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ABSTRACT 

RANDOM KEYS GENETIC ALGORITHM SCHEDULING 
AND RESCHEDULING SYSTEM FOR COMMON PRODUCTION SYSTEMS 

Elkin Rodriguez-Velasquez 
Old Dominion University, 2011 

Director: Dr. Ghaith Rabadi 

The majority of scheduling research deals with problems in specific 

production environments with specific objective functions. However, in many 

cases, more than one problem type and/or objective function exists, resulting in 

the need for a more generic and flexible system to generate schedules. 

Furthermore, most of the published scheduling research focuses on creating an 

optimal or near optimal initial schedule during the planning phase. However, 

after production processes start, circumstances like machine breakdowns, 

urgent jobs, and other unplanned events may render the schedule suboptimal, 

obsolete or even infeasible resulting in a "rescheduling" problem, which is 

typically also addressed for a specific production environment, constraints, and 

objective functions. 

This dissertation introduces a generic framework consisting of models 

and algorithms based on Random Keys Genetic Algorithms (RKGA) to handle 

both the scheduling and rescheduling problems in the most common production 

environments and for various types of objective functions. The Scheduling 

system produces predictive (initial) schedules for environments including single 

machines, flow shops, job shops and parallel machine production systems to 

optimize regular objective functions such as the Makespan and the Total 

Tardiness as well as non-regular objective functions such as the Total Earliness 

and Tardiness. 

To deal with the rescheduling problem, and using as a basis the same 

RKGA, a reactive Rescheduling system capable of repairing initial schedules 

after the occurrence of unexpected events is introduced. The reactive 

Rescheduling system was designed not only to optimize regular and non-regular 



objective functions but also to minimize the instability, a very important aspect in 

rescheduling to avoid shop chaos due to disruptions. Minimizing both schedule 

inefficiency and instability, however, turns the problem into a multi-objective 

optimization problem, which is even more difficult to solve. 

The computational experiments for the predictive model show that it is 

able to produce optimal or near optimal schedules to benchmark problems for 

different production environments and objective functions. Additional 

computational experiments conducted to test the reactive Rescheduling system 

under two types of unexpected events, machine breakdowns and the arrival of a 

rush job, show that the proposed framework and algorithms are robust in 

handling various problem types and computationally reasonable. 
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1 INTRODUCTION 

Scheduling theory is concerned with the allocation of a set of limited resources 

over time to process a set of jobs (Baker, 1974). Scheduling in manufacturing 

and production environments varies to include most commonly single machines, 

parallel machines, flow shops, job shops and their combinations. Depending on 

the nature of the business, scheduling problems may have different objective 

functions and processing conditions or restrictions. Over the past few decades, it 

has been shown that the majority of scheduling problems with various objective 

functions are explosively combinatorial in nature (Pinedo, 2008). 

Most of the published scheduling research focuses on creating an optimal 

or near optimal initial schedule during the planning phase (see, for example, 

Muth and Thompson (1963), Conway, Maxwell and Miller (1967), Baker (1974), 

French (1982)). However, after production processes start, different 

circumstances like machine breakdowns, material delays, urgent jobs, and other 

unplanned events may render the schedule suboptimal, obsolete or even 

infeasible. In such cases, the scheduling problem turns into a "rescheduling" 

problem. In spite of their importance, rescheduling problems have not been 

broadly studied in the literature as much as scheduling problems, nor have they 

been adequately implemented in practice due to the difficulty of dealing with 

unexpected events (MacCarthy and Liu (1993), Mehta and Uzsoy (1999), and 

Arnaout and Rabadi (2007 and 2008)). 

Rescheduling strategies may be divided into three main categories: 

Online Scheduling, Robust Scheduling, and Reactive Scheduling (Mehta and 

Uzsoy (1999), Arnaout (2006)). In Online Scheduling, there is no initial schedule 

to adhere to; instead, decisions are made locally, using dispatching (heuristic) 

rules to select the next job to process when an event disrupts the schedule. The 

main weakness of this approach is that quality of the schedule is typically poor, 

and it does not allow for resource planning (Mehta and Uzsoy (1999)). Robust 

Scheduling, on the other hand, anticipates unexpected events and develops an 
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initial (or predictive) schedule with built-in flexibility (e.g., Esswein, Billaut, and 

Strusevich (2005)) or redundancy (e.g., Herroelen and Leus (2005)) to account 

for future events. There are two main drawbacks to this approach. First, it is very 

difficult to anticipate the type and timing for an event to occur, and, second, it is 

quite unlikely for schedulers in practice to voluntarily insert idle time in the 

schedule or keep too many redundant resources idle in anticipation of events 

that may take place. Instead, they usually deal with events as they occur. This 

leaves Reactive Scheduling as the most viable and practical option to deal with 

rescheduling problems. 

In Reactive Scheduling, a schedule is created in response to interruptive 

events and three strategies are commonly applied (Abumaizar and Svestka, 

1997): Total Rescheduling, Right-shift Rescheduling and Affected Operations 

Rescheduling. Total Rescheduling creates a totally new schedule for the 

operations that have been interrupted and for those that have not been started 

yet. Right-shift Rescheduling delays the start of all operations in the schedule by 

the time required to make it feasible. Affected Operations Rescheduling takes 

into account that not all operations may be affected by an event, so it delays only 

the ones that are affected by the event (either interrupted or that have been 

delayed due to delay in their preceding operations). These rescheduling 

methods, however, have been studied under specific problems with specific 

objective functions and constraints. There is a clear lack of research in the 

literature for a dependable reactive rescheduling system that can effectively 

repair schedules in a generic fashion regardless what the production 

environment is or what the objectives and constraints are. Most industries 

currently resort to manual or semi manual rescheduling when unexpected events 

occur. Most research and software scheduling systems focus on creating a good 

initial plan or schedule and few worked on or included rescheduling aspects. 

This dissertation attempts to close this research gap by introducing 

algorithms and methods based on a generic framework that are capable of 

repairing schedules in most common production environments and for most 

objective functions. The remainder of this document is organized as follows: 
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background is presented in Chapter 2 to introduce the topic of scheduling. 

General aspects about scheduling such as problem classification and some 

specific examples are presented in order to familiarize the reader with the field. 

The third chapter presents the literature review in the area of rescheduling, 

covering Online, Robust and Reactive scheduling. The conclusions of this 

chapter address the research gap. The research purpose is presented in 

Chapter 4, where the scope and the general and specific objectives are 

discussed. Chapter 5 introduces a procedure to reduce Earliness and Tardiness 

in diverse types of schedules. Chapter 6 presents the generic predictive 

scheduling model covering the Random Keys Genetic Algorithms approach and 

the theoretical principles upon which such a model is built to generate solutions 

for the different production environments and objective functions covered by this 

work. 

In order to test the predictive model, computational experiments for 

different production environments, problem sizes and objective functions are 

presented in Chapter 7. In Chapter 8, the generic reactive model is presented to 

deal with different unexpected events and the quality and stability of the reactive 

solution. The predictive and the reactive model are connected in this chapter. 

The computational experiments to test the reactive model under different 

unexpected events are presented in Chapter 9. Finally, Chapter 10 discusses 

the research conclusions, contributions, and future research. 
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2 BACKGROUND 

2.1 Field of Study 

Scheduling theory is concerned with the allocation of a set of limited resources 

over time to process a set of jobs (Baker, 1974). Although scheduling problems 

may be present in long term planning, scheduling has generally been associated 

with the short term planning level, which is sometimes called operative planning 

(Sipper and Bulfin, (1997)). Over the last few decades, scheduling has become 

an area of knowledge for which there are well known textbooks used in 

academia and research, like the ones by Baker (1974), French (1982) and 

Pinedo (2008), scientific journals dedicated to it such as the Journal of 

Scheduling, published by Springer and the International Journal of Planning and 

Scheduling by Inderscience, in addition to many Operations Research and 

Industrial Engineering journals that publish Scheduling research. 

2.2 Scheduling Problem Classification 

Graham, Lawler, Lenstra, and Rinnooy Kan (1979) introduced a notation that is 

widely accepted in the literature, and is commonly called Graham's notation, for 

classifying scheduling problems. It consists of a triple a / p / y. The first symbol, 

a, represents the environment of the shop. It can be a single machine (1), 

parallel machines (Pm), a flow shop (Fm), a job shop (Jm), an open shop (Om) 

or combinations of these where m is the number of machines, p refers to 

specificities of the problem and y represents the objective function, which is 

typically a function of the jobs' completion times, i.e. the time at which each job 

is finished in the schedule. Depending on the instances of a, p and y under 

consideration, some problems can be solved by optimal or heuristic techniques. 

The next section discusses the differences between such techniques and the 

situations in which they can be used according to the problems' characteristics. 
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2.3 Problem Solving Techniques for Scheduling Problems 

Most scheduling problems belong to a category for which it may not be possible 

to find optimal solutions for large problems, even with the best computational 

techniques developed so far (Baker and Trietsch, 2009); these problems are 

called NP-hard. For other problems, there are techniques that are able to find 

the solution in a reasonable time. These are usually called polynomial time 

algorithms and the problems they can solve, polynomial time problems (Pinedo, 

2008). 

Regarding the solution techniques, there are general purpose methods for 

solving combinatorial problems (General) or methods designed to solve specific 

scheduling problems (Specific). As for the optimality, there are methods that 

guarantee finding an optimal solution (Exact) and approximate methods 

(Approximate) that do not guarantee such solutions. Therefore, not all methods 

may be used with every problem. While NP-hard problems may be solved only 

by approximate methods in a reasonable computational time, polynomial time 

problems may be solved by general or specific methods, exact or even 

approximate, keeping in mind that optimality can only be guaranteed by exact 

methods. 

According to such classification, Table 1 shows some examples of the 

different methods and problems they can solve. For example, although it is 

possible to use an approximation technique to solve a relatively easy problem 

(polynomial time problem) like Genetic Algorithms for the J2/ /Cmax problem 

(minimizing the makespan in a Job Shop with two jobs), it may not be necessary 

since there are general and specific techniques available that guarantee 

optimality. In the same vein, it is possible to unnecessarily use a general 

purpose method like branch and bound to find the optimal solution to a 

polynomial time problem like 1 / /U (minimizing the number of tardy jobs on a 

single machine), while the tailored optimal algorithm by Moore (1968), known as 

Hodgson's algorithm, can solve it optimally. 
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Table 1. Example of solution techniques according to the type of method 

Purpose General Specific 

Optimality 

Exact Branch and Bound or 

Integer Linear 

Programming 

for 1//U 

Approximation Genetic Algorithms or Giffler and Thompson (1960) for 

Tabu Search for J2/ /Cmax (not NP-hard) or 

J2/ /Cmax (not NP-hard) J100/ /Cmax (NP-hard) 

or 

J100//Cmax (NP-hard) 

In order to present some examples and discussions throughout this 

dissertation, and due to the research relevance, the Job Shop Scheduling 

Problem and the so-called regular and non-regular performance measures are 

briefly explained in the next two sections. 

2.4 Job Shop Scheduling 

The Job Shop Scheduling Problem has been extensively studied in scheduling 

theory since it is a common case in manufacturing. It consists, in the most 

classical case, of a finite set of available jobs to be executed on a set of finite 

machines that are continuously available. Each job has a sequence of 

operations for which the processing times are known and assumed to be 

deterministic. Each operation needs to be processed on one machine. The 

sequence of operations through the machines is not necessarily the same for all 

jobs. The resulting schedule must respect two main constraints: one machine 

can process only one operation at a time, and the sequence of operations on the 

machines must be respected for each job. The most commonly used objective 

function for the Job Shop Scheduling Problem (JSSP) is the makespan (Cmax), 

i.e. minimizing the completion time of the job ending last, which represents the 

Moore (1968) for 1//U 

Johnson (1954) for F2/ /Cmax 

Jackson (1956) for J2/ /Cmax 
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time necessary to process all jobs. In terms of Graham's notation, the problem is 

classified as Jm/ /Cmax, where Jm denotes a job shop with m machines. Given 

its combinatorial complexity (Garey and Johnson, 1979), numerous optimal and 

non-optimal approaches have been presented to deal with this problem. An 

extensive review can be found in Jain and Meeran (1999). 

2.5 Regular and Non-Regular Performance Measures 

Most research on scheduling has been devoted to problems with objective 

functions that belong to a category called Regular Performance Measures. 

These are defined as functions that are not decreasing in the completion times 

(Pinedo, 2008). The makespan, explained in the previous section, belongs to 

such a class. To familiarize the reader with the concept, an example is 

presented below. 

Suppose a 2 job, 2 machine JSSP with the processing times and routes 

through the machines shown in Table 2. 

Table 2. A 2 x 2 Job Shop Problem 

Job Processing Time(Operation Routing) 

~1 3(1) 5(2} 

2 4(2) 1(1) 

Job 1 consists of two operations with processing times 3 and 5 

respectively; the first operation is processed on machine 1 and the second one 

on machine 2. Job 2 has also two operations with processing times 4 and 1 

respectively; the first operation is processed on machine 2 and the second one 

on machine 1. 

A feasible solution for a scheduling problem is usually represented in a 

Gantt chart as the one shown in Figure 1 for the example at hand, where the 

horizontal axis represents time and the machines (M1 and M2 in this case) are 
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on the vertical axis. The number of each operation in the chart corresponds to 

the job to which they belong. 

M l 

M2 

1 

2 

2 

i 
3 4 5 

time 

Figure 1 A 2 x 2 Job Shop Problem 

If we want to minimize the makespan, the problem we have, in terms of 

Graham's notation, is J2/ /Cmax. In this case, Cmax, the completion time of the 

last operation is calculated as: 

Cmax = max{Cj} Vi = 1, ...n (1) 

where Q corresponds to the completion time of job i and n is the number of jobs. 

Therefore, we have: 

Cmax = max{C1( C2} = max{9, 5} = 9. 

We can see that Cmax is not decreasing in function of C^ C2; that is to 

say, after increasing Cx or C2, Cmax will increase or remain the same, but it will 

not decrease regardless of the sequence. 

Let us use now an objective function called Earliness and Tardiness, 

which calculates the summation of the time deviation of each job depending on 

whether it finishes earlier or later than its due date, aiming that all jobs finish 

exactly on their correspondent due dates. This function, which we will denote as 

ET, is defined as: 

ET = Zf=1|Ci - dil (2) 
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where: Q corresponds to the completion time of job /, 

dj is the due date of job i and 

n is the number of jobs. 

If we want to minimize ET, the problem we have, in terms of Graham's 

notation, is J2/ /ET. Now suppose that both jobs' due dates are equal; that is, dx 

= d2 = 9. 

Since all jobs have the same due date, this is called a Common Due Date 

in the literature. Therefore the value of ET is: 

ET = | Cx — di| + | C2 — d2| = |9-9| + |5-9|= 4. 

Suppose that we increase Cx by one unit; that is, we start the last 

operation of job 1 on time 5 and consequently it finishes on time 10, then: 

ET = |10-9| + |5-9|=5. 

As in the case of Cmax, the ET objective function increased after 

increasing C±. However, if we do not changed, but increase C2, so the last 

operation of job 2 starts at time 5 and therefore finishes at time 6, we have: 

ET = | d - di| + | C2 - d2| = |9-9| + |6-9|= 3. 

So ET decreased when certain Ct increased. Consequently, ET is not a 

regular performance measure. While in regular measures the objective function 

never decreases as the completion time increases, in non-regular measures the 

objective function may decline. Figure 2 represents the behavior of the ET as a 

function of the completion time. As the completion time approaches the due date 

from the left, the Earliness decreases. When the job is completed just in time, at 

the due date, the objective function value is zero. As the completion time starts 

deviating from the due date to the right, the Tardiness increases. Non-regular 

functions have caught the attention of researchers in the last three decades as 

they capture the essence of the Just-In-Time philosophy, but they make 
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scheduling problems more challenging due to the nature of the objective 

function. 

Non-regular measure 

Figure 2 Earliness/Tardiness ET of job i 
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3 LITERATURE REVIEW 

3.1 Scheduling and Rescheduling 

Several papers (e.g. MacCarthy and Liu (1993)), report the existence of a gap in 

scheduling between a previously generated schedule and common real life 

unforeseen situations, like machine breakdowns, rush jobs, order cancellations, 

delays in the arrival of materials, etc. This gap may be caused by the fact that 

scheduling theory has mainly focused on the problem of producing the initial 

(predicative) schedule and most of the research assumes that it will be executed 

exactly as it was initially created. But, when such a schedule is being executed 

unexpected events may make it infeasible, indicating the necessity to update it. 

This schedule updating phase has not been as broadly studied as much as the 

initial phase. In the same sense, Graves (1981), states that "there is no 

scheduling problem but rather a rescheduling problem". 

In response to that, some researchers started presenting strategies to 

deal with such unexpected events in different shop environments. Scheduling 

models can be divided into those that deal with the mentioned unforeseen 

events, usually referred to as rescheduling, and those that do not. The vast 

majority of research papers have been focusing on traditional scheduling that 

does not consider the rescheduling problem. 

3.2 Rescheduling 

Regarding the research approaches that deal with unforeseen events, three 

types of approaches have been identified: online, predictive-reactive and robust 

scheduling (Mehta and Uzsoy (1999), Arnaout (2006)). 

In online scheduling there is not an initial schedule; the decisions are 

made locally, using previously established priority rules (dispatching rules) to 

select the next job to be processed on each machine once it is ready after being 

unavailable for any reason. In such cases the shop can be modeled by 

simulation and different policies can be tested. Since there is no initial schedule, 
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this approach has the weakness of not allowing any resource planning, as Mehta 

and Uzsoy (1998) and Arnaout (2006) stated. 

In the predictive-reactive scheduling, an initial (predictive) schedule is 

generated and then changed according to different policies when an unexpected 

event occurs; hence, it is called predictive-reactive scheduling. The original 

schedule is changed attempting to minimize the impact on the system's 

performance. To produce the reactive schedule, three main policies are reported 

in the literature (Vieira, Herrmann, and Lin, 2003): periodic, event driven or 

hybrid. Three strategies are known in the literature to generate the reactive 

schedule: (Abumaizar and Svestka, 1997) total rescheduling, right-shift 

rescheduling and affected operations rescheduling (Other authors like Herrmann 

(2006) and Vieira et al., (2003), refer to total rescheduling as complete 

regeneration, and affected operations rescheduling as partial rescheduling). 

Total Rescheduling consists of solving the new scheduling problem that a 

shop has once an unexpected event occurs, taking into account the operations 

not yet started and the one(s) interrupted. Right-shift rescheduling delays the 

starting of all operations in the schedule by the time required to make the 

schedule feasible. In Affected Operations Rescheduling, given a disruption, not 

necessarily all the operations in the Gantt chart have to be moved to the right; 

only some operations are affected due to the delay in their preceding operation 

in their machine or in their job and only those are moved to the right (recall that a 

job typically consists of multiple operations). 

The differences between right-shift rescheduling and Affected Operations 

Rescheduling are presented in Figures 3 to 5. In Figure 3, part of a predictive 

schedule for the famous 6 x 6 job shop benchmark problem (i.e. 6 jobs and 6 

machines where each job has one operation on each machine) from Muth and 

Thompson (1963) is shown in a Gantt chart, where the number of each 

operation on the Gantt chart represents the job to which it belongs. The 

makespan (completion time of the last operation) is 55. In Figure 4 a breakdown 

takes place on machine 4 from time 25 to 28. Assuming the so-called "interrupt 

repeat mode", that is, when an operation is interrupted, its processing has to 
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start from scratch when it is rescheduled, the interrupted operation (the one of 

job 1 on machine 4) as well as all the operations scheduled to start at or after 

time 25 are "right shifted" by 6 time units, corresponding to the amount of time 

the start of the interrupted operation had to be delayed. The new makespan is 

61 time units. In Figure 5, Affected Operations Rescheduling is applied instead. 

Only operations in bold are right shifted, and as can be seen, there is no need to 

displace the other ones. The new makespan is 56 time units, much closer to the 

predictive schedule's makespan. 

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 

Figure 3 Example of a Schedule represented on a Gantt chart 

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 

Figure 4 A breakdown on M4 from time 25 to 28.0perations starting after the 

breakdown and disrupted operation are right shifted 6 time units 

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 

Figure 5 A breakdown on M4 from time 25 to 28. Only the affected operations 

are right shifted 6 time units 
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Total Rescheduling may produce a very different sequence on the machines in 

response to the disruption, while the other two approaches maintain the 

predictive sequence. Wu, Storer, and Chang (1993) define stability, in the 

context of rescheduling, in two ways: the starting time deviations between the 

new schedule and the original schedule and a measure of the sequence 

difference between the two schedules. Using these terms, predictive-reactive 

scheduling by Total Rescheduling may cause a high level of instability. 

Mason, Jin and Wessels (2004) compare the right-shift rescheduling, 

affected operations rescheduling (Fixed-Sequence Rescheduling as they call it) 

and Total Rescheduling in a Complex Job Shop i.e. a job shop that has different 

job release times, batching machines, parallel machines, sequence dependent 

setup times and recirculation reentrant product flow through some machines), 

when the objective is to minimize the total weighted tardiness. They conduct 

diverse experiments with one unplanned machine breakdown happening early 

and late in the schedule's span, with different breakdown durations. They 

compare all methods in terms of efficiency (in this case, total weighted 

tardiness). Due to the production environment complexity, in all cases Total 

Rescheduling performs better than both right-shift rescheduling and affected 

operations rescheduling despite requiring more computational time. 

Abumaizar and Svestka (1997) introduce the Affected Operations 

Rescheduling (AOR) algorithm to reschedule job shops when the objective 

function is the makespan and compare it to total rescheduling and right-shift 

rescheduling in terms of efficiency and stability. They conduct an experiment in 

which a breakdown may occur in one of two levels: early or late in the predictive 

schedule. The experimental design shows that the AOR algorithm outperforms 

the other two methods. Subramaniam and Raheja (2003) study different types of 

disruptions in a shop: machine breakdown, process time variation, arrival of an 

unexpected job and a job that becomes urgent. They propose repairing the 

schedule if one of these disruptions occurs by using AOR as a basis and by 

utilizing a set of algorithms oriented to four actions: Insert Idle Time, Insert 

Adjustment Time, Insert Operation and Delete Operation. They call their 
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approach Modified Affected Operations Rescheduling (mAOR). In a later work, 

Subramaniam, Raheja, and Rama Bhupal Reddy (2005) compare the mAOR to 

the right-shift rescheduling, this time simulating multiple disruptions that occur in 

a Job Shop using different mean time between disruptions, proportion of 

disrupted operations and average duration of the disruptions. According to their 

experimentation parameters, they focus on one-disruption-at-a-time scenarios 

for their experiments. The experimental results show that mAOR performs better 

than right-shift rescheduling. 

Match up rescheduling is a special type of affected operations 

rescheduling AOR. Match up uses different strategies to repair a schedule up to 

a certain point in time in which the repaired (reactive) schedule matches the 

predictive schedule. There is little research on this approach. It was proposed 

and studied first in the context of a single machine by Bean and Birge (1986). 

Later on, Bean, Birge, Mittenthal, and Noon (1991) address a case of parallel 

machines from the automobile manufacturing industry and find that match up 

outperforms right-shift and online rescheduling. Akturk and Gorgulu, (1999) 

study a cellular manufacturing system where each cell is what they call a 

Modified Flow Shop, a flow shop where not all jobs start at the same machine 

and/or leave the system at the same machine. Moratori, Petrovic and Vazquez 

(2008) propose a match up strategy to include new rush jobs in a flexible job 

shop's schedule. In the experiments they compare their match up approach with 

right-shift and total rescheduling. They report that the algorithm produces 

stability similar to the one of right-shift and a performance similar to the one 

produced by total rescheduling. 

Robust scheduling, on the other hand, tries to anticipate unexpected 

events by using different strategies like the following: 

• Schedule flexibility: As defined by Esswein et al. (2005), it is achieved 

by generating a schedule composed of sequences of groups of 

permutable operations on each machine. They use the concept of 

groups based on the former work of Erschler, Roubellat, and Vernhes 
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(1976). Artigues, Billaut, and Esswein (2005) use this approach to 

solve the JSSP where ready times are not necessarily zero and the 

objective function becomes a compromise between the quality of the 

schedule and a flexibility measure that they defined. In their case, the 

schedule quality was defined by the maximum lateness Lmax where 

Lateness is defined as the difference between the completion time of a 

job and its due date. 

• Redundancy: It can be oriented either to the resources or to time 

(Herroelen and Leus (2005)). In the first case, it can be accomplished 

by introducing multiple machines, tools, personnel, etc. ready to 

absorb the disturbance. In the second case, idle time is inserted in the 

initial schedule between activities so that, if a disruption happens, a 

simple adjustment can be made, maintaining system performance. As 

for the time redundancy, the idea is to insert idle time to obtain a pre-

schedule, able to be reconstructed after a breakdown. Mehta and 

Uzsoy (1998) propose an approach to insert idle time in a predictive 

schedule for a Job Shop where the objective function is to minimize 

the maximum Lateness, assuming the probability distribution of the 

time between machine breakdowns and their duration are known. 

Arnaout (2006) presents a robust rescheduling architecture for the 

Unrelated Parallel Machine Scheduling problem to minimize the 

makespan (Rm/ /Cmax) where he used a rule to insert idle time to 

generate the predictable schedule. He states that the architecture 

could be adapted to other environments different from parallel 

machines. 

In some cases, operations are started as soon as they become 

available as in Mehta and Uzsoy (1998) to absorb idle time, while in others 

the predictive schedule is respected when it is possible as in Arnaout and 

Rabadi (2008). To achieve robustness, the first option (starting operations as 

soon as they are available) may be desirable, but to avoid earliness penalties 

the second option (trying to hold on to the preemptive schedule's starting 
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times) is more appropriate. Pinedo (2008) confirms that there is a trade-off 

between starting operations early, in order to have robustness in the 

schedule, and starting them as late as possible to avoid holding costs. 

Another strategy to implement robust scheduling, according to Pinedo 

(2008) is to keep the bottleneck machines fed. Regarding the concept of 

robustness in general, he states that little research has been done on this topic. 

3.3 Concluding Remarks 

The previous literature points out some important facts. Although the online 

rescheduling is a more appropriate option when disruptions are too frequent 

(Bean et al. 1991) it is disadvantageous in the sense that it does not provide any 

resource planning (Arnaout, 2006). 

When there is available information on the disruptions (like the time 

between breakdowns and their duration), this may be used to produce a robust 

predictive schedule as in Mehta and Uzsoy (1998) and Arnaout (2006), among 

others. 

There are, however, other classes of uncertainties in manufacturing 

environments, like the ones McKay, Buzacott and Safayeni (1989) call "complete 

unknowns", which are unpredictable and may cause multiple disruptions on the 

machines like a power outage or a sudden strike. Consequently, it is difficult to 

take into account situations like those by a robust approach. 

The Predictive-reactive approach, on the other hand, does not require 

previous information about the disruptions. However, the reviewed literature 

shows that the research has focused on "one disruption at a time" scenarios for 

their experiments (see for example: Abumaizar and Svestka, (1997) and 

Subramaniam et al. (2005)), and to our knowledge, no prior research on 

rescheduling describes the study of simultaneous breakdowns. 

3.4 Research Gap 

The previous section shows some important gaps. Most of the current 

scheduling research solves scheduling problems using methods that are tailored 
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to specific problems with specific objective functions and constraints. There is a 

need for general representations that can be used for reactive scheduling in 

different shop environments and for various objective functions. 

As was shown, the research has focused on "one disruption at a time" 

scenarios. There is a lack of research studying simultaneous disruptions. To our 

knowledge, no prior research addresses simultaneous breakdowns in the 

context of reactive scheduling. 

Most of the work published has focused on regular objective functions. 

The literature review shows a lack of research on reactive scheduling 

considering both regular and non-regular measures (specifically the non-regular 

objective function of minimizing the total Earliness and Tardiness). 

This research will address the previous research gaps and develop a 

Predictive- Reactive Scheduling system usable in different shop environments 

and with different objective functions. 
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4 RESEARCH PURPOSE AND SCOPE 

It is the overall objective of this research to develop a predictive - reactive 

scheduling system that is capable of repairing schedules for the most common 

production environments when unexpected events take place. The purpose is to 

coherently integrate new and existent approaches for rescheduling by 

implementing a higher level tool to repair a schedule once disrupted by 

unforeseen events such as (multiple) machine breakdown, job priority change, 

arrival of urgent jobs, and longer than expected processing times among other 

typical events. The scope will encompass solutions for single machine, parallel 

machine, flow shop, and job shop environments with regular and non-regular 

objective functions. The specific objectives of the project can be summarized as 

follows: 

1. Introduce a coding schema general enough to approach scheduling 

problems in the most common production environments including: single 

machines, parallel machines, flow shops, and job shops with the most common 

regular performance measures (objective functions) including: the makespan, 

total tardiness, maximum lateness, and total completion time, in addition to the 

non-regular objective function of the total earliness and tardiness. 

2. Develop and implement an encoding/decoding algorithm to translate a 

solution representation into a schedule and vice versa based on the coding 

scheme in objective 1. 

3. Develop and implement a Meta-heuristic schedule repair algorithm that 

will be able to react to unexpected events in various production environments. 

Specifically, a Random Key Genetic Algorithm (RKGA) will be the Meta-heuristic 

of choice for reasons that will be discussed in Chapter six in which the Predictive 

model is presented. 

4. Perform experiments to test the individual components of the proposed 

scheduling systems as well as the whole system. The experiments will mostly be 

based on randomly generated data that will cover realistic and common 
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manufacturing and production systems (listed earlier) as well as different types 

of disruptions and objective functions. 
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5 A PROCEDURE FOR THE NON-REGULAR MEASURE OF EARLINESS 

AND TARDINESS 

Most of the body of literature on scheduling has been dedicated to problems with 

Regular Performance Measures (see, for example, the books of French (1982), 

Pinedo (2008) and Baker and Trietsch (2009)). The introduction of the just-in-

time (JIT) production approach brought to attention an important fact to 

scheduling theory which is that it is not necessarily always beneficial to complete 

the jobs as early as possible as this may increase the holding cost. Therefore, it 

became necessary to minimize both earliness and tardiness for jobs from their 

due dates. Minimizing tardiness would reduce the cost of missing due dates or 

the loss of customers while minimizing earliness would reduce the holding or 

inventory cost. This problem is known in the literature as the early/tardy (ET) 

problem. Although JIT entails more detailed concepts, the ET problem seems to 

mathematically capture the scheduling essence of it. In this chapter we study 

some characteristics of the 1 / /ET problem when the due date of all jobs is 

common in order to propose a procedure that aims to reduce the ET of a 

schedule by delaying the start time of some operations. 

5.1 Minimizing ET in a Single Machine 

Consider the problem of scheduling four jobs on a single machine with 

processing times 3, 4, 5 and 2 for jobs 1, 2, 3 and 4 respectively. Suppose we 

decide to process them in the sequence: 4 - 3 - 1 - 2 . If the objective function 

is a regular measure such as Cmax, we must build a schedule where all 

operations must be started as early as possible. In the single machine case the 

resulting schedule will not have any idle time between operations. 

The resulting schedule can be represented in the Gantt chart in Figure 6, 

where M1 is the only machine in the problem. 
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Figure 6. Schedule for a single machine problem 

Such a solution is reasonable when optimizing a regular function since 

schedules without inserted idle time determine a dominant set for any regular 

measure of performance (Baker and Trietsch, 2009). However, if the objective 

function is not regular, it may be desirable to have idle time before some or all of 

the jobs start processing. Consider the same set of jobs, but in this case all of 

them have the same due date, d = 15, and the objective function is the non-

regular measure of Earliness/Tardiness as defined in expression (2) of Chapter 

2. 

In this case, any optimal solution will have some idle time inserted on 

machine 1 before the first job starts processing (Baker and Trietsch, 2009). 

Three optimal solutions for the problem with ET = 11 are shown in Figure 7. 

Ml 

l i 15 17 20 

M l 

10 13 15 19 

M l 

7 12 15 17 

Figure 7. Three Optimal Schedules for a 1 / /ET problem 

with a Common Due Date= 15 

21 
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5.1.1 The Unrestricted Single Machine Model with a Common Due Date 

Regarding the 1 / /ET problem with a common due date (CDD) problem Baker 

and Scudder (1990) defined a problem as unrestricted as follows. 

If we sequence the jobs in a longest processing time order, we can call A 

to the summation of every other processing time. If the common due date CDD £ 

A, then the problem is unrestricted. 

They list four dominance properties identified by Kanet (1981) for the 

unrestricted problem: 

/. "There is no inserted idle time in the schedule. (If job j immediately 

follows job i in the schedule, then Cj = Ci + pj.) 

II. The optimal schedule is V-shaped. (Jobs for which Cj < d are 

sequenced in non-increasing order of processing time; jobs for which 

Cj > d are sequenced in non-decreasing order of processing time.) 

III. One job completes precisely at the due date. (Cj = d for some j.) 

IV. In an optimal schedule, the bth job in sequence completes at time d, 

where b is the smallest integer greater than or equal to n/2." 

If we call P[j] the processing time of the job in position / in the sequence, 

according to the definition, the problem is unrestricted if CDD > A, where: 

A = fP[i] + P[3] + - + P[n] if n is odd 

lP[2] + P[4] + ••• + P[n] if n is even 

Pfi] < P[2] < P[3] - ^ P[n] (4). 

Notice that the condition for a problem to be unrestricted, CDD ^ A, 

guarantees that there is enough time for the bth job to complete on the CDD. 

Notice that given any predefined sequence, properties I, III and IV can be 

used to reduce the ET value (Baker and Trietsch, 2009). Suppose that we have 

a predefined sequence. First we must check if the problem is restricted or not in 

order to know if we can utilize the properties. In this case since the sequence is 

predetermined we must check that the summation of processing times of jobs in 
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positions from 1 to b is not greater than the due date. If the condition holds, we 

can proceed to find the start times of all jobs. According to properties I and III, 

our schedule must not have inserted idle time and there must be a job that 

finishes exactly at the due date. Finally, property IV will let us determine which 

job should finish at the due date; therefore, we can determine the start and finish 

time of all jobs in the schedule. 

As an example, suppose we have three jobs to schedule on a single 

machine with a common due date of 9 and processing times 1, 3 and 2 for jobs 

1, 2 and 3 respectively. Suppose as well that we have decided to process them 

in the natural sequence 1 - 2 - 3 . First note that, according to property IV, 

position b is obtained as the smallest integer greater than or equal to 3/2, which 

is 2. That corresponds to job 2 which is in the second position. The summation 

of processing times of jobs 1 and 2 equals 4 which is less than or equal to the 

common due date; therefore, the problem with a fixed sequence is unrestricted. 

By property III we know that job 2 must complete on 9 and property I states that 

no idle time should be inserted, which lets us determine the rest of the start and 

completion times in the schedule, as shown in Figure 8. 

CDD 

• J!P,Ji:j 
5 6 9 11 

Figure 8. Optimal Schedule to minimize ET for a single machine problem with a 

predefined sequence and a Common Due Date 

The previous properties have another application. Suppose that an initial 

feasible schedule is provided for the problem; that is, not only a predefined 

sequence is given but also the start or completion times. We can use the 

properties to check whether the schedule can be improved in terms of earliness 
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and perform the correspondent changes in the start times if so. As an example, 

suppose the initial schedule in Figure 9 is provided. 

CDD 

M1 
- B ' 'WJIWWH'I 

1 3 5 6 8 9 

Figure 9. Initial Schedule for a 1//ET problem with a common due date 

and a fixed sequence 

We already checked that the problem is unrestricted, so we can use 

Kanet's properties above to find the best starting times for all jobs. According to 

property I the solution does not have inserted idle time. Using properties III and 

IV we find the same schedule as the one in Figure 8. 

Definition 1: Let the "optimal completion time" C0 be the completion time 

of the last job of a job sequence that has been scheduled in a way such that the 

bth job completes at the common due date, satisfying property IV. 

According to definition 1, in Figure 8 the optimal completion time C0 =11 . 

Suppose now that we obtain the schedule shown in Figure 8. However, due to 

an event such as a maintenance job, the machine cannot be used starting from 

a time B, which we will refer to as a "boundary time", that is earlier than C0, that 

is B < C0 , in which case the schedule in Figure 8 cannot be completed. An 

example of the second scenario is shown in Figure 10. 

M1 
5 6 

CDD 

i'l i H 

9 10 11 

Figure 10. An event at time 8 overlapping the schedule in Figure 8 
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As can be seen, there is an event taking place from time B=10 to time 11 

that prevents the schedule in Figure 10 from being completed. 

Let us denote qt] as the completion time of the job in position /' in the 

sequence. 

Regarding Kanet's property IV, from the work of Rabadi, Mollaghasemi 

and Anagnostopoulos (2004), it can be seen that when CDD > C[b], as the jobs 

move to the right in the schedule so that C[b] gets closer to CDD, ET decreases 

or remains the same. Therefore, when the last job cannot be completed beyond 

a boundary time B < C0 it is always convenient to move the block of jobs to the 

right in the Gantt chart so the job in position b completes as close to the 

Common Due Date (CDD) as possible. This will decrease the ET value and may 

create idle time to the left that may be useful as will be explained later. 

Therefore, in our example coming from the situation in Figure 9, it is still a 

good idea to start job 1 at time 5 so job 3 completes at time 10, although it 

cannot complete at C0, as shown in Figure 11. 

5 6 8 10 

Figure 11. Optimal solution for the initial situation of Figure 9 

The previous properties are used as building blocks of an improving 

strategy to solve single machine sub problems present in more general problems 

such as single machine, parallel machine, flow shop or job shop problems where 

there is not a common due date. 

5.1.2 The General Single Machine Model (1//ET) 

In the 1 / /ET problem, a set of simultaneously available jobs whose processing 

times and due dates are known in advance is given. Unlike the previous case, 
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the due dates are not necessarily the same. In this case, the optimal sequence 

may not be V-shaped, and it may have inserted idle time (Baker and Scudder, 

1990). 

As an example, suppose we have four jobs to schedule on a single 

machine with processing times 1, 3, 2 and 2 for jobs 1, 2, 3 and 4 respectively. 

Additionally, jobs 1, 2 and 3 have a due date of 7, while job 4 has a due date of 

12. Suppose again that the natural sequence of jobs 1-2-3-4 is used. Given that 

predefined sequence, a solution for the problem is shown in Figure 12. 

M1 

Due Date 
jobs 1,2,3 

Due Date 
job 4 

9 10 12 

Figure 12. Optimal Schedules for the 1//ET problem given a predefined sequence 

and different due dates 

Note that in this case, jobs 1, 2 and 3 form a common due date sub 

problem and job 4 does not interfere which, according to Kanet's property IV, 

lets us anticipate that the solution provided is optimal. However, it may not 

always be the case. Job 4's processing time could have been 4 time units, or its 

due date could have been 10 or earlier, which would give us a situation similar to 

the one presented in Figure 10. Another important thing to notice here is that we 

can see the problem as formed by two common due date problems not 

interfering with each other in this case, the first one with three jobs and a 

common due date = 7, and the second one with only one job and a "common" 

due date of 12. 

An Earliness Reduction Procedure based on the previous properties is 

presented below. 
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5.1.3 Earliness Reduction Procedure for the 1//ET problem 

Using an existing schedule as an input, the Earliness Reduction Procedure 

consists of exploring all jobs from right to left in the Gantt chart, identifying 

groups of jobs that share the following characteristics: 

1. Are adjacent, 

2. Have the same (common) due date, 

3. Complete earlier or at due date. 

It is important to notice here that as a result of the procedure, for a 

problem with n jobs, there may be at the end n unitary sets in one extreme case, 

no sets at all on the other extreme, or something in between. 

Notice as well that if all jobs from a group complete earlier or at the due 

date, at most one can complete at the due date; otherwise there would be an 

overlap. Moreover, that means that Ei=i,...n Pi - CDD; consequently, from 

expression (3), A ^ CDD; therefore the problem of the group of jobs is 

unrestricted. 

The procedure is described via pseudo code below and starts by 

determining the previously described groups of jobs, and the initial boundary 

time up to which the jobs in the group can be shifted to the right without 

overlapping with other jobs. That is done in steps 1 and 2 of the algorithm. In 

step 3 the idle time between jobs of the same group, if there is any, is eliminated 

by displacing all jobs to the right as close as possible to each other. In step 4, 

each group, starting from right to left in the Gantt chart, is moved to the right so 

its bth job (according to the definition given in property IV), completes as close 

as possible to the group's due date. Each group's boundary time is updated 

every time a group is right shifted. 

The variables, functions and operations used by the procedure are 

described next. Then, the pseudo code of the procedure is presented. 
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Variables: 

CurrDueDate: Stores the due date of the group currently being analyzed. 

GC : Group counter in steps 1 and 2. After that stores the total number of 

groups. 

BoundGc Variable that stores the boundary time of group number GC. 

Due_DateGc '• Variable that stores the due date of group number GC. 

GGc '• Stores chronologically the set of jobs belonging to group GC. 

Complementary Functions: 

Job [x]: Returns the job in position x in a sequence. 

Position_of(x): Returns the position of job x in sequence. 

Due_Date(x): Returns the due date of job x. 

Start_time_of(x): Returns the start time of job x. 

Completion_time_of(x): Returns the completion time of job x. 

EarliestJob_of_group (g): Returns the earliest job in the schedule of group g. 

LatestJob_of_group (g): Returns the latest job in the schedule of group g. 

Operations: 

Include x in GGC to the left: Inserts job x to the left of the set GGC displacing the 

other members to the right. 

Inputs: 

Number of jobs in the sequence (Number_ofJobs). 

An initial schedule. 

5.1.4 Pseudo Code of the Earliness Reduction Procedure for the 1/ /ET 

problem 

Step 1. Find the boundary of the first group, if such a group exists. 

Find the first early job LJ starting from right to left in the Gantt chart. 

If there are no early jobs then, stop. The schedule does not change. 
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Create group counter GC. Set GC =1 

Create: group GGC, BoundGC, DueJDateGC, CurrDueDate 

Set CurrDueDate^ Due_Date(LJ) 

Include LJ in GGC to the left 

If Position_of(LJ) = Number_ofJobs then 

Boundac =infinity 

Else 

BoundGC =Start_time_of(Job[Position_of(LJ) + 1]) 

End If 

Set 0ue_DateGC = CurrDueDate 

Step 2. Find the boundary of the rest of groups, if such groups exist. 

Search for the next early job CJ to left. 

If any job CJ is found then 

If Due_Date(CJ) = CurrDueDate and Position_of(CJ) = Positionof (LJ) -1 then 

Include CJ in set GGCto the left 

Set LJ=CJ 

Else 

Set GC = GC+-\, 

Create: GGC, BoundGC, Due_DateGC 

Set BoundGC = Start_time_of(Job[Position_of (CJ) + 1]) 

Set CurrDueDate= DueDate(CJ), Dtye_DateGC = CurrDueDate 

Include CJ in set GGcto the left 

Set LJ=CJ 

End If 

End If 

If All Jobs have been explored then go to Step 3, otherwise, Go to Step 2. 

Step 3. Delete idle time inside groups. 

5=1 

Do while g <= GC 

PLJG= Positionof (Latestjob_of_group(g)) 

PEJG= Position_of (EarliestJob_of_group(g)) 

CurrStartTime = Start_time_of{Job[PUG]) 
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j= PLJG-1 

Do while; >= PEJG 

Right shift Job[y ] a time = CurrStartTime - Completion_time_of(Job[j ]) 

CurrStartTime = Starttimeof'(Job[ j ]) 

y=y-i 

End while 

0 = 0 + 1 

End While 

Step 4. Displace groups to the right to reduce Earliness. 

For /' = 1 to GC 

Set b = bth job of group /', according to property IV 

Set Cb= Completiontimeof(b) 

If Bound, =infinity then 

Right Shift Jobs in set / a distance DueDate, - Cb 

Else 

Bound, = Start_time_of(Job[Position_of(LatestJob_of_group(G)) + 1]) 

Set PTA = Summation of processing times after bth job in set /, according to 

property IV 

If Bound, > Di/e_Date; + PTA then 

Right Shift Jobs in set /' a distance Due_Date, - Cb 

Else 

Right Shift Jobs in set / a distance Bound, -{Cb + PTA) 

End if 

End if 

Next / 

5.1.5 Example of the Earliness Reduction Procedure for the 1//ET problem 

Consider the 1 / /ET problem data in Table 3. 



Table 3. Example of a 1 / /ET problem 

Job 1 

processing time 2 

due date 14 

2 

2 

2 

3 

3 

14 

4 

2 

14 

5 

3 

2 

6 

1 

18 

And suppose the input schedule is given in Figure 13. 

Figure 13. Input schedule for the problem in Table 3 

Stepl 

The first early job to the left is LJ =6 

We create group counter GC. Set GC =1 

And create also: Gi, Bound?, DuejDateu CurrDueDate 

Set CurrDueDate= 18 

G, = {6} 

Position_of(6) = Number_ofJobs then we set Bound? infinity 

Set Due_Date? = 18 

Step 2. 

The next early job to left is CJ = 4 

Due_Date(4) is different from CurrDueDate, then 

We set GC = 2, 

And create: G2, Bound2, Due_Date2 

Bound2 = Start_time_of(Job[5 + 1]) = 12 
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We set: CurrDueDate^ 14, Due_Date2 = 14 

G2 = {4} 

Set LJ=4 

Not all Jobs have been explored then we go to Step 2. 

Step 2. 

The next early job to left is CJ=3 

Due_Date(3) = 14 and Position_of(3) = Position_of (4) -1 then 

G2={3,4} 

Set LJ=3 

Not all Jobs have been explored then go to 2. 

Step 2. 

The next early job to left is CJ=1 

Due_Date(3) = 14 and Position_of(1) = Position_of (3) -1 then 

G2 = {1,3,4} 

Set LJ= 1 

Not all Jobs have been explored then go to 2. 

Step 2. 

There is not any other early job to the left. All Jobs have been explored then go 

to 3. 

Step 3. Delete idle time inside groups. 

0=1 

g <= 2 then 

PLJG= 6 

PEJG= 6 

CurrStartTime = 12 

j= 6-1 = 5 

since 5 is not >= 6 we set g=g+1 = 2 
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g <= 2 then 

PLJG= 5 

PEJG= 3 

CurrStartTime = 10 

y'= 5-1 = 4 

y >= PEJG then 

We right shift job in position y a distance = 1 0 - 1 0 = 0 

CurrStartTime = 7 

j=3 

j >= PEJG then 

We right shift job in position j a distance = 7 - 7 = 0 

CurrStartTime =5 

1=2 

j is not >= PEJG anymore, then we set g = 3 

g is not <= 2 anymore, then we go to step 4. 

At this point we have defined our groups: G? = {6} and G2 = {1, 3, 4}. Additionally, 

we have: 

Bound? infinity, Bound2 =12 and Due_Date? = 18, Due_Date2 = 14 

Now in step 4 we are going to move each group to the right so its bth job, 

according to property IV, finishes as close as possible to the group's due date. 

Step 4. Displace groups to the right to reduce ET. 

/ '= 1 

Set o = first job of group 1, according to property IV. 

Set Cb= 13 

Bound? infinity, then we right shift Jobs in set 1 a distance of 18-13 = 5 

So far the schedule would look like the one in Figure 14. 
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M1 1 

0 3 5 7 10 12 17 18 

Figure 14. Partial schedule for the problem in Table 3 

i=2 

Set b = second job of group 2, according to property IV 

Set Cb= 10 

Bound, is not infinity then 

Bound2 = Start_time_of(Job[Position_of(job 4) + 1])=17 

Set PTA = Summation of processing times after second job in set 2, according to 

property IV 

Therefore PTA=2 

17 > 14+ 2 then we right Shift Jobs in set 2 a distance of 14-10 = 4 

M1 °^$kl.M&$M>. 
1 11 in?: n i i I 

0 
6 

3 5 9 1 1 14 16 17 18 

Figure 15. Final schedule for the problem in Table 3 

i=3, then we stop. 

The final schedule will be as shown in Figure 15. 
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5.2 Extending the Earliness Reduction Procedure for the Rm/ /ET problem 

A schedule for a parallel machine problem allocates each job to a machine and 

determines its start and completion times on that machine. Using such a 

schedule as an input, the Earliness Reduction Procedure is performed to 

improve the ET value in a similar way as for the 1/ /ET problem, except that in 

this case the procedure is applied to the schedule of each machine 

independently as shown in the following pseudo code. 

For each machine m 

Set Numberjofjobs = Number of jobs allocated to m 

Perform Earliness Reduction Procedure for schedule of machine m 

End for. 

5.3 Extending the Earliness Reduction Procedure for the Jm/ /ET problem 

A job shop schedule is expected to have idle time between some operations 

even when the objective function is a regular measure as some operations will 

be dependent on the completion of preceding operations. Similar to the parallel 

machine problem, the Earliness Reduction Procedure is performed for each 

machine independently, but in this case each machine will have scheduled some 

operations that are the last ones of their job and some that are not. If we right 

shift one operation that is not the last one of its job, additional computational 

work will be required to find out the time up to which the operation can be shifted 

without affecting the schedule's feasibility, and the move by itself will not improve 

the value of the ET. If, on the other hand, we right shift one or more groups of 

operations that are the last ones of their jobs, after having identified the group's 

boundary, this will not affect the feasibility of the schedule and may in fact 

improve (decrease) the ET value. 

Therefore, in this particular production environment, we need to include a 

fourth characteristic to form groups of operations in the adjusting procedure. 

Consequently, the procedure consists of exploring all operations from right to left 
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in the Gantt chart, identifying groups of them that share the following 

characteristics: 

1. Are adjacent. 

2. Belong to jobs with the same (common) due date. 

3. Belong to jobs that complete early or at the common due date. 

4. Are the last operation of its job. 

Taking into account the four characteristics, the pseudo code for the 

Jm/ /ET problem is the same as the one for the Rm/ /ET case presented in the 

former section. 

5.4 Conclusion 

We studied some characteristics of the 1 / /ET problem when the due date of all 

jobs is common. Based on that, we proposed an Earliness Reduction Procedure 

to reduce the ET to be performed on a schedule produced for a single machine, 

parallel machine, flow shop or job shop problem when the objective function is 

the ET and the due dates may be distinct. 

Notice that the input schedule to perform the Earliness Reduction 

Procedure is not necessarily one produced by the Random Key Genetic 

Algorithm (RKGA) (which will be explained in the next chapter) but a feasible 

one. This makes the procedure more general and usable by other scheduling 

models once an initial schedule has been produced. 
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6 A GENERIC RANDOM KEYS GENETIC ALGORITHM FOR SHOP 

SCHEDULING PROBLEMS 

A wide variety of exact and heuristic methods exists in the literature to address 

specific scheduling problems for specific environments, objective functions and 

problem characteristics. 

Among the great body of literature dedicated to scheduling problems with 

Regular Performance Measures, the work of Bean (1994) and Norman and Bean 

(1997) stands out as their approach can be used to solve scheduling problems in 

different production settings. Bean (1994) proposed a Random Keys Genetic 

Algorithm (RKGA) encoding to solve single and parallel machine problems, while 

Norman and Bean (1997) proposed another version for the classical Job Shop 

Scheduling Problem considering the regular performance measure of the 

makespan. In this chapter we present a generalization of the RKGA approach to 

address single machine, parallel machine, flow shop and job shop problems 

when the objective function is a regular measure. Then, a connection will be 

made with the Earliness Reduction Procedure discussed in Chapter 5 to 

consider the non-regular measure of Earliness and Tardiness. 

6.1 Random Key Genetic Algorithms (RKGA) 

Genetic Algorithms (GA) is a search technique used to solve optimization 

problems based on the principles of natural selection. Many versions of GA have 

been proposed to solve scheduling problems based on different solution 

representations (schedules) by means of diverse types of chromosomes, which 

encode the genetic information of an individual or solution. Once a 

representation is established, a fitness function is required to evaluate the quality 

of each solution. The process starts by generating an initial population of 

individuals, evaluating their fitness, and repeatedly applying a set of genetic 

operators to produce new solutions (offspring). Based on fitness values, the 

selection operator probabilistically chooses individuals for inclusion in the next 
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generation and/or as parents. The crossover operator recombines parents to 

produce offspring that will form the next generation. In order to improve the 

species, the fittest individuals are preferred to be recombined. Through a 

mutation operator, some individuals are randomly altered to guarantee 

population diversity. The evolution process continues until the GA converges to 

its best solution. 

Despite the diverse GA approaches that have been used to solve 

scheduling problems based on different representations, most of them have the 

weakness of producing infeasible solutions after applying the crossover operator 

to recombine partial solutions, especially for complex environments like Job 

Shops, where not all jobs have the same route through the machines. The 

RKGA approach has the advantage that all offspring produced after the 

crossover operations are feasible solutions. Another advantage of RKGA is that 

schedules for different environments can be represented in a generic fashion, 

which will make it possible to represent scheduling problems in various 

production environments without the need to have too many customized 

representations for the different problems under consideration. Therefore, we 

favored the use of RKGA as opposed to other meta-heuristics for our Predictive 

Reactive scheduling algorithms. The selection of RKGA has also been 

supported by the fact that it has recently been successfully implemented for 

different scheduling problems such as the work by Valente and Gongalves 

(2009) for the single machine problem of minimizing the earliness and quadratic 

tardiness, as well as the work by Okada et al. (2009) and Mendes, Gongalves, 

and Resende (2009) for project scheduling. 

6.2 RKGA representation and Decoding Procedure 

RKGA representation encodes solutions with uniformly generated random 

numbers between 0 and 1 called random keys. For a single machine problem 

with n jobs, for example, a chromosome consists of n random numbers between 

0 and 1, one for each job. A decoding procedure is used to find the schedule 

that corresponds to a chromosome. Such a decoding procedure for a single 
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machine problem consists of sorting the random keys in ascending order of their 

random keys. Starting jobs processing in that order as early as possible will 

produce a schedule where the objective function can be evaluated to calculate 

the chromosome's fitness. 

As an example, suppose we have four jobs to schedule on a single 

machine with processing times 3, 4, 5 and 2 for jobs 1, 2, 3 and 4 respectively. 

According to the representation, a possible chromosome for the problem will be: 

Job 1 2 3 4 

Random Keys 0.682 0.726 0.096 0.084 

After ordering the random keys in ascending order we obtain the 

sequence: 4 - 3 - 1 - 2. Assuming that all jobs are processed as early as 

possible the corresponding schedule can be represented in the Gantt chart in 

Figure 16, where M1 is the only machine in this problem: 

"••wtwwtwiamatttiHiBiii.il mini mmiiimimiii.iiiMn I' t : z | _ _ 
2 7 10 14 

Figure 16. Schedule for a single machine problem 

In parallel machine problems, there is a set of n one-operation jobs to be 

processed on m parallel machines which can be identical, with different speeds 

irrespective of the jobs, or with a speed depending on the job. 

To create a chromosome that encodes a solution for a n-job, m-machine 

problem, we generate, for each job, a random integer number between 1 and m 

and add to it a uniform random (0,1) number. While decoding the chromosome, 

the integer number will represent the machine to which the operation is 

http://��wtwwtwiamatttiHiBiii.il
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assigned, and the fractional part will determine the order on each machine in the 

same way as for the single machine problem. Processing the jobs in that order 

as early as possible on their corresponding machines will produce a schedule 

from which the chromosome's fitness is calculated. 

In more complex cases like the Job Shop Scheduling Problem (JSSP), a 

job consists of multiple operations that follow a specific route and different jobs 

may have different routes. A chromosome is formed by pairs of uniformly 

generated random numbers between 0 and 1, a pair for each operation. As in 

the previous cases, the first number, the random key, is used as a sorting key to 

decode a solution. At each step the decoding procedure takes the random key 

of the next unscheduled operation of each job and chooses the one 

corresponding to the lowest value and schedules it next. The second number, 

called the delay factor, gives the possibility of exchanging the winner operation 

with respect to the random key value criterion, with another operation competing 

for the same machine since that could produce a better schedule at the end. The 

resulting solution will belong to the set of semi active schedules and eventually 

to the subset of active schedules. In a semi active schedule it is not possible to 

start any operation earlier without altering the sequence on any machine. In an 

active schedule no operation can be started earlier without either delaying some 

other operation or violating the constraints (French, 1982). In other words, it is 

not possible to drag an operation and drop it in a hole, earlier in the schedule 

keeping the feasibility. That characteristic of the decoding procedure is 

especially useful for regular measures of performance (or objective functions), 

since it is known that the set of semi active schedules is dominant for them 

(Baker and Trietsch, 2009). 

As an example, consider a 2 job, 3 machine job shop problem where the 

objective is to minimize Cmax, (J3/ /Cmax). Each job is ready to be processed at 

time zero, and all machines are continuously available. The processing time and 

machine routing of each operation of each job are given in Table 4. In this case 

job 1's route through the machines is: 1-3-2, and job 2's route is 3-2-1. 
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Table 4. A 2 x 3 Job Shop problem 

Job Processing Time(Machine) 

i 2(1) 3(3) 2(2) 
2 3(3) 4(2) 1(1) 

An example of a chromosome for the problem is given below: 

(Job, Operation) (1,1) (1,2) (1,3) (2, 1) (2, 2) (2, 3) 

Random Key 0.039 0.634 0.075 0.141 0.901 0.857 

Delay Factor 0.231 0.553 0.732 0.593 0.489 0.934 

Since a job has different operations which may be processed on different 

machines, in order to distinguish them the triple (/, j, k) is used, where / 

represents the job,/ the operation and k the machine. 

The random key of each operation will be presented in brackets [ ]. The 

procedure to decode the previous chromosome in a solution is as follows. 

Initially the first operation of all jobs is programmable, i.e. ready to be scheduled. 

So, among them we select the one with the minimum random key. In this case 

we have two programmable operations (1, 1, 1) [ 0.039] and (2, 1, 3) [0.141]. 

The minimum random key is 0.0390 corresponding to (1, 1, 1). The operation 

does not create idle time on its machine, so it is programmed to start at time 0 

and end at time 2 (since the processing time is 2). It is then removed from the 

set of programmable operations. 

The new set of programmable operations is formed by (1, 2, 3) [0.634] 

and (2, 1, 3) [0.141]. The candidate operation this time is (2, 1, 3) which does not 

create idle time on its machine, so it is programmed from time 0 to 3. 

The new programmable operations are (1, 2, 3) [0.634] and (2, 2, 2) 

[0.901]. The candidate operation this time is (1, 2, 3). The operation does not 

create idle time on its machine; therefore it is programmed from time 3 to 6. 
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The new programmable operations this time are: (1, 3, 2) [0.075] and (2, 

2, 2) [0.901], and the candidate operation is (1, 3, 2). If we scheduled such an 

operation it would start at 6 and complete at 8 creating idle time on machine 2 

from 0 to 6. Since the candidate operation would create some idle time the Move 

Search is invoked. Such a procedure aims to improve the quality of the resulting 

schedule. We check if there are other programmable operations 0(i,j,k) on the 

same machine as the candidate operation. That is the case of operation (2, 2, 

2). Then we check the condition of the move search to replace the candidate 

operation: 

If S(i,j,k)+ DF(i,j,k) * p(i,j,k) < Sco then OO.IM), becomes the candidate operation 

Where: 

So,i,k) is the start time of the programmable operation, 

DF(i,),k) is the delay factor of the programmable operation, 

po.M is the processing time of the programmable operation, 

Sco is the starting time of the candidate operation. 

In our case we have: (l,j,k) is (2, 2, 2), S(2,2,2) =3, DF(2,2,2) = 0.489, 

P(2,2,2) = 4 and Sco = 6. The condition holds, and (2, 2, 2) becomes the 

candidate operation and is scheduled from 3 to 7. 

The new set of programmable operations is formed by (1, 3, 2) [0.075] 

and (2, 3, 1) [0.857]. The candidate operation this time is (1, 3, 2). If we 

schedule such an operation, it would start at 7 and complete at 9, not creating 

idle time on machine 2, which means it is programmed. 

Finally, the only remaining programmable operation (2, 3, 1) is scheduled 

from 7 to 8. The resulting Gantt chart is shown in Figure 17. 
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(1.1,1) 

| (2.2,2) 

S-JPll I I n.2.3) 

(2,3,1) 

(1,3,2) 

0 2 3 6 7 8 9 

Figure 17. Schedule for the chromosome on Table 4 

6.3 A generalized Random Keys representation for Scheduling Problems 

To have a representation that embraces the four production settings targeted in 

this dissertation, a chromosome must allow for recording of information for the 

different operations of a job in case there are multiple operation jobs, including 

their machine allocation in the case of parallel machines. 

Let us define for each operation, a machine list Lo as: 

Lo = (m-L.m^ ...mt0) (5) 

where Lo\s the set of machines in which operation ocan be processed, and to 

is the total number of machines in which operation ocan be processed. 

A chromosome will be formed by triplets of random numbers for each 

operation o, namely, the machine key, the random key and the delay factor. The 

machine key is a random integer number between 1 and to that will determine a 

position in the operation's machine list, thus the machine selected to process the 

operation. The random key and the delay factor are defined and used in the 

same way as discussed earlier. As an example, suppose we have five jobs to 

process on two parallel identical machines (same speed). The processing times 

are given in Table 5. 



Table 5. A 5-job 2 parallel machine 

Job 

Processing time 

1 

3 

2 

4 

3 

5 

4 

2 

5 

4 

According to the introduced representation, since all jobs can be 

processed on either of the two machines, the machine list for each operation will 

be the same: (1, 2), and the equivalent chromosome will be as follows: 

Job 1 2 3 4 5 

Machine Key 2 1 1 1 2 

Random Key 0.548 0.380 0.693 0.639 0.497 

Delay Factor 0.448 0.973 0.397 0.392 0.732 

Note that as all jobs have one operation, no idle time is created when 

scheduling each of them; therefore, it is not necessary to use the delay. The 

resulting schedule is the same as the one in Figure 18. 

This representation has an advantage. Consider a job shop in which there 

may be one or several machines of the same type. That is, jobs may have 

several operations that may be processed over a set of parallel machines. In this 

case we can think of a job shop with different work centers with a series of 

parallel machines in each one. This is a more general environment called in the 

literature a Flexible Job Shop (Pinedo, 2008). Since we are considering both the 

list of machines for each operation and the random keys and delay factors, the 

representation can be used with Flexible Job Shop Problems as well. 

As an example, consider the job shop problem of Table 4, but in this case 

each operation can be processed on the machines listed as shown in Table 6. 



0 4 6 7 11 

Figure 18. Schedule for a 5-job 2-parallel machine problem 

Table 6. A 2 x 3 Flexible Job Shop problem 

Job Processing Time(Machine List) 

~ 2(1,5,6) 3QA) 2(277) 

2 3(3,4) 4(2,7) 1(1,5,6) 

According to the generalized representation, a possible chromosome for 

the problem is shown next: 

(Job, Operation) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) 

Machine Key 2 1 1 1 1 2 

Random Key 0.039 0.634 0.075 0.141 0.901 0.857 

Delay Factor 0.231 0.553 0.732 0.593 0.489 0.934 

That corresponds with the machine allocation presented in Table 7. 

Table 7. Machine selection for the problem of Table 6 

Job Operation 

1 5 3 2 

2 3 2 5 
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Once we know the machine selection for each operation, we can follow 

the decoding procedure explained for the case of job shop problems. The 

resulting schedule is presented in Figure 19. 

(2,1,3) 

(1,1,5) 

(2,2,2) 

(1,2,3) 

(1,3,2) 

0 2 3 6 7 8 9 

Figure 19. A schedule for the problem on Table 6 

Notice that the decoding procedure will build a feasible solution based on 

the chromosome for any objective function, regular or non-regular, that can be 

evaluated. However, the solution produced is a semi active schedule, which will 

compact to the left. This is advantageous for regular measures but may not 

always be advantages for non-regular measures as was explained in chapter 5 

for the case of ET where the optimal solution may not necessarily be a schedule 

that is compact to the left. Therefore, when the objective is to minimize ET, the 

Earliness Reduction Procedure is applied to the schedule produced by the 

decoding procedure before evaluating the fitness of a chromosome. 

6.4 Incidence of the Move Search procedure to solve Jm/ /ET problems 

As explained previously, the Move Search is a procedure invoked every time a 

candidate operation, if scheduled, would create idle time on its respective 

machine. Depending on the Delay Factor value, if there are other programmable 

operations that could start before the candidate operation, one of them may 

become the new candidate and be scheduled before the former candidate 
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operation, even if it delays the start of the former candidate. However, if one of 

these operations can start and complete prior to the start of the candidate 

operations, it will then be scheduled first regardless of its delay factor value due 

to the condition of the Move Search (If S(ij,k)+ DFoj.k) * puk) < Sco then opj.k), 

becomes the candidate operation). Note that If S(ij,k)+ puk) < Sco, then the 

condition will always hold; thus, 0(\,\M) becomes the candidate operation. 

The way in which the Move Search is designed implies that for certain 

problems some sequences will never be produced by the RKGA. As an 

example, consider the small J2/ /ET problem instance in Table 8. 

Table 8. A J2/ /ET Job Shop problem 

Job Processing Time(Machine) Due date 

1 3(1) 4(2) 9 

2 2(2) 9 

According to the RKGA decoding procedure, the first operation to 

schedule will be either (1, 1, 1) or (2, 1, 2) since (1, 2, 2) is the second one of its 

job. 

If (1, 1, 1) is scheduled first, either (2, 1, 2) or (1, 2, 2) may be the next 

candidate. If (2,1, 2) is the candidate it will be scheduled first on machines 2 and 

the final sequence on that machine will be (2, 1, 2) - (1, 2, 2) as shown in Figure 

20. 
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M1 

M2 

d1=d2=9 

(1,1,1) 

(1,2,2) 

0 2 3 7 9 

Figure 20. Schedule for the J2/ /ET problem of Table 8 

If (1, 1, 1) is scheduled first but (1, 2, 2) is the next candidate, the 

condition for the Move Search procedure holds in this case: S(2,i,2) + DF(2,1,2) * 

0(2,1,2) < S(1,2,2) that is: 0 + DF(2,1,2) * 2 < 3 (recall that by definition 0< DF < 

1). Therefore, (2, 1, 2) is scheduled first, and the final sequence on machine 2 

will be again (2,1, 2) - (1, 2, 2), as shown in Figure 20. 

If (2, 1, 2) is scheduled first, it will start at time 0 on machine 2, then 

(1, 1, 1) and (1, 2, 2) will be scheduled in that order since they belong to the 

same job. Consequently, the final schedule will correspond to the one shown in 

Figure 20. 

In conclusion, for this problem, regardless of the random keys and delay 

factors that are randomly generated, the schedule yielded by the RKGA will be 

the same in all cases. Notice that this schedule is active, which is very 

convenient for the case of regular objective functions. However, if we consider 

the ET measure and therefore apply the Earliness Reduction Procedure to such 

a schedule, we obtain only one group, formed by operations (2, 1, 2) and (1, 2, 

2), which will be compacted and right shifted until operation (2, 1, 2) completes 

at time 9, the group's common due date, as shown in Figure 21. 



50 

M1 

M2 

d1=d2=9 

(1,1.1? I , _ _ _ 
B H I (1,2,2) 

0 3 7 9 13 

Figure 21. Resulting schedule after Earliness Reduction Procedure 
for figures 15's schedule 

As can be seen, the ET value for this schedule is 4. However, this is not 

the optimal solution. If we schedule (1, 2, 2) from 5 to 9 and (2,1, 2) from 9 to 11 

the ET value is 2. But as was just shown, the sequence (1, 2, 2) - (2,1, 2) will not 

be yielded by the RKGA since the Move Search procedure will prevent some 

solutions from being obtained. To avoid that some potentially optimal solutions 

are discarded for ET problems in this work; the decoding procedure does not 

perform the Move Search if the objective function is ET. 

In the following section the genetic operators and the GA dynamics are 

explained. 

6.5 Crossover 

The crossover operator recombines two parents P1 and P2 to produce two 

offspring, C1 and C2, that compete to be included in the next generation. As was 

stated earlier, one of the main advantages of the RKGA approach is that all 

offspring produced after the crossover operations are feasible solutions. The 

presented generalized representation maintains that characteristic. 

Specifically, parameterized uniform crossover is applied in the RKGA as 

used by Norman and Bean (1997). In this type of crossover, a uniformly 

distributed (0, 1) random number is generated for each operation of the problem. 

If the number is greater than a value called the crossover probability (0.7 in this 

work), the first child solution, C1, will have the same triplet (machine key, 

random key and delay factor) as P1 for this operation, and child solution C2 will 

have the same triplet as P2 for this operation. Otherwise, C1 takes P2's triple, 
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and C2 takes P1's triple. An example with two randomly generated 

chromosomes for the previous flexible job shop problem is presented below. The 

Random Numbers shown after the two parent chromosomes correspond to the 

value to compare against the crossover probability. The value for this probability 

is taken from Norman and Bean (1997). 

Parent 1 

Machine Key 3 1 1 1 1 2 

Random Key 0.591 0.790 0.930 0.130 0.687 0.934 

Delay Factor 0.995 0.082 0.939 0.007 0.882 0.851 

Parent 2 

Machine Key 2 2 1 2 1 1 

Random Key 0.786 0.987 0.570 0.166 0.694 0.743 

Delay Factor 0.990 0.799 0.239 0.600 0.929 0.041 

Random Number 0.176 0.996 0.719 0.378 0.341 0.590 

Offspring 1 

Machine Key 2 1 1 2 1 1 

Random Key 0.786 0.790 0.930 0.166 0.694 0.743 

Delay Factor 0.990 0.082 0.939 0.600 0.929 0.041 

Offspring 2 

Machine Key 3 2 1 1 1 2 

Random Key 0.591 0.987 0.570 0.130 0.687 0.934 

Delay Factor 0.995 0.799 0.239 0.007 0.882 0.851 

Notice that any chromosome will inherit a valid machine key, random key 

and delay factor, therefore, all offspring will represent feasible solutions. 
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After generating both offspring, fitness is evaluated, and the best one is 

selected to become part of the next generation. 

6.6 Selection 

The selection operator acts in one of two forms. In the first form, pairs of 

individuals are randomly selected from the entire population to produce two 

offspring by using the crossover operator. The fittest one is selected to become 

part of the next generation. Therefore, there is no guarantee that individuals with 

the best fitness found so far will survive to each subsequent generation. To 

overcome this problem, there is a second form of selection, used as a 

complement in which a certain percentage of the fittest individuals are selected 

directly to survive to the next generation. This second form is referred to as 

reproduction. As a consequence, the best solution improves (decreases) 

monotonically. The fittest individuals of the current population are selected to 

survive to the next generation by reproduction. The percentage of the fittest 

individuals that will survive will be referred to as the Reproduction_%. Another 

percentage of the next generation, that we will call Cross_%, is created by 

crossover as was explained. 

6.7 Mutation 

The objective of mutation is to diversify the species. Traditionally, mutation is 

done by altering part of the genetic information of some individuals. Following 

the line of Bean (1994)'s work, in order to add diversity to the population, a 

percentage of new individuals, which we will refer to as Mutation_%, is created 

to become part of the next generation. This type of mutation is sometimes called 

immigration. 

6.8 Stopping Criteria 

Two stopping criteria are used here: 
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1. A limit of generations (Generations) is completed. 

2. The limit of iterations without an improvement (IWI) in the best solution 

found so far has been reached. 

6.9 Evaluation of fitness 

The fitness of all individuals is evaluated by using the decoding procedure to 

build the schedule. If the objective function is ET, the Move Search is not 

performed while decoding the chromosome into a schedule and the Earliness 

Reduction Procedure (discussed in Chapter 5) is applied to the resulting 

schedule. Otherwise, the Move Search is performed, and the Earliness 

Reduction Procedure is not invoked. 

6.10 Overall view of the GA 

The GA uses two inputs: the problem data and the parameter values 

(Reproduction_%, Cross_%, Mutation_%, Generations, IWI, crossover 

probability) and creating an initial population (Recall that IWI is the limit of 

iterations without an improvement). The fitness of all individuals is evaluated. 

Then the population is subjected to the genetic operators of reproduction, 

crossover and mutation until the stopping criterion is reached. Pseudo code for 

the algorithm is presented below. 

6.11 Pseudo Code of the RKGA 

Generate initial population 

Evaluate fitness of all individuals 

Order the population based on their fitness 

Repeat until the stopping criterion is met 

Copy the Reproduction_% best individuals to next generation 
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Generate Cross_% individuals by crossover. Copy them to next 

generation 

Generate Mutation_% individuals. Place them in the next generation 

Evaluate fitness of new individuals 

Order the population based on their fitness 

End Repeat 

Return the individual with the best global objective fitness 

6.12 Conclusions 

We have reviewed the RKGA approach for scheduling problems where the 

objective function is a regular measure. We presented an integrated encoding 

approach to be used in the four different production settings targeted in this 

dissertation. Then we explained how to connect to the Earliness Reduction 

Procedure with the RKGA when the objective function is the ET. The final 

version of the RKGA, which we have called the predictive model, allows for 

generate predictive (or initial) schedules for problems coming from different 

environments with regular measures or the non-regular Earliness and Tardiness 

measures, with common or distinct due dates. The experiments to test this 

predictive model are presented in the next chapter. 
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7 COMPUTATIONAL EXPERIMENTS FOR THE PREDICTIVE MODEL 

As discussed in earlier chapters, two models are presented in this dissertation. 

What we have called the "predictive model" to the generalized RKGA presented 

on Chapter 6, creates a predictive (or initial) schedule. A second RKGA, called 

the "reactive model", which will be introduced in Chapter 8, produces a schedule 

in response to a disruption. Both models were implemented in Visual Basic 2008 

and tested on a 2.5 GHz Intel Core Quad running Windows Vista. 

Since the model can be used in four different basic production 

environments, for regular and non-regular measures, two representative types of 

problems were selected to test its quality. The first problem consists of 

minimizing the maximum completion time of a set of one operation jobs over a 

set of unrelated parallel machines, which are machines that are capable of 

processing any of the available jobs but the processing times for the same job 

may differ from one machine to another. In Graham's notation the problem is 

represented as Rm/ /Cmax. The second problem, a Job Shop type, consists of 

minimizing the total Earliness and Tardiness for a set of multiple-operation jobs 

which have to be processed on a set of machines, each of which is unique in the 

shop. In Graham's notation the problem is represented as Jm/ /ET. The problem 

is similar to the one presented in the example in section 2.5 but the due dates 

are not the same for all jobs. 

The first type of problem is representative in the sense that it will let us 

know how the predictive model behaves in the most general case of parallel 

machine environments with a regular measure such as the makespan (Cmax). 

The second type of model is representative in the sense that it will let us know 

how the predictive model behaves in the more general case of jobs with multiple 

operations, such as the Job Shop Scheduling Problem, when using the non-

regular measure of Earliness and Tardiness, which will let us test the quality of 

the Earliness Reduction Procedure proposed on chapter 5 to solve problems 

with such objective functions. 
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7.1 Unrelated Parallel Machines Problems 

Sets of problems with two, four and six machines and 20, 40 and 60 jobs, with 

three problem instances per problem size, were generated. Using the same 

distribution as in Martello, Soumis and Toth (1997) and Arnaout (2006), the 

processing times were randomly generated following a discrete uniform 

distribution U[1,9]. 

Based on preliminary tests and the work of Bean (1994), the reproduction, 

crossover, and immigration rates were set as follows. A reproduction rate of 20% 

is used. 84% of the next generation is obtained by parameterized uniform 

crossover as explained in Chapter 6. 6% of the population is mutated by 

applying the concept of immigration, where at each generation a certain number 

of individuals is randomly generated to become part of the new generation. The 

parameter values for the stopping criteria and population size, found to be 

appropriate by Norman and Bean (1997), are used here. The GA stops when a 

maximum number of 250 iterations has been reached or 75 generations have 

passed without any improvement of the best solution found so far. Norman and 

Bean (1997) used for Jm/ /Cmax problems a population size of 300 plus two 

times the number of operations to be scheduled. Pilot tests on representative 

problems for the Rm/ /Cmax problem showed that a size of 300 individuals plus 

one time the number of operations to be scheduled is enough for the problem 

set under consideration. Therefore, since Rm/ /Cmax problems are composed of 

one-operation jobs, for problems with 20, 40 and 60 jobs the population size was 

set to 320, 380 and 420 individuals respectively. Each instance was run for 15 

replications using the previously mentioned parameters. 

7.2 Integer programming formulation for Rm/ /Cmax 

The Rm/ /Cmax problem can be formulated as follows (Potts, 1985). 
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Objective: Minimize Cmax 

Subject to 

Pij * x^ < Cmax, Vi = 1,..., m (C1) 

Xtj = l,Vj = l,...,n (C2) 
i= i 

*0- 6 {0,1}, ( i = l,...,n;y = l,.. . ,m) (C3) 

Where: 

/?/>: processing time of joby on machine /. 

. . . . .. ( 1 if job / is assigned to machine i 
Xif. binary decision variable = \ „ ' . 

[ 0 Otherwise 

Constraints (C1) guarantee that the makespan is at least as large as the 

total completion time of any machine. 

Constraints (C2) and (C3) ensure that each job will be assigned exactly to 

one machine. 

The previous mixed integer programming model was used to formulate 

and obtain the optimal solution of all the generated instances in LINGO 12.0, a 

tool provided by Undo Systems, Inc. 

7.3 Results for the Rm/ /Cmax problem 

Table 9 summarizes the results over the 15 runs for each of the 

benchmark problems. The fourth column presents the optimal solution obtained 

in LINGO. The Best found (the fifth column) is the best solution found over the 

15 runs. The deviation from the optimum (OF Deviation) for each run is 

calculated as: 

„ „ ^ . ^. [RKGA Solution-Optimal Solution]x 100 ,_. 
OF Deviation = :—7—— (6). 

Optimal Solution ' 
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The values in the sixth and seventh columns correspond to the average 

and standard deviation of the OF Deviation calculated over the 15 runs 

according to equation 6 above. The last two columns report the average and 

standard deviation of the runtime over the 15 runs of each instance. 

For the instances tested, the deviation from the optimal value is, in all 

cases, no greater than 3.8%. The optimal value was found in at least one run for 

all problems. The RKGA behaves very well for problems with two machines 

finding the optimal solution in all runs for all problems. As the number of 

machine increases, and since there are more feasible solutions, the RKGA takes 

more iterations and, consequently, more time to find a final solution. 

Table 10 presents the average deviation values for the different sizes of 

the Rm/ /Cmax problem, and we see that the overall average deviation from the 

optimum is 0.9%. 

Although for the studied problem sizes the instances are solved by 

LINGO in a second, we should take into account that the problem is NP-hard. 

Furthermore, for other objective functions such as total tardiness (Rm/ /T) and 

maximum lateness (Rm/ /Lmax) the problem is NP-hard as well, and the use of 

mathematical programming is computationally demanding and the results not 

practical even for small problem instances, as reported by Pfund, Fowler and 

Gupta (2004). On the other hand, the computational effort taken by the RKGA to 

run using such objective functions instead of Cmax, is similar, since calculating 

the fitness value consists of a sequential search on an array with a size equal to 

the number of jobs in all cases. 



Table 9. Results for the Rm/ /Cmax problem 

Jobs Machines 
number 

;m 

er 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

Optimal 

Value 

39 

44 

39 

11 

17 

14 

7 

7 

11 

57 

78 

67 

27 

24 

21 

10 

13 

14 

109 

118 

107 

37 

39 

33 

21 

18 

18 

Best 

found 

39 

44 

39 

11 

17 

14 

7 

7 

11 

57 

78 

67 

27 

24 

21 

10 

13 

14 

109 

118 

107 

37 

39 

33 

21 

18 

18 

Deviation from 

Optimum (%) 

Average 

0.0 

0.0 

0.0 

0.0 

0.0 

0.5 

3.8 

1.0 

3.0 

0.0 

0.0 

0.0 

0.0 

1.4 

1.6 

0.0 

0.0 

3.8 

0.0 

0.0 

0.0 

0.9 

0.9 

2.6 

2.5 

0.7 

0.4 

Std. 

Dev. 

0.0 

0.0 

0.0 

0.0 

0.0 

1.8 

6.5 

3.7 

4.4 

0.0 

0.0 

0.0 

0.0 

2.0 

2.3 

0.0 

0.0 

3.7 

0.0 

0.0 

0.0 

1.3 

1.3 

1.1 

2.5 

2.0 

1.4 

Runtime (minutes) 

Average 

3.8 

4.0 

3.9 

4.5 

4.5 

4.7 

5.4 

5.1 

5.1 

11.0 

11.3 

11.2 

14.1 

15.0 

14.5 

14.6 

15.7 

17.5 

22.5 

23.9 

22.5 

28.7 

29.7 

28.3 

32.6 

32.0 

35.3 

Std. 

Dev. 

0.1 

0.1 

0.1 

0.2 

0.1 

0.2 

0.9 

0.3 

0.4 

0.2 

0.6 

0.5 

0.6 

1.2 

0.8 

0.4 

0.7 

2.5 

0.8 

0.8 

0.5 

2.3 

2.2 

1.4 

2.9 

2.8 

3.1 

20 

40 

60 



Table 10. Average Results for Rm/ /Cmax problem 

Jobs 

20 

40 

60 

Machines 

Average 

2 

4 

6 

2 

4 

6 

2 

4 

6 

Deviation from 

Optimum 

Average 

0.0 

0.2 

2.6 

0.0 

1.0 

1.3 

0.0 

1.5 

1.2 

0.9 

i (%) 

Std. 

Dev. 

0.0 

0.6 

4.9 

0.0 

1.5 

1.2 

0.0 

1.2 

1.9 

1.3 

Runtime 

(minutes) 

Std. 
Average 

Dev. 

3.9 

4.6 

5.2 

11.2 

14.5 

16.0 

23.0 

28.9 

33.3 

15.6 

0.1 

0.2 

0.5 

0.4 

0.9 

1.2 

0.7 

2.0 

2.9 

1.0 

7.4 Results for the Jm/ /ET problem 

Three sets of problems with five jobs and five machines, seven jobs and seven 

machines, and nine jobs and nine machines and with 12 problem instances per 

set were generated. The processing times were randomly generated following a 

discrete uniform distribution U[1,9] as in Demirkol, Mehta and Uzsoy (1998). In 

order to have all jobs visiting all machines in some random order, the job routes 

were generated from another discrete uniform distribution U[1 ,m] where m is the 

number of machines. 

As in Blocher, Chhajed and Leung (1998) the due dates are set as a 

multiple of the total job's processing time. Such multiple determines the tightness 

of the due date. Three levels of tightness were used to calculate the due dates of 

the jobs: 3, 1.4 and 0.7. The first one is a loose due date factor The last multiple, 

0.7 is considered a tight due date factor in the sense that guarantees in advance 

that the job is going to be late in any solution. The third multiple, 1.4, was chosen 

arbitrarily as something in between, for which there is no certainty that the job 
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will be able to complete on time or not. Among the 12 instances of each problem 

size, four problems with each of the three tightness levels were solved. 

7.5 Integer programming formulation for Jm/ /ET 

Based on the disjunctive graph representation of the Jm/ /Cmax problem (see 

Pinedo (2008)), the Jm/ /ET problem can be formulated as follows. 

ETj 
7 = 1 

Subject to 

yhj - ytj > ttj V(i,y) -+ (h,j)eA, (C4) 

Cj- yij = tij v(i,y>yv, (C5) 

Yij - ytk ^ kk or yik - ytj > ttj V(i, k) and (i,j), i = 1, ...m, (C6) 

Cj - dj < ETj V; = 1,..., n, (C7) 

dj - Cj < ETj V; = 1,..., n, (C8) 

ytj>0 V(i,j)eN, (C9) 

Where: 

yif. starting time of operation (/, J), that is, operation on machine / of job / 

tif. processing time of operation /of job/ 

Cf. completion time of job/ 

df. due date of job / 

FT/. Earliness/Tardiness objective for job/ 

FT. total Earliness/Tardiness 

/V;Set of all operations (i,j) 

A: Set of precedence constraints (i, j) —> (h, j), this denotes two consecutive 

operations of job / 

Constraints (C4) guarantee the precedence relations between any two 

consecutive operations of each job. 
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Constraints (C5) express the completion time of any job as its starting 

time plus its processing time. 

Constraints (C6) ensure that there are not overlaps between any pair of 

operations of different jobs on the same machine. They are implemented in 

Linear Programming as follows: 

Va ~ Vtk > ttk - Mb (C6) 

yik - ytj > tu - M(i - b) (C7) 

where M is a big constant such that M>tik and M>tik, and b is an integer binary 

variable. If b =1, the second constraint is executed and the first one becomes 

redundant; if b=0, the first constraint is executed and the second one becomes 

redundant. 

Constraints (C7) and (C8) imply the minimization of the absolute deviation 

between each job's completion time and its due date. 

The previous integer programming model was used to formulate and 

obtain the optimal solution of all the generated instances in LINGO 12.0. 

7.6 Results for the problem Jm/ /ET 

Table 11 presents the results of the 15 runs for each instance. The fourth 

column presents the optimal solution obtained by LINGO. 

The Best found (fifth column) is the best solution found by the RKGA over 

the 15 runs. The deviation from the optimum is calculated in the same way as 

explained in equation 6 section 7.3. 

Similarly to section 7.3, the values in the sixth and seventh columns 

correspond to the average and standard deviation of the Objective Function 

Deviation calculated over the 15 runs. The last two columns report the average 

and standard deviation value of the runtime over the 15 runs of each instance. 



Table 11. Results for the Jm/ /ET problem 

Jobs, Due date 
machines tightness 

5,5 Loose 

Moderate 

Tight 

7,7 Loose 

Moderate 

Tight 

9,9 Loose 

Moderate 

Tight 

Problem 
number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

Optimal 
Value 

0 

0 

0 

0 

7 

8 

15 

4 

75 

67 

67 

67 

4 

0 

4 

5 

2 

9 

3 

8 

166 

163 

151 

144 

0 

65 

0 

69 

210 

336 

304 

269 

2555 

2479 

2730 

2410 

Best 
found 

0 

0 

0 

0 

7 

8 

15 

4 

75 

67 

67 

67 

4 

0 

4 

5 

2 

9 

3 

9 

166 

163 

151 

144 

0 

65 

0 

69 

252 

374 

368 

322 

2574 

2529 

2730 

2526 

Deviation from 
Optimum (%) 

Average ^ d . 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

6.7 

0.0 

0.0 

13.3 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

9.0 

35.7 

13.4 

29.0 

27.6 

1.6 

4.2 

0.9 

6.1 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

17.6 

0.0 

0.0 

3.2 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

34.8 

9.5 

3.5 

5.4 

10.5 

0.5 

2.3 

1.3 

1.1 

Runtime (minutes) 

Average ^ d . 

0.30 

0.00 

0.10 

0.10 

4.50 

4.40 

4.30 

4.40 

3.90 

4.00 

3.80 

4.00 

12.50 

2.90 

13.50 

13.00 

17.30 

15.00 

13.70 

16.60 

15.20 

15.80 

18.00 

13.90 

10.50 

37.30 

11.20 

35.90 

58.70 

56.60 

49.50 

50.20 

46.20 

47.30 

50.00 

46.20 

0.10 

0.00 

0.10 

0.10 

0.00 

0.10 

0.10 

0.10 

0.10 

0.10 

0.00 

0.20 

0.70 

1.10 

0.70 

0.90 

2.80 

0.80 

0.70 

3.00 

3.00 

3.00 

4.00 

1.30 

2.20 

8.80 

1.30 

7.50 

7.00 

7.30 

9.90 

12.20 

11.80 

10.10 

9.10 

10.40 
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For 5 jobs / 5 machines and 7 jobs / 7 machines problems, the algorithm's 

performance is excellent. The deviation from the optimal solution is zero in 22 of 

24 cases, meaning that it found the optimal solution in all 15 runs for all those 22 

instances. The two instances for which the optimum was not found in all runs 

correspond to the moderate value of the due date tightness, instances 17 and 20 

in Table 11, with average deviation from the optimum of 6.7% and 13.3% 

respectively. In this case the general average of the deviation from the optimal is 

higher (5%) for the problems with a moderate level of due date than that for 

problems with loose and tight due dates (0%) as can be seen in Table 12. Such 

a pattern is more obvious for the 9 jobs / 9 machines problems, where the 

averages of the Deviation from the optimal for the problems with loose and tight 

due dates are 2.2% and 3.2% respectively, while the correspondent value for the 

moderate due date type is 26.4%. The results show that problems with such a 

tightness level are harder to optimize for the proposed RKGA than problems 

belonging to the other two levels. For instances with tight due dates, it is known 

in advance that all jobs are late, so the problem becomes a Total Tardiness one. 

The total tardiness belongs to the set of regular measures in which case the 

solution space is restricted to the set of active schedules (Baker and Trietsch, 

2009). Such knowledge is included in the algorithm, by enabling the Move 

Search, explained in Chapter 5, and disabling the Earliness Reduction 

Procedure as there is no need to move any operations to the right. The Move 

Search causes the RKGA to produce semi active schedules that are more 

compact to the left. However, we cannot do the same for non-regular measures 

like ET as was explained in section 6.4. Therefore, for problems with moderate 

and loose due dates the RKGA has to search in the more general set of all semi 

active schedules, which affects its performance. We conjecture that this explains 

why the results for problems with a tight due date are better (1.1% in average for 

all 12 instances with a tight due date) than those for problems with moderate due 

dates (10.5% on average for all 12 problems with a moderate due date). 
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Table 12. Average Results for Jm/ /ET problem 

Jobs i 

machines 

5,5 

7,7 

9,9 

Due date 

tightness 

Loose 

Moderate 

Tight 

Loose 

Moderate 

Tight 

Loose 

Moderate 

Tight 

Average 

Deviation from 

Optimum 

Average 

0.0 

0.0 

0.0 

0.0 

5.0 

0.0 

2.2 

26.4 

3.2 

4.1 

i (%) 

Std. 

Dev. 

0.0 

0.0 

0.0 

0.0 

5.2 

0.0 

8.7 

7.2 

1.3 

2.5 

Runtime 

(minutes) 

Average 

0.1 

4.4 

3.9 

10.5 

15.6 

15.7 

23.7 

53.8 

47.4 

19.5 

Std. 

Dev. 

0.1 

0.1 

0.1 

0.8 

1.8 

2.8 

5.0 

9.1 

10.3 

3.3 

Regarding the moderate and loose due dates we observe the following. For 

certain sequences, some jobs that could not complete on time to meet a 

moderate due date may make it on time when such a due date is sufficiently 

extended by using a higher (loose) tightness multiple factor. Therefore, some 

sequences that were not optimal when using a tighter (moderate) due date may 

be optimal in the new problem resulting from extending the due dates by using a 

loose tightness multiple and keeping the rest of the data (processing times, and 

routing) unchanged. Therefore, as the due date becomes looser, the number of 

alternative optimal sequences may increase. When there are more alternative 

optimal solutions, it will be easier for the RKGA to find an optimal one, which 

explains why the algorithm performs better for loose due dates than for 

moderate due dates. 

Conversely, as the due date level goes from loose to moderate for the 

same sequence jobs have a more limited time to complete. We conjecture that 

as there is less time between the jobs' release times and their due dates (in all 

our cases the release times are zero), the optimal schedules must be more 
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compact to the left to meet the due dates, and fewer combinations may be 

optimal, which explains why the problems with loose due dates are better than 

the ones with moderate due dates. 

Finally, we must acknowledge that the proposed generalization of the 

RKGA is able to find optimal or near optimal solutions for the Jm/ /ET problem 

for the problem sizes studied in this dissertation producing good results mainly 

for problems with tight and loose due dates. Although the results were not as 

good for problems with moderate due dates, the proposed generalized RKGA is 

a starting point for further research. 

7.6.1 Runtime for Jm/ /ET problem 

Unlike the Rm/ /Cmax problems, where the runtimes to find the optimal solution 

were less than one second, LINGO may take a considerable amount of time to 

solve the MlP for some instances of the Jm/ /ET problem. 

Table 13 presents the time taken by LINGO to solve the 36 generated 

instances. 

Table 14 resents a comparison between the times taken by LINGO to find 

the optimal solution for all problems with loose, moderate and tight due dates, 

and the average times observed for the proposed RKGA over all the 15 runs for 

the corresponding problems. 

Based on Table 14, Figures 22, 23 and 24 show the behavior of runtimes 

for each type of due date. For problems with a loose due date, LINGO finds an 

optimal solution in less time than the average taken by the proposed RKGA, 

which in the worst case, problems with 9 jobs and 9 machines, is 23.7 minutes. 

In the case of moderate and tight due dates, the behavior is similar for 

problems with up to 7 jobs and 7 machines. However, for problems with 9 jobs 

and 9 machines, the average runtime for the proposed RKGA grows more softly 

than LINGO runtime. Recall that Jm/ /ET is an NP-hard problem and the 

proposed RKGA becomes important if we think, for example, of a situation of a 

job shop manager waiting 23 hours and 13 minutes in the case of problem 33, 

for LINGO to find the optimal schedule for the next 8 hour shift. This may be 
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totally impractical compared to waiting 46.2 minutes (on average) for the 

proposed RKGA to produce a schedule that has an average deviation from the 

optimal solution of 1.6%. 

Table 13. LINGO Rutimes (in minutes) to solve Jm/ /ET benchmark problems 

Due date type 

Loose 

Moderate 

Tight 

Instance 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Runtime 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Instance 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

Runtime 

0 

0 

0 

0 

0 

240 

60 

300 

269 

146 

113 

20 

Instance 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

Runtime 

0 

0 

0 

0 

505 

278 

535 

317 

1393 

837 

1006 
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The equivalent situation for the case of moderate due dates with 9 jobs 

and 9 machines problems, is not as clear as the average deviation from the 

optimal solution is 26.4%. Thus, there is a tradeoff between the runtime and the 

deviation from the optimal. Nevertheless, as was previously mentioned, the 

proposed RKGA is a starting point for more research and some improvements 

may be accomplished in the future. 



Table 14. Runtime (in minutes) comparison of LINGO and the proposed RKGA 

Due date type 
Problem Size 

Loose Moderate Tight 
(Jobs/Machines) 

LINGO RKGA LINGO RKGA LINGO RKGA 

5/5 0 0.1 0 4.4 0 3.9 

7/7 0 10.5 2.5 15.6 2.3 15.7 

9/9 0 23.7 408.8 53.8 941.3 47.4 

5/5 7/7 9/9 
Problem size (Jobs/Machines) 

— — « LINGO {Loose} RKGA floose} 

Figure 22. Runtime comparison for problems with loose due dates 

120 • 

5/5 7/7 9/9 

Problem size poos/Machines) 

Figure 23. Runtime comparison for problems with moderate due dates 

— — - LINGO f Loose) — RKGA {Loose) 



69 

960 
^ 8 4 0 -
£720 -*• 
£ 600 • 
J-480 1-
E 360 > 
1 240 J 

120 ! 

0 

. . . 

_ / 

J 
t 

........ $ 
' ................... *.......... 

5/5 7/7 9/9 

Problem size (Jobs/Machines} 

»LWGO (Tight) RKGA (Tight) 
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8 A REACTIVE RANDOM KEYS GENETIC ALGORITHM APPROACH FOR 

SHOP SCHEDULING PROBLEMS 

In this chapter, a RKGA able to react to unexpected events in the production 

environments targeted in this dissertation, which we will call the reactive RKGA, 

is presented. A similar algorithm to the one previously developed to produce the 

predictive schedule is presented here to generate a reactive schedule once an 

unexpected event occurs. 

8.1 Unexpected events 

Hall and Potts, (2010), Vieira et al. (2003), Subramaniam and Raheja (2003), 

and Abumaizar and Svestka, (1997), review the different unexpected events 

reported in the rescheduling literature. Among them we find: urgent job arrival, 

rework (or quality problems), job cancellation, delay in the arrival of materials, 

change in job priority, due date change, machine breakdown, tool breakdown, 

operator absenteeism, process time variation and changes in release times. 

They reference rescheduling approaches designed for a specific production 

setting and a specific type of disruption event, or several events as in the case of 

Vieira et al. (2003) and Subramaniam and Raheja (2003) for the Jm/ /Cmax 

problem. 

The model proposed here considers some of the previous disruptions and a 

specific case not addressed in the reviewed literature, which is the study of 

simultaneous breakdowns. The disruptions considered by our reactive RKGA 

are: 

1. Urgent job arrival. 

2. Job Rejection implying immediate reprocessing of operations. 

3. Delay in the arrival of materials. 
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4. Machine unavailability. This covers the specific situations of machine 

breakdowns, tool breakdowns, and operator absenteeism, all of which 

imply that one or several machines will become unavailable. 

8.2 Rescheduling performance measures 

It is our objective in this phase to generate a reactive schedule that deviates 

from the predictive schedule as little as possible. This can be measured in two 

ways in the literature: how much the reactive schedule changes compared to the 

predictive one (a measure of stability) and how much its performance changes 

(a measure of efficiency). The resulting reactive schedule should therefore be as 

efficient and stable as possible. We use the concept of efficiency in the sense of 

measuring the change in the schedule's performance. Subramaniam and Raheja 

(2003) and Subramaniam et al. (2005) measure the efficiency, e, of the reactive 

schedule as a percentage of change in the value of objective function under 

consideration, the makespan: 

( [Mnew — Mo]) 1 Wo—jxl00% <7> 

where Mo is the makespan for the predictive schedule, and Mnew is the 

makespan of the reactive schedule. In the same line we can define in general 

the inefficiency as ratio as follows: 

. , . . [cf)new-<po] 
ineficciency = (8) 

00 

where cfjo is the value of the objective function for the predictive schedule, and 

c|>new is the value of the objective function of the reactive schedule. 

In the context of reactive scheduling, stability is referred to providing a 

reactive schedule that deviates from the predictive one as little as possible 

(Herroelen and Leus, 2005). The stability is measured in two dimensions. First, 

there is the starting time deviation, used by authors like Abumaizar and Svestka 
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(1997), Subramaniam and Raheja (2003) and Subramaniam et al. (2005). It is 

defined as: 

f.g-CI(g-*)l (9) 
YIj=1nOj 

where: 

£ is the normalized deviation, 

nOj the number of operations of job/, 

k the number of jobs, 

Sji* the starting time of /th operation of job/ in the repaired schedule, 

Sji is the starting time of rth operation of job/ in the original schedule. 

Under the strategies of right shift and modified affected operations 

rescheduling, in which the predictive sequence is kept unchanged and only the 

starting time may change, calculating the starting time deviation of operations in 

both the predictive and reactive schedules gives a measure of the reactive 

schedule's stability. From production perspective, however, measuring the 

instability by the starting time deviations may be useful when secondary 

resources (like tools in the manufacturing situation) are expected to be used by a 

machine during an operation in the predictive schedule and then delivered to 

another machine. However, there is a second way to measure instability based 

on the sequence deviation. Having a reactive schedule that does not deviate 

much from the initial sequence may be very useful especially in that a series of 

setups and queues of material organized according to the predictive sequence 

may have to be changed when a disruption occurs. Changing the sequence of 

the material in the queues or the setup order may turn out to be costly. 

Moreover except from the right shift approach, a reactive schedule does not 

necessarily produce the same predictive sequence. That is why we favor the use 

of a sequence deviation based stability measure. 

Abumaizar and Svestka (1997) define a sequence deviation stability 

measure based on the summation for each operation j of the amount of 
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operations processed before j in the predictive schedule which are processed 

after j in the reactive schedule. Based on that, Moratori et al. (2008) propose the 

following way to measure the sequence deviation based on the following 

concept. Let M be the number of machines and Ot the number of operations that 

have to be processed on machine i = l,...M. Let fy;=1 if the immediate 

successor of operation / = 1,... Ot on machine l in the initial schedule remains a 

successor in the new schedule but not necessarily an immediate one and 0 

otherwise. To each machine i a measure of sequence stability fye [0, 1] is 

assigned in (10): 

^ = 1 ; ^ do). 

Similarly, and using the same definitions of M and Ot, let us define a 

sequence deviation ratio Sequence_Dev as: 

l^Li^t1 Precl} 

Sequence_Dev = —=^ (11) 

where Prectj = 1 if operations i and / remain on the same machine in the 

reactive schedule and the immediate successor of operation / on machine i in 

the predictive schedule remains a successor in the reactive schedule but not 

necessarily an immediate one; otherwise, Precti = 0. 

The previous index measures how much the precedence was respected 

in the reactive schedule. In cases of parallel machines, we want to measure as 

well the machine allocation changes. Let OCC be the set of all operations that 

can be processed on more than one machine and TOCC the cardinality of OCC. 

Let us define the machine deviation ratio as: 

yTOOCg 

Machine Dev = =*=*—- (12) 

where 
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!

1, if operation j 6 OCC changed machine 
allocation in the reactive schedule 

0, otherwise 

Our reactive scheduling problem consists, therefore, of obtaining a 

reactive schedule that is stable and whose performance degrades as little as 

possible with respect to the predictive schedule. In other words, we want to 

produce a reactive schedule that minimizes the inefficiency and the instability 

expressed in terms of the sequence deviation and machine assignment 

deviation. In order to do this, we will consider in our objective function the three 

ratios defined earlier. 

8.3 Multi objective optimization 

Our rescheduling problem is then a multi-objective optimization problem. That 

is, a problem which has two or more objectives that need to be simultaneously 

optimized. In the context of multi objective optimization, a compromised solution 

is one that is as close as possible to the Utopia point. That is, a point that 

simultaneously succeeds in optimizing each objective. 

Without loss of generality, the multi optimization objective problem MOOP 

may be described as follows: if x is a p-dimensional vector of decision 

variablesx = (xlt...,x2,...,xp) in the decision space X, and f(x) evaluates the 

quality of a specific solution x by assigning to it an objective vector 

(AW./2W.-, / /cOO).and we require the simultaneous optimization of k 

objectives, the general MOOP can be stated as: 

Min fix) = (A(*),/2(*), ...,/*(*)) 

Subject to giix) < biti = 1,2 ...,c (C9) 

x> 0 

where (C9) are certain inequality constraints. 



75 

8.3.1 Pareto dominance 

Assuming a minimization problem as in our case, a vector u = (Ui,u2, -,up) is 

considered to dominate another vector v = (yx,v2, ...,vv) if no component of u is 

greater than the corresponding component of v and at least one component is 

smaller. A solution xu e X is considered to be Pareto-optimal or non-dominated 

if and only if there is no xv EX for which v = f(xv) = (yx,v2,... ,vv) 

dominates u= f(xu)= (u^ i^ , ...,up). 

Fonseca and Fleming (1998) classify multi objective optimization methods 

into the following three categories depending on how the decision processes and 

the computation are articulated in the search for a compromise solution. 

Apriori methods 

Before running the optimization algorithm, the decision maker indicates the 

relative importance of the desired goals in terms of an aggregating scalar 

function that combines all of the objective function terms, making the problem, 

according to Fonseca and Fleming (1998), a single-objective one prior to 

optimization. 

A posteriori methods 

Before expressing any preferences, the optimizer presents a set of candidate 

non-dominated solutions to the decision maker who chooses from that set. 

Progressive articulation of preferences 

At each step of the optimization process, and by an interactive process between 

the decision maker and the optimizer, the optimizer provides a non-dominated 

solution for which the decision maker expresses his/her preferences, which 

defines a new search direction for a better alternative. The process goes on until 

a satisfactory solution is reached. 

By using an a priori approach, the weighted sum method will be utilized 

by the reactive RKGA to minimize an aggregating scalar objective function of 

efficiency and instability. The method is described in the following section. 
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8.4 The weighted sum method 

Using the weighted sum method to solve a multi objective optimization problem 

requires selecting scalar weights wt and the minimization of an aggregating 

objective function as follows: 

U = l$=1wtfi(x) (13). 

The weighted sum method has been used in the literature in two ways. 

First, a posteriori, to provide numerous solution points by systematically altering 

the weights to explore the Pareto optimal set. Second, apriori which provides a 

single solution point that reflects preferences of the decision maker in a single 

set of weights. For this work we consider the second approach, in which the 

decision maker expresses from the beginning her/his preferences in a single set 

of weights apriori. 

Unlike the posteriori approach that uses a set of weights that add up to 1, 

there is no need for such restriction, which makes it easier to determine the 

appropriate weight values (Marler and Arora, 2010). 

Finally, our objective function will be expressed as follows: 

Min Z = W-L x inefficiency + w2 x Sequencejdev + w3 x Machinejdev (14) 

where wlt w2, and w3 represent the decision maker preferences. Note that in 

general the objective functions may have different units in (13). In our cases the 

inefficiency measure as well as the two types of instability proposed are 

formulated as ratios, so the three of them are dimensionless and can be 

consistently aggregated. 

8.5 Mode of operation of the Reactive RKGA 

The mode of operation of the reactive RKGA is as follows. There is a predictive 

schedule being executed. At a certain time t a disruption occurs. Such disruption 

may be of two types. In the first type the processing of one or more operations 
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suddenly stops and the operations will need to be repeated once it is possible. 

We will refer to these operations as "affected operations". Situations like 

machine breakdowns, tool breakdowns or a power failure that affects one or 

several machines belong to this category. Under the second type, the operations 

that are being processed in the time when the unexpected event happens, may 

complete before the schedule execution is stopped. To this category belong all 

other unexpected events considered for the present reactive model. 

The pool of jobs that need rescheduling includes the information of the 

new jobs that must be included in the reactive schedule, plus the information of 

the jobs not yet finished for which all the affected and not yet started operations 

must be included. 

The new machine availability times and the information of the new job 

pool, as well as the predictive schedule, are used as inputs by the RKGA to 

produce the reactive schedule minimizing the inefficiency and instability. 

8.6 The rollback mechanism 

Since the predictive schedule is the result of the evolutionary process of the 

RKGA, the genetic information of that schedule may prove useful in the search 

of a stable and efficient reactive solution. Therefore, a certain percentage of 

chromosomes with the genetic information of the predictive schedule may be 

inserted in the initial population. More specifically, the chromosome of the 

predictive schedule, which is the best schedule produced by the predictive 

RKGA as a result of the evolutionary process, is cloned a certain number of 

times as determined by a parameter called Rollback Percentage and inserted as 

a part of the initial population of the reactive RKGA. Some experiments with 

different values of the Rollback Percentage it are presented in the next chapter. 

In the case of new jobs that enter the reactive job pool, new values of 

random keys and delay factors are created for them to complete the genetic 

information of the chromosomes to be inserted by the rollback. 
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Except for the multiple objective function and the inserted chromosomes, 

the rest of the RKGA, namely the problem representation, genetic operators and 

stopping criteria, work in the same way as the predictive schedule. 

8.7 Encoding of a non RKGA generated schedule 

In case there is a predictive schedule produced by a mean other than the RKGA 

(e.g. manual schedule), the reactive algorithm should be able to use it as an 

input to produce a reactive solution. Such predictive schedule and its objective 

function value are used as an input for the reactive RKGA. 

The predictive sequence may be used as well to produce surrogate 

chromosomes to input by rollback as explained in the previous section. A triplet 

of machine key, random key and delay factor is created then for each operation 

of the predictive schedule. The machine key value is an integer that must 

coincide with the position that occupies the machine assigned to each operation 

in the predictive schedule on its machine list, as defined in expression (5) of 

Chapter 6. A total of ops (0, 1) uniformly distributed random numbers is created, 

where ops is the total of operations in the predictive schedule. The random 

numbers are ordered increasingly. The operations are ordered chronologically 

as they were scheduled. Each random number is assigned then to each 

operation, so the same sequence results on each machine once the decoding 

procedure is applied to the chromosome. The delay factor is randomly created 

and not used in the process of creating the surrogate chromosome as the 

predictive schedule may be any feasible sequence of jobs. The encoding 

process for a non RKGA generated schedule is presented below. 

Inputs: 

ops: total of operations to schedule 

ScheduleQ: Array of two dimensions(ops, 3), with the schedule information 

Schedule^, 1): Stores an operation number 

Schedule^, 2): Stores the start time of Schedule^, 1) 

Scheduled, 3): Stores the machine key of Scheduled, 1) 
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Variables: 

Co: integer to store current operation 

Random_Key( ):One dimensional array of size ops, where Random_Key(i) 

stores the Random Key of operation / 

Delay_Factor(): One dimensional array of size ops, where Delay_Factor(i) stores 

the Delay Factor of operation i 

MachineQ: One dimensional array of size ops, where Machine(i) stores the 

machine key of operation / 

Random_Val(): Two dimensional array of size ops x 2, where: 

Random_Val(\, 1) stores operation i's surrogated random key and 

Random_Val(\, 2) stores operation i's surrogated delay factor 

Complementary Functions: 

Random(0,1) Returns a random number between 0 and 1. 

Pseudo Code of the Schedule Encoding Procedure 

For /= 1 to ops 

For/=1 to 2 

Random_Values(\, j)=Random(0,1) 

Next/ 

Next /' 

Order ScheduleO increasingly by column 2 (Start time) 

Order Random_Values() increasingly by column 1 (Random keys) 

For /= 1 to ops 

Co =Schedule(i, 1) 

Random_Key(Co) = Random_Values(i,1) 

DelayJFactor(Co) = Random_Values(i,2) 

Machine (Co) = Schedule (i, 3) 

Next / 
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8.8 Integrated Predictive Reactive Scheduling System 

In Chapter 6 we presented the predictive model, capable of producing initial 

schedules for problems coming from different environments with regular 

measures or the non-regular measure of Earliness and Tardiness. In this chapter 

we presented the reactive model, which is able to produce a reactive schedule 

when different unexpected events occur during the execution the predictive 

schedule. A flow chart representing the integration of both models in a whole 

system is presented in Figure 25. 

At first, an initial schedule is produced by the predictive model and 

adopted as the current schedule. Then, the schedule execution starts. If an 

unexpected event occurs, such as those explained in section 8.1, which makes 

the initial schedule infeasible or obsolete, the reactive model is used to generate 

a new efficient and stable schedule in response to the event. The new schedule 

includes the disrupted and not yet started operations and becomes the current 

schedule. 
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Figure 25. Predictive Reactive Scheduling System 
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8.9 Conclusion 

We have presented a reactive RKGA that is able to produce a reactive schedule 

that minimizes inefficiency, and instability when different unexpected events 

occur in the various production environments targeted in this dissertation. 

At the end of this chapter the integrated view of the Predictive Reactive 

Scheduling System was presented. The next chapter presents some 

computational experiments to test the reactive model. 
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9 COMPUTATIONAL EXPERIMENTS FOR THE REACTIVE MODEL 

According to characteristics of the reactive model, it can be used in four different 

basic production environments, for regular and non-regular measures and under 

different types of disruptions. We must make a choice among all the embraced 

environments, objective functions and disruptions to test how the reactive RKGA 

works. Based on the representation proposed in section 6.3, it is possible to 

cover hybrid environments, such as flexible flow shops and flexible job shops. 

Since the flexible job shop is the most general case that the proposed 

representation can account for, it has been selected to conduct our experiments 

as the environment of choice. Regarding the objective function, most of the 

literature reviewed for reactive approaches focuses on regular objective 

functions, and the case of ET has not been researched enough although it has 

recently become an important objective in the literature in general. Therefore, 

the ET will be our objective function choice on which the experiments will be 

conducted. Concerning the disruptions, we select two types that are 

representative of the unexpected events covered by this research, namely 

machine breakdowns and the arrival of a rush job that is, a job that arrives after 

the execution of the predictive schedule has started and must be included in it 

when it arrives. The first disruption implies that some operations will be 

interrupted. The second one, on the other hand, is of the type in which the 

operations being processed may complete before the predictive schedule 

execution is stopped. Each of those types of unexpected events has different 

experimental factors and levels to take into account such as: disruption time, 

duration of the disruption and number of affected machines in the case of 

machine breakdowns. Additionally, we want to study the effect of the rollback 

mechanism at different levels in the reactive RKGA. 
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9.1 Benchmark Problems 

In order to experiment with different levels of those factors, we consider one size 

of flexible job shop with seven jobs that must be scheduled in a shop with seven 

work centers with three unrelated parallel machines on each. Recall that a 

flexible job shop is a job shop with possibly multiple parallel machines at each 

work center, and not necessarily just one machine per work center. A set of 120 

benchmark flexible job shop problems with those characteristics was generated. 

In order to have all jobs visiting all work centers in some random order, the job 

routes were generated following a discrete uniform distribution U[1 ,wc] where wc 

is the number of work centers. The processing times over the different machines 

of each work center were randomly generated from a discrete uniform 

distribution U[1,9] as in Demirkol et al. (1998) and Brandimarte (1993). The due 

date of each job is set as a multiple TF of the summation of the minimum job 

processing time on each work center. Such multiple determines the tightness of 

the due date and was generated following a uniform distribution U[0.7,1.4]. In the 

case of the arrival of a rush job, it will have the same characteristics explained 

above, namely routing through the work centers, processing times and due date. 

9.2 Predictive Schedule Generation 

Each problem was run by the predictive model to minimize ET using the same 

genetic operators, parameter values, and stopping criteria as those of the 

experiments of the predictive model (a reproduction of 20%, a uniform crossover 

84% and a mutation by immigration of 6%). Likewise, the reactive RKGA stops 

when a maximum number of 250 iterations has been reached or 75 generations 

have passed without any improvement of the best solution found so far. The 

population size is set to 300 plus two times the number of operations to be 

scheduled. 
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9.3 Machine breakdown experiments 

The first experiment consists of one or multiple machine breakdowns that occur 

during the execution of the predictive schedule. The dimensions of the study are 

presented next. 

9.3.1 Dimensions of the study 

The following factors and levels are used to generate the experiments. 

• Disruption time: Refers to the moment in which the breakdown 

occurs expressed as a percentage of the makespan of the predictive 

schedule Cmaxp and is set at two levels: Early, that corresponds to a 

value generated from a uniform distribution U[0.05 Cmaxp, 0.4 Cmaxp] 

and Late, corresponding to a value generated from a uniform distribution 

U[0.6 Cmax/7,0.9 Cmaxp] 

• Duration: Refers to the duration of the breakdown and is expressed 

as a percentage of the makespan of the predictive schedule, Cmaxp and 

set at two levels: Short and Long, corresponding to values generated from 

uniform distributions U[0.05 Cmaxp,0.2 Cmaxp] and U[0.4 Cmaxp,0.6 

Cmaxp], respectively. 

• Percentage of Affected Machines: Refers to the number of 

machines affected by the breakdown. It is expressed as a percentage of 

the total number of machines /nthat may be busy at any time t and is set 

at two levels: Low, taking a value from a uniform distribution 

U[0.01/», 0.33/77] and High, taking a value from a uniform distribution 

U[0.67/77, 777] 

• Rollback Percentage: Refers to the percentage of chromosomes 

with the genetic information of the predictive schedule to be inserted in 

the initial population. Three levels were considered for the experiments: 

0%, 10% and 20%. 

The response variables considered for the study are the Aggregate 

objective function as given in expression (14) of Chapter 8, and the 

Runtime. 
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Since we are studying flexible job shop problems with 9 jobs, 9 stages 

and 3 unrelated parallel machines, five instances were used for each treatment 

combination and each of them was run five times. Table 15 presents the 

experimental combinations for this experiment and the average values for the 

aggregate objective function, the instability, inefficiency and runtime. 

Table 15. Treatment Combinations and average values 

Rollback 

Level 

(%) 

0 

0 

0 

0 

0 

0 

0 

0 

10 

10 

10 

10 

10 

10 

10 

10 

20 

20 

20 

20 

20 

20 

20 

20 

Disruption 

Moment 

Early 

Early 

Early 

Early 

Late 

Late 

Late 

Late 

Early 

Early 

Early 

Early 

Late 

Late 

Late 

Late 

Early 

Early 

Early 

Early 

Late 

Late 

Late 

Late 

% 

Affected 

Machines 

High 

High 

Low 

Low 

High 

High 

Low 

Low 

High 

High 

Low 

Low 

High 

High 

Low 

Low 

High 

High 

Low 

Low 

High 

High 

Low 

Low 

Duration 

Long 

Short 

Long 

Short 

Long 

Short 

Long 

Short 

Long 

Short 

Long 

Short 

Long 

Short 

Long 

Short 

Long 

Short 

Long 

Short 

Long 

Short 

Long 

Short 

Aggregate 

objective 

2.60 

0.62 

0.95 

0.25 

1.30 

0.09 

0.15 

0.08 

3.34 

0.80 

0.33 

0.15 

0.89 

0.32 

0.16 

0.05 

2.77 

0.61 

0.89 

0.16 

0.92 

0.17 

0.33 

0.05 

Instability 

0.59 

0.27 

0.45 

0.14 

0.36 

0.00 

0.00 

0.00 

0.56 

0.16 

0.13 

0.05 

0.43 

0.00 

0.01 

0.00 

0.88 

0.18 

0.30 

0.06 

0.01 

0.00 

0.10 

0.00 

Inefficiency 

2.00 

0.35 

0.50 

0.11 

0.94 

0.09 

0.15 

0.08 

2.77 

0.64 

0.20 

0.10 

0.46 

0.32 

0.15 

0.05 

1.89 

0.43 

0.59 

0.09 

0.91 

0.17 

0.22 

0.05 

Runtime 

(sec) 

723.16 

656.68 

797.72 

849.08 

73.04 

41.12 

49.44 

78.60 

751.00 

546.76 

371.60 

332.96 

84.40 

59.48 

23.00 

30.24 

671.44 

770.72 

392.84 

359.48 

94.80 

66.08 

27.48 

46.52 
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In order to compare the behavior of the RKGA at different factor levels, we must 

check the assumption of normality for parametric analysis methods. This was 

done by examining the residuals of the response variables (aggregate objective 

function (Aggregate) and runtimes (Runtime)) produced by the ANOVA model 

through a normal probability plot and Kolmogorov-Smirnov normality tests in 

SPSS statistical software. The results, presented in Figure 26, show that none of 

them follow a normal distribution (p < 0.05). Thus, the statistical significance of 

performance among the experimental factors can be analyzed by the 

nonparametric Kruskal-Wallis test. 
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Nonparametric statistical methods do not make assumptions about the data 

distribution. That makes them particularly useful under situations of non-

normality. The Kruskal-Wallis test is a nonparametric alternative to the analysis 

of variance, used "to test the null hypothesis that k treatments are identical 

against the alternative hypothesis that some of the treatments generate 

observations that are larger than others" (Montgomery, 2009). The test uses the 

rank of the observations rather than the actual observations for the analysis. The 

Kruskal-Wallis tests are performed using SPSS 14.0 statistical software. 

Besides the two mentioned response variables of Aggregate objective function 

and Runtime, the Instability (summation of expressions (11) and (12)) and the 

Inefficiency are analyzed by the Kruskal-Wallis test as well. 

9.3.2 Results for Disruption Time 

Regarding the disruption moment, the results in Table 16 show that there is a 

statistical difference (P < a=0.05) for the Aggregate objective function and for the 

Runtime between the Early and Late levels. 

Table 16. Results for factor: Disruption Time 

Response 
Factor Mean 

Level Rank 

Runtime 0.000 
Late 167.3 

Early 410.16 
Instability 0.000 

Late 190.84 

Early 355.97 
Inefficiency 0.000 

Late 245.03 

Early 378.87 
Aggregate 0.000 

The mean rank suggests that late disruptions result in better values of the 

Aggregate objective function and Runtime. That is explained by the fact that 
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when a breakdown occurs late in the schedule execution, most of operations of 

the schedule have been completed and therefore the reactive schedule will have 

mainly the same sequence and machine allocation. In fact, in a late breakdown, 

it is more likely that some jobs have completed and efficiency is not as hardly 

affected compared to when a breakdown occurs early on in the schedule. In a 

similar vein, since most schedule operations will have been completed, the 

required runtime to schedule the remaining operations will be less. 

9.3.3 Results for Duration of the breakdown 

According to the results in 

Table 17, it cannot be concluded that there exists a significant difference in the 

Runtime under short and long breakdowns (P > a=0.05). In terms of the 

problem, under a long duration some machines simply become available later 

than in a short breakdown, which does not imply any additional effort for the 

decoding procedure to produce a schedule compared to that of building a 

schedule where some machines are available earlier. 

The results show as well that there is a statistical difference for the 

Aggregate objective function under short and long breakdowns (P < a=0.05). 

Table 17. Results for factor: Duration of the breakdown 

Response 

Runtime 

Instability 

Inefficiency 

Aggregate 

Factor 

Level 

Short 

Long 

Short 

Long 

Short 

Long 

Short 

Long 

Mean 

Rank 

292 

309 

249 

352 

233 

368 

232 

369 

P 

0.221 

0.000 

0.000 

0.000 
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The mean rank suggests that short breakdowns produce lower values of 

the Aggregate objective function. Longer breakdowns imply either displacing 

more operations to the right which will affect the efficiency or doing more 

changes on machine allocation, which will deteriorate the stability. Conversely, 

shorter breakdowns may be solved with less operation right shifts and/or less 

machine allocation changes so the RKGA is able to produce a reactive schedule 

more similar to the predictive one which represents more stability and efficiency. 

9.3.4 Results for Percentage of Affected Machines 

Regarding the percentage of affected machines, the test results in Table 18 

show that there is a statistical difference in the Runtime, Instability, Inefficiency, 

and Aggregate objective function at the two levels of affected machines. At low 

percentages of affected machines, the runtime required is less as fewer 

operations are hit and, therefore, fewer operations need to be rescheduled. 

Likewise, less affected operations will cause less instability and inefficiency and 

therefore a better value of the Aggregate objective function. 

Table 18. Results for factor: Percentage of Affected Machines 

Factor Mean 
Response P 

Level Rank 

Low 264 
Runtime 

High 337 

Low 260 
Instability 

High 341 

Low 211 
Inefficiency 

High 390 

Low 219 
Aggregate 

High 382 

0.000 

0.000 

0.000 

0.000 
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9.3.5 Results for Rollback Level 

The results of the Rollback Level, which was defined as the percentage of 

chromosomes cloned from the one of predictive schedule and inserted in the 

reactive RKGA's initial population, are given in Table 19. It cannot be concluded 

that there exists significant difference between the three levels for the Instability, 

Inefficiency and the Aggregate objective function. 

An interesting observation, however, is present in the results for the 

rollback level regarding the runtime. The results show that there is a statistical 

difference in the runtime at the different levels of rollback. However, the test 

does not reveal which means differ significantly. Thus, pair tests need to be 

performed and their results in Table 20 show that the levels of 10% and 20% 

imply less runtime for the RKGA than the 0% level. This means that inserting a 

number of individuals in the initial population of the reactive problem with the 

genetic information of the predictive schedule speeds up the search for a 

reactive solution. However, it cannot be concluded that there exists significant 

difference between the rollback levels of 10% and 20%. 

The average of the runtimes taken over the three rollback levels in Table 

15 shows that the average time taken by the RKGA to generate a reactive 

solution at a 20% rollback level (303.67 seconds) is 74.3% of the time taken at a 

0% of rollback level (408.61 seconds); the average time taken by the RKGA to 

generate a reactive solution at a 10% rollback level (274.93 seconds) is 67.3% 

of the time taken at a 0% of rollback level. Using those average times, the level 

of 10% of rollback seems to be adequate. 



Table 19. Results for factor: Rollback Level 

Response 

Aggregate 

Instability 

Inefficiency 

Runtime 

Factor 

Level 

0% 

10% 

20% 

0% 

10% 

20% 

0% 

10% 

20% 

0% 

10% 

20% 

Mean 

Rank 

305.58 

290.2 

305.73 

316.55 

286.29 

298.66 

290.21 

298.2 

313.1 

330.56 

274.36 

296.59 

P 

0.584 

0.181 

0.400 

0.005 

Table 20. Additional tests for factor: Rollback Level 

and Runtime as response variable 

Response 

Runtime 

Levels 

0% 

10% 

Mean 

Rank 

218.9 

182.1 

P 

0 

Levels 

10% 

20% 

Mean 

Rank 

192.8 

208.2 

P 

0.180 

Levels 

0% 

20% 

Mean 

Rank 

212.1 

188.9 

P 

0.04 

9.4 Rush Job experiment 

In the second experiment, an urgent job arrives during the execution of the 

predictive schedule, and the schedule execution must be stopped in order to 

include the new job. The dimensions of the study are presented next. 

9.4.1 Dimensions of the study 

The following factors are used to generate the experiments. 
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• Arrival time: Refers to the time point in which the new job arrives 

and needs to be scheduled. It is expressed as a percentage of the 

makespan of the predictive schedule Cmaxp and is set at two levels: 

Early, that corresponds to a value generated from a uniform distribution 

U[0.05 CmaxjO, 0.4 Cmax/?] and Late, corresponding to a value generated 

from a uniform distribution U[0.6 Cmax/?,0.9 Cmaxp] 

• Rollback Percentage: The same three levels were considered for 

the experiments: 0%, 10% and 20%. 

The response variables considered for the study are the Aggregate 

objective function and the Runtime. 

Five instances were used for each treatment combination, and each of 

them was run five times. Table 21 presents the experimental combinations for 

this experiment and the average values obtained for the experiments. 

Table 21. Treatment combinations and average 

values for the Rush Job experiment 

Rollback 

Level 

(%) 

0 

0 

10 

10 

20 

20 

Arrival 

time 

early 

late 

early 

late 

early 

late 

Instability 

0.08 

0.00 

0.00 

0.00 

0.00 

0.00 

Inefficiency 

0.04 

0.06 

0.00 

0.20 

0.01 

0.17 

Aggregate 

0.14 

0.06 

0.00 

0.20 

0.01 

0.17 

Runtime 

(sec) 

1069.24 

68.64 

222.96 

143.28 

399.76 

49.08 

As was done in the breakdown case, in order to compare the behavior of 

the RKGA at the different factor levels and to check the assumption for 

parametric analysis methods that the observations are normally distributed, the 

residuals were tested by a normal probability plot and Kolmogorov-Smirnov 

normality test in SPSS statistical software for the aggregate objective function 
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(Aggregate) and for the runtimes (Runtime). The results, presented in Figure 27, 

show that none of them follow a normal distribution (p < 0.05). Thus, the 

statistical significance of performance between the algorithms can be analyzed 

by the nonparametric Kruskal-Wallis test. Besides the two mentioned response 

variables of Aggregate objective function and Runtime, the Instability, calculated 

as a summation of both types of instability (expressions (11) and (12)), and the 

Inefficiency are analyzed by the test as well. 

9.4.2 Results for the Arrival Time 

Regarding the rush job arrival time, the results in Table 22 show that there is a 

statistical difference at its two levels in all of the response variables, namely: 

Runtime, Instability, Inefficiency and Aggregate. 

Regarding the Runtime, at the arrival of a late job most of the operations 

will most likely be completed, and so, fewer operations remain to be rescheduled 

together with the new job, which takes less time for the RKGA to produce a 

reactive schedule. As for the instability, at the arrival time of a late job, most of 

the operations are completed and, therefore, fewer changes in the sequence or 

in the machine allocations will be needed in the reactive schedule. The best 

value in the inefficiency for early jobs is explained by the fact that the earlier the 

job arrives to the system, the more time it will have to complete by its due date, 

which was generated using the same parameters used for the rest of jobs. 
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Figure 27. Normal Probability Plot for Aggregate Objective Function and Runtime. 
The Rush Job Experiment 

Table 22. Results for the factor: Arrival Time 

Response Level 
Mean 

Rank 

Runtime 

Instability 

Inefficiency 

Aggregate 

Early 

Late 

Early 

Late 

Early 

Late 

Early 

Late 

96.59 

54.41 

84.00 

67.00 

61.7 

89.3 

65.93 

85.07 

0.000 

0.000 

0.000 

0.004 
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9.4.3 Results for the Rollback Level 

Regarding the Rollback level, it cannot be concluded that there exists a 

significant difference between the three levels for the Aggregate objective 

function nor for the Inefficiency as shown in Table 23. 

Table 23. Results for the factor: Rollback Level 

Response 

Runtime 

Instability 

Inefficiency 

Aggregate 

Level 

0% 

10% 

20% 

0% 

10% 

20% 

0% 

10% 

20% 

0% 

10% 

20% 

Mean 

Rank 

92.32 

69.49 

64.69 

91.16 

67.00 

68.34 

74.49 

81.29 

70.72 

83.81 

76.57 

66.12 

P 

0.003 

0.000 

0.389 

0.091 

Concerning the Instability and the Runtime, the results show that there is 

a statistical difference at the different levels of rollback; however, the test does 

not reveal which means differ significantly. Thus, pair tests need to be 

performed. 

The results of the additional tests presented in Table 24 show that there is 

no statistical difference between the levels of 10% and 20%, but both differ 

statistically from the level of 0%; the means suggest that both of them yield less 

instability than the level of 0%. Therefore, inserting a number of individuals in the 

initial population of the reactive problem with the genetic information of the 
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predictive schedule seems to help the RKGA to build schedules similar to the 

predictive one in terms of sequence and machine allocation. 

Table 24. Additional tests for factor: Rollback Level 

and Instability as response variable 

Response 

Instability 

Levels 

0% 

10% 

Mean 

Rank 

58.50 

42.50 

P 

0.000 

Levels 

10% 

20% 

Mean 

Rank 

50 

51 

P 

0.317 

Levels 

0% 

20% 

Mean 

Rank 

58.16 

42.84 

P 

0.000 

Since the results of the Kruskal-Wallis test for Runtime in Table 23 show 

a statistical difference at the different levels of rollback, additional pair tests were 

conducted, and their results are shown in Table 25. 

Table 25. Additional tests for factor: Rollback Level 

and Runtime as response variable 

Response 

Runtime 

Levels 

0% 

10% 

Mean 

Rank 

58.59 

42.41 

P 

0.005 

Levels 

10% 

20% 

Mean 

Rank 

52.58 

48.42 

P 

0.473 

Levels 

0% 

20% 

Mean 

Rank 

59.23 

41.77 

P 

0.003 

According to the results of the additional tests, it cannot be concluded that 

there is a statistical difference between the levels of 10% and 20%; however, 

both of them differ statistically from the level of 0%. The means suggest that 

both take less runtime than the level of 0%. Therefore, inserting a number of 

individuals in the initial population of the reactive problem with the genetic 

information of the predictive schedule seems to speed up the search for a 

reactive solution. 
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It is important to notice here that the average runtime taken over the three 

rollback levels in Table 21 shows that the average time taken by the RKGA to 

generate a reactive solution at a 20% rollback level (224.4 seconds) is 39.4% of 

the time taken at a 0% of rollback level (568.9 seconds); and the average time 

taken by the RKGA to generate a reactive solution at a 10% rollback level (183.1 

seconds) is 32.2% of the time taken at a 0% of rollback level, which emphasizes 

the importance of the rollback mechanism proposed in this dissertation in order 

to produce a reactive solution more rapidly. Although it cannot be concluded that 

there exists a significant difference between the rollback levels of 10% and 20%, 

according to the observed data, the level of 10% of rollback seems to be 

adequate. 
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10 CONCLUSIONS AND FUTURE RESEARCH 

10.1 Conclusions 

The main contribution of this dissertation is the introduction of a generic 

scheduling and rescheduling system with models and algorithms that can 

produce predictive (initial) schedules and react to disruptions in the most 

common production environments and objective functions. Namely, the 

introduced system can handle single machine, parallel machines, flow shops, 

and jobs shop scheduling problems or combination of these environments. The 

objectives can be regular such as the makespan, the total tardiness, total 

completion time, etc, and non-regular such as the total earliness and tardiness 

(ET) with a common due date or distinct due dates. The algorithms are based on 

the Random Keys Genetic algorithms (RKGA) that were introduced by Bean 

(1994) and intended to solve problems with regular objective functions. The 

combination of the generalized representation and the Earliness Reduction 

Procedure results in a more generalization of the RKGA where different 

environments and objective functions, not only regular but also the non-regular 

measure of Earliness and Tardiness, can be addressed by one scheduling 

system. To accomplish this generic system, several important modifications 

were introduced in this dissertation to the RKGA including changes in the 

chromosome and decoding procedure depending on the environment in which it 

is applied. Depending on the production environment (Single Machine, Parallel 

machines, Flow Shop, Job Shop or hybrids of them like Flexible Flow shop and 

Flexible Job Shop) information can be embodied with one type of chromosome 

and decoding procedure. 

We also proposed and implemented a reactive RKGA that is able to 

produce a reactive schedule that minimizes the schedule's inefficiency and 

instability when different unexpected events occur in the various production 

environments targeted in this dissertation. To make the reactive RKGA more 

robust, it can repair schedules that are produced by other systems and not 

necessarily the ones initially produced by the RKGA itself. 
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The reactive RKGA system deals with the problem as multi-objectives 

optimization problem using the introduced instability ratios that measure the 

sequence deviation and machine allocation deviation, to minimize instability in 

addition to minimizing the inefficiency. 

Among the most important original contributions of this research is the 

introduction of the rollback mechanism, by which the genetic information of the 

predictive schedule is inserted to a certain extent, in the initial population of the 

reactive RKGA. The computational experiments showed that the use of a 

rollback percentage greater than 0%, in our case 10% or 20%, reduces the 

runtime of the reactive model. 

Computational experiments for both the predictive and the reactive RKGA 

were performed. Two types of problems were selected to test the predictive 

model, namely, the unrelated parallel machine scheduling problem Rm/ /Cmax, 

and the Job Shop scheduling problem Jm/ /ET. The computational experiments 

show that the model is able to produce optimal or near optimal schedules in 

several benchmark problems for the studied production environments and 

objective functions. In the case of Jm/ /ET the results show that the model 

performs very well especially for problems with loose and tight due dates. The 

test results of the reactive scheduling system showed that it is robust and 

capable of repairing schedules in a generic environment such as Flexible Job 

Shops. The statistical tests also demonstrate the various conditions under which 

the reactive RKGA is more efficient than others. 

10.2 Future Research 

The present research may be extended in several directions, as follows: 

• The extension of the generalized predictive and reactive RKGA's to 

include additional constraints to the problems, such as sequence 

dependent setup times, and precedence constraints. 

• New types of disruptions can be considered in the reactive model, 

such as due date changes and priority changes. 
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• From the reactive scheduling perspective, the weighted sum 

method may be used in an a posteriori approach to produce a set of non-

dominated or good solutions to the decision maker. 

• The Earliness Reduction Procedure may be used in conjunction 

with other metaheuristics such as Tabu Search, Simulated Annealing or 

Ant Colonies, for ET problems. 

• Although in the case of Jm/ /ET the results show that the predictive 

model performs very well especially for problems with loose and tight due 

dates, additional experiments may be conducted to get insights into how 

to improve the performance in the case of problems with moderate due 

dates. 

• Additional experiments with the predictive and reactive model, 

considering different release times, additional objective functions and 

environments, as well as other problem sizes, may be conducted. 
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