and

instability when different unexpected events occur in the various production

environments targeted in this dissertation. To make the reactive RKGA more

robust, it can repair schedules that are produced by other systems and not

necessarily the ones initially produced by the RKGA itself.

99

The reactive RKGA system deals with the problem as multi-objectives

optimization problem using the introduced instability ratios that measure the

sequence deviation and machine allocation deviation, to minimize instability in

addition to minimizing the inefficiency.

Among the most important original contributions of this research is the

introduction of the rollback mechanism, by which the genetic information of the

predictive schedule is inserted to a certain extent, in the initial population of the

reactive RKGA. The computational experiments showed that the use of a

rollback percentage greater than 0%, in our case 10% or 20%, reduces the

runtime of the reactive model.

Computational experiments for both the predictive and the reactive RKGA

were performed. Two types of problems were selected to test the predictive

model, namely, the unrelated parallel machine scheduling problem Rm/ /Cmax,

and the Job Shop scheduling problem Jm/ /ET. The computational experiments

show that the model is able to produce optimal or near optimal schedules in

several benchmark problems for the studied production environments and

objective functions. In the case of Jm/ /ET the results show that the model

performs very well especially for problems with loose and tight due dates. The

test results of the reactive scheduling system showed that it is robust and

capable of repairing schedules in a generic environment such as Flexible Job

Shops. The statistical tests also demonstrate the various conditions under which

the reactive RKGA is more efficient than others.

10.2 Future Research

The present research may be extended in several directions, as follows:

• The extension of the generalized predictive and reactive RKGA's to

include additional constraints to the problems, such as sequence

dependent setup times, and precedence constraints.

• New types of disruptions can be considered in the reactive model,

such as due date changes and priority changes.

100

• From the reactive scheduling perspective, the weighted sum

method may be used in an a posteriori approach to produce a set of non-

dominated or good solutions to the decision maker.

• The Earliness Reduction Procedure may be used in conjunction

with other metaheuristics such as Tabu Search, Simulated Annealing or

Ant Colonies, for ET problems.

• Although in the case of Jm/ /ET the results show that the predictive

model performs very well especially for problems with loose and tight due

dates, additional experiments may be conducted to get insights into how

to improve the performance in the case of problems with moderate due

dates.

• Additional experiments with the predictive and reactive model,

considering different release times, additional objective functions and

environments, as well as other problem sizes, may be conducted.

101

REFERENCES

Abumaizar, R.J., & Svestka, J.A. (1997). Rescheduling job shops under

random disruptions. International Journal of Production Research,

35(7), 2065-2082.

Akturk, M. S., & Gorgulu, E. (1999). Match-up scheduling under a machine

breakdown. European Journal of Operational Research, 112, 81 -97.

Arnaout, J-P. (2006). A Robust Reactive Scheduling System with Application

to Parallel Machine Scheduling. Doctoral Dissertation, Old Dominion

University, Norfolk, VA.

Arnaout, J-P., & Rabadi, G. (2007). Predictable Scheduling With Learning

Capability for the Unrelated Parallel Machine Problem. International

Journal of Operations & Quantitative Management, 13(2), 115-127.

Arnaout, J-P., & Rabadi, G. (2008). Rescheduling of Unrelated Parallel

Machines Under Machine Breakdowns. International Journal of

Applied Management Science, 1(1), 75-89.

Artigues, C, Billaut, J.C. & Esswein, C. (2005). Maximization of solution

flexibility for robust shop scheduling. European Journal of Operational

Research, 165, 314-328.

Baker K. R. & Scudder G. D. (1990). Sequencing with earliness and

tardiness penalties: A review. Operations Research, 38(1), 22-36.

Baker, K. R. (1974). Introduction to Sequencing and Scheduling. New York,

NY: Wiley & Sons.

Baker, K. R., & Trietsch, D. (2009). Principles of Sequencing and Scheduling.

John Wiley & Sons.

102

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and

optimization. ORSA Journal on Computing, 2,154-160.

Bean, J. C, & Birge, J. R. (1986). Match-up real-time scheduling.

Proceedings of the Symposium on Real-Time Optimization in

Automated Manufacturing Facilities, National Bureau of Standards,

Special Publication, 724,197-212.

Bean, J. C, Birge, J. R., Mittenthal, J. & Noon, C. E. (1991). Matchup

scheduling with multiple resources, release dates and disruptions.

Operations Research, 39(3), 470-483.

Blocher, J.D., Chhajed, D., & Leung, M. (1998). Customer order scheduling

in a general job shop environment. Decision Sciences, 29 (4), 951-

981.

Brandimarte P. (1993). Routing and scheduling in a flexible job shop by tabu

search. Annals of Operations Research, 41,157-183.

Conway, R.W., Maxwell, W.L., & Miller, L.W. (1967). Theory of Scheduling.

Reading, MA: Addison-Wesley.

Demirkol, E., Mehta, S., & Uzsoy, R. (1998). Benchmarks for shop

scheduling problems. European Journal of Operational Research, 109

(1), 137-141.

Erschler, J., Roubellat, F. & Vernhes, J. P. (1976). Finding Some Essential

Characteristics of the Feasible Solutions for a Scheduling Problem.

Operations Research, 24(4), 774-783.

Esswein, C, Billaut, J. C. & Strusevich, V. A. (2005). Two-machine shop

scheduling: Compromise between flexibility and makespan value.

European Journal of Operational Research, 167, 796-809.

Fonseca, C. M. & Fleming, P. J. (1998). Multiobjective optimization and

multiple constraint handling with evolutionary algorithms - Part I:: A

103

unified formulation. IEEE Transactions on Systems, Man, and

Cybernetics, 28(1), 26-37.

French, S. (1982). Sequencing and Scheduling: An Introduction to the

Mathematics of the Job-Shop. New York, NY: Wiley & Sons.

Garey M. R. & Johnson, D. S. (1979). Computers and Intractability: A Guide

to the Theory of NP-Completeness. New York, NY: Freeman

Giffler, B. & Thompson, G.L., (1960). Algorithms for solving production

scheduling problems. Operations Research, 8(4), 487-503.

Graham, R.L, Lawler, E.L, Lenstra, J.K. & Rinnooy Kan, A.H.G. (1979).

Optimization and approximation in deterministic sequencing and

scheduling: a survey. Annals of Discrete Mathematics, 5, 287-326.

Graves, S. C. (1981). A review of production scheduling. Operations

Research, 29, 646-675.

Hall, N.G. & Potts, C.N. (2010).Rescheduling for job unavailability.Operations

Research, 58(3) p 746-755.

Herrmann, J. (2006). Rescheduling Strategies, Policies, and Methods Using

the rescheduling framework to improve production scheduling. In J.

Herrmann (Eds.), Handbook of Production Scheduling (pp. 135-148)

Springer, Heidelberg.

Herroelen, W. & Leus, R. (2005). Project scheduling under uncertainty:

Survey and research potentials. European Journal of Operational

Research, 165, 289-306.

Jackson, J.R. (1956). An extension of Johnson's result on job lot scheduling.

Naval Research Logistics Quarterly, 3(3), 201-203.

104

Jain, A.S. & Meeran, S. (1999). Deterministic Job-Shop Scheduling: Past,

Present and Future. European Journal of Operational Research,

113(2), 390-434.

Johnson, S. M. (1954). Optimal Two and Three-Stage Production Schedules

with Setup Times Included. Naval Research Logistics Quarterly, 1(1),

61-68.

Kanet, J. J. (1981), Minimizing the average deviation of job completion times

about a common due date. Naval Research Logistics Quarterly, 28(4),

643-651.

MacCarthy, B. L. & Liu, J. (1993). Addressing the Gap in Scheduling

Research: A Review of Optimization and Heuristic Methods in

Production Scheduling. International Journal of Production Research,

31(1), 59-79.

Marler, R.T. & Arora, J.S.(2010). The weighted sum method for multi-

objective optimization: new insights.Structural and Multidisciplinary

Optimization, 41 (6), 853-862.

Martello, S., Soumis, F. & Toth, P. (1997). Exact and approximation

algorithms for makespan minimization on unrelated parallel machines.

Discrete Applied Mathematics, 75, 169-188.

Mason, S.J., Jin, S. & Wessels, C. (2004). Rescheduling strategies for

minimizing total weighted tardiness in complex job shops. International

Journal of Production Research, 42(3), 613-628.

Mckay, K. N., Buzacott, J. A. & Safayeni, F. R., (1989). The scheduler's

knowledge of uncertainty: The missing link. In J. Browne (Eds.),

Knowledge Based Production Management Systems (pp. 171-189)

Amsterdam, Netherlands: Elsevier Science.

105

Mehta, S.V. & Uzsoy, R. (1998). Predictable Scheduling of a Job Shop

Subject to Breakdowns. IEEE Transactions on Robotics and

Automation, 14(3), 365-378.

Mehta, S.V. & Uzsoy, R. (1999). Predictable scheduling of a single machine

subject to breakdowns. International Journal of Computer Integrated

Manufacturing, 12, 15-38.

Mendes, J.J.M., Gongalves, J.F. & Resende, M.G.C. (2009). A random key

based genetic algorithm for the resource constrained project

scheduling problem. Computers & Operations Research, 36(1), 92-

109.Montgomery, D.C. (2009). Design and Analysis of Experiments.

7th Edition. John Wiley & Sons

Montgomery, D.C. (2009) Design and Analysis of Experiments. 7th Edition.

John Wiley & Sons.

Moore, J.M. (1968). A n-job, one machine sequencing algorithm for

minimizing the number of late jobs. Management. Science, 15(1),

102-109.

Moratori, P., Petrovic, S. & Vazquez, A. (2008). Match-Up Strategies for Job

Shop Rescheduling. In NT. Nguyen, L. Borzemski, A. Grzech, and M.

Ali (Eds.). New Frontiers in Applied Artificial Intelligence (pp. 119-128)

Springer Berlin/Heidelberg.

Muth, J. F. & Thompson, G. L. (1963). Industrial Scheduling. Prentice Hall

Norman, B. & Bean, J. (1997). Random keys genetic algorithm for job-shop

scheduling. Engineering Design & Automation, 3(2), 145-156.

Okada, I., lin, I. & Gen, M. (2009). Solving Resource Constrained Multiple

Project Scheduling Problems by Random Key-Based Genetic

Algorithm. Electronics and Communications in Japan, 92(8), 25-35.

106

Pfund, M., Fowler, J.W. & Gupta, J.N.D. (2004). A survey of algorithms for

single and multi-objective unrelated parallel-machine deterministic

scheduling. Chinese Journal of Industrial Engineers, 21, 230-241.

Pinedo, M. (2008). Scheduling theory, algorithms and systems. Third edition.

New York, NY: Prentice Hall.

Potts, C.N. (1985). Analysis of a linear programming heuristic for scheduling

unrelated parallel machines. Discrete Applied Mathematics, 10, 155-

164.

Rabadi, G., Mollaghasemi, M., & Anagnostopoulos, G.C. (2004). A Branch-

and-Bound Algorithm for the Early/Tardy Machine Scheduling Problem

with a Common Due-Date and Sequence-Dependent Setup Time.

Computers & Operations Research Journal, 31 (10), 1727-1751.

Sipper, D. Jr. & Bulfin, R.L. (1997). Production: Planning, Control, and

Integration. New York, NY: McGraw-Hill.

Subramaniam V. & Raheja, A. S. (2003). mAOR: a heuristic based reactive

repair mechanism for job shop schedules. The International Journal of

Advanced Manufacturing Technology, 22, 669-680.

Subramaniam, V., Raheja, A. S. & Rama Bhupal Reddy, K. (2005). Reactive

repair tool for job shop schedules. International Journal of Production

Research, 43(1), 1-23.

Valente, J.M.S. & Gongalves, J.F. (2009), A genetic algorithm approach for

the single machine scheduling problem with linear earliness and

quadratic tardiness penalties. Computers and Operations Research,

36(10), 2707-2715.

Vieira, G.E., Herrmann, J.W. & Lin, E. (2003). Rescheduling manufacturing

systems: a framework of strategies, policies, and methods. Journal of

Scheduling, 6, 39-62.

107

Wu, S. D., Storer H. S. & Chang P-C. (1993). One-machine rescheduling

heuristics with efficiency and stability as criteria. Computers and

Operations Research, 20,1-14.

108

VITA

ELKIN RODRIGUEZ-VELASQUEZ

Engineering Management and Systems Engineering Department

Elkin Rodriguez-Velasquez received his Master of Sciences in Systems

Engineering in 2000 and his Bachelor's degree in Industrial Engineering in 1997

from the Universidad Nacional de Colombia in Medellin. He has served as a

graduate research assistant for the Engineering Management and Systems

Engineering (EMSE) Department at Old Dominion University, Norfolk, VA. Elkin

has had experience in the development of information systems in different

organizations. He has been a consultant in the area of scheduling for

manufacturing companies and professor in the Industrial Engineering program at

the Universidad Nacional de Colombia. He has also authored publications in the

areas of scheduling and modeling & simulation. His research interests are

focused on the application of Artificial Intelligence tools, for solving scheduling

and rescheduling problems.

	Old Dominion University
	ODU Digital Commons
	Spring 2011

	Random Keys Genetic Algorithms Scheduling and Rescheduling Systems for Common Production Systems
	Elkin Rodriguez-Velasquez
	Recommended Citation

	tmp.1552931711.pdf.ENd0X

