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Abstract

This research focuses on a scheduling problem with multiple unavailability periods and distinct due dates. The objective is to minimize the sum
of maximum earliness and tardiness of jobs. In order to optimize the problem exactly a mathematical model is proposed. However due to
computational difficulties for large instances of the considered problem a modified variable neighborhood search (VNS) is developed. In basic
VNS, the searching process to achieve to global optimum or near global optimum solution is totally random, and it is known as one of the
weaknesses of this algorithm. To tackle this weakness, a VNS algorithm is combined with a knowledge module. In the proposed VNS,
knowledge module extracts the knowledge of good solution and save them in memory and feed it back to the algorithm during the search process.
Computational results show that the proposed algorithm is efficient and effective.
& 2016 Society for Computational Design and Engineering. Publishing Servies by Elsevier. This is an open access article under the CC BY-NC-
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Generally in scheduling problems it is assumed that
machines are continuously available over the planning horizon.
However, this assumption may not be true in many practical
situations. For instance, a machine may not be available during
the planning horizon due to maintenance activities [1], tool
changes [2], or breakdowns. Since, machines require preven-
tive and curative maintenance [3], operators take breaks, and
worn out parts require changing. Not only managers are
increasingly faced with the costs caused by the temporary
unavailability of resources, but also they are constantly
concerned with difficult decisions regarding balancing
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nder responsibility of Society for Computational Design and
resources' unavailability and production. Nowadays, account-
ing for machine unavailability has become a promising
research area. For instance, in the airline industry, scheduled
maintenance has reduced production time by about 15% [4].
Low et al. [5] mentioned two applications related to the
aerospace industry where micro drilling tools need to be
changed periodically and the machine cannot be used during
this time. They have emphasized the wide applicability of the
problem in real manufacturing environments such as computer
centers, NC-machines and IC-testing industries. Rapine et al.
[6] considered the case of an automated machine which
requires the intervention of an auxiliary resource (i.e., an
operator that removes jobs or adds chemicals) whose unavail-
ability blocks the machine. Accordingly, managers have to
schedule their machines effectively in order to maximize their
profits while avoiding conflicts between scheduled mainte-
nance and planned production.
In this paper, we study a scheduling problem on a single

machine with multiple unavailability periods and distinct due
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dates where the objective is to minimize the sum of maximum
earliness and tardiness of jobs. It is shown that this problem is
strongly NP-hard, and in order to optimize the problem exactly,
a mathematical model is proposed. In addition, with respect to
high complexity of this problem, metaheuristic algorithms are
proposed to obtain optimal or near-optimal solutions for the
considered problem. Variable neighborhood search (VNS) is a
powerful metaheuristic algorithm for solving complex combi-
natorial optimization problems which was first introduced by
Mladenovic [7]. VNS, through using a systematic change of
neighborhood structures, is capable of evading local optimum.
Therefore during past decade, it has been used for solving a
wide spectrum of complex optimization problems such as graph
coloring [8], spanning tree [9] and job shop scheduling [10].
However, it should be mentioned that VNS and other meta-
heuristic algorithms have some weaknesses. For instance, they
guide their optimization algorithm through utilizing objective
function or fitness [11]. Random nature of these algorithm's
operators is another weakness of them [12]. To overcome this
shortcoming, recent researches [13–17] concentrated on propos-
ing algorithms that have emphasized on the interaction between
evolution and learning. This paper intends to combine VNS
algorithm with a knowledge module and proposes a knowledge-
based variable neighborhood search.

The paper has the following structure. In the next section, a
brief review of relevant literature is provided. Section 3
presents the mathematical formulation of the considered
problem. In Section 4, we describe the proposed algorithm.
Section 5 reports the experimental design. Finally, last section
is devoted to conclusion and future research.

2. Literature review

As mentioned former, this paper deals with a single machine
scheduling problem with multiple unavailability periods where
the objective function minimizes the sum of maximum ear-
liness and tardiness of jobs, in addition, a knowledge-based
VNS is proposed as the solution method. Accordingly, the
relevant literature is provided in three separate but comple-
mentary streams: single machine scheduling problems with
unavailability constraints, machine scheduling problems with
the focus on the maximum earliness and tardiness of jobs, and
recent applications of VNS in scheduling problems.

2.1. Single machine scheduling problems with unavailability
constraints

A comprehensive review of literature in scheduling pro-
blems with unavailability constraints has been conducted by
Schmidt [18]. Angel-Bello et al. [19] proposed a mixed integer
programming model for scheduling problem with availability
constraints and sequence-dependent setup costs. Moreover,
they presented a valid inequality and an efficient heuristic
approach in order to lessen the computational time. Rustogi
and Strusevich [20] considered single machine problems
with generalized positional deterioration effects and machine
maintenance where decisions are made regarding possible
sequences of jobs and on the number of maintenance activities
to be included into a schedule in order to minimize the overall
makespan. Zammori et al. [21] focused on the single machine
scheduling problem, in which jobs and maintenance tasks are
jointly considered to find the optimal schedule. Wang and Liu
[22] presented an integrated optimization model for production
scheduling and preventive maintenance (PM) in a single
machine with its time to failure has a Weibull probability
distribution. Yin et al. [23] considered the problem of
scheduling of independent and simultaneously available jobs
without preemption on a single machine, where the machine
has a fixed maintenance activity. Xu et al. [24] considered a
single-machine scheduling problem with workload-dependent
maintenance duration, and the objective is minimize total
completion time. Cui et al. [25] addressed the problem of
finding robust production and maintenance schedules for a
single machine with failure uncertainty, where both production
and maintenance activities occupy the machine's capacity,
while production depletes the machine's reliability and main-
tenance restores its reliability. Luo et al. [26] considered the
problem of scheduling a maintenance activity and jobs on a
single machine, where the maintenance activity must start
before a given deadline and the maintenance duration increases
with its starting time. Hfaiedh et al. [27] aimed to minimize the
maximum delivery time under the non-resumable scenario of
jobs in a single machine scheduling problem with release dates
and tails, provided that the machine is unavailable during a
fixed interval. Bai et al. [28] studied a single machine slack
due date assignment (usually referred to as SLK) scheduling
problem with deteriorating jobs and a rate-modifying activity,
where the deterioration effect manifest such that the job
processing time is a function of its starting time in a sequence.
Vahedi-Nouri et al. [29] considered a single machine schedul-
ing problem with the learning effect and multiple availability
constraints that minimizes the total completion time. Li and
Zhao [30] studied single machine scheduling with a fixed non-
availability interval, where the processing time of a job is a
linear increasing function of its starting time, and each job has
a release date. Kacem et al. [31] considered the maximization
of the weighted number of early jobs on a single machine with
non-availability constraints. They dealt with the resumable and
the non-resumable cases. Gu et al. [32] investigated two
single-machine scheduling problems with a new type of aging
effect, which is dominated by the processing speed of the
machine, while during the whole scheduling horizon, the
machine is subject to an optional maintenance, and the
duration of the maintenance depends on the length of the
uptime before it. Liu et al. [33] investigated a single-machine
scheduling problem with periodic maintenance, in which the
pursued objective is to minimize the number of tardy jobs.
Wang [34] proposed a bi-objective optimization model for the
problem of production scheduling and preventive maintenance
in a single-machine context with sequence-dependent setup
times, while during the setup times, preventive maintenance
activities are supposed to be performed simultaneously. The
two objectives are to minimize the total expected completion
time of jobs and to minimize the maximum of expected times
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of failure of the machine at the same time. Chen et al. [35]
considered the single machine scheduling problem with an
operator non-availability period. The supposed operator non-
availability period is an open time interval in which a job may
neither start nor complete. Fan et al. [36] studied the problem
of integrated scheduling of production and delivery on a single
machine in which jobs in processing may be interrupted due to
the availability constraint of the machine. They supposed when
the machine becomes available again, the interrupted jobs can
be resumed or restarted processing. Mashkani and Moslehi
[37] presented a novel definition for single machine scheduling
problem with flexible periodic availability constraints called
bimodal availability in which, the duration of unavailability
corresponding to the continuous working time of the machine
changes in a discrete manner and it can adopt two different
values. Nian and Mao [38] addressed three deterioration effect
models for the single-machine scheduling problems with
simultaneous considerations of job rejection, deterioration
effects, and deteriorating multi-maintenance activities. They
assumed that each machine may be subject to several main-
tenance activities over the scheduling horizon, and the duration
of the maintenance depends on its running time. Hsu [39]
explored a single-machine scheduling with aging effects and
optional maintenance activity assignment. The jobs’ processing
time is assumed to follow a power position-dependent aging
model. This study decided whether and when to implement the
maintenance activity into the job sequence, how long the
duration of maintenance activity is, and how to schedule so as
to minimize the makespan.

2.2. Scheduling problem with sum of maximum earliness and
tardiness criterion

Amin-Nayeri and Moslehi [40] were among the first people
who investigated how to minimize the sum of maximum
earliness and tardiness in a single-machine scheduling pro-
blem. Tavakkoli-Moghaddam et al. [41] studied the same
objective function by considering an idle insert algorithm.
They used various size of problems for evaluating the
efficiency of suggested algorithm and they presented the
optimal value related to the special case of a common due
date. Afterwards, Tavakkoli-Moghaddam et al. [42] applied a
branch and bound algorithm in order to solve a single-machine
sequencing problem to gain an optimal sequence of job in
which objective function attempts to minimize the maximum
earliness and tardiness. Later in another paper, a simulated
annealing and a branch and bound algorithms are used to solve
a single-machine scheduling problem by Tavakkoli-
Moghaddam and Vasei [43]. Based on the obtained results,
they illustrated that the proposed simulated annealing has
smaller error and its computational time is less than that of
obtained by branch and bound method. Moslehi et al. [44]
presented a branch and bound approach with proper upper and
lower bound in order to solve scheduling problem of two
machines flow shop. In addition, they proposed some effective
lemmas to increase the efficiency of the algorithm. In the
sequences, a branch and bound method was extended for a
single-machine scheduling problem with unequal release times
[45]. In a later work, Moslehi et al. [46] developed a branch
and bound algorithm for the problem by considering useful
upper and lower bound and new dominances rules. Nekoie-
mehr and Moslehi [47] developed an efficient lower and upper
bound in addition to three dominance rules for the problem
with sequence-dependent setup time. Mahnam et al. [48]
presented an efficient branch and bound in order to solve the
scheduling problem with unequal release time and idle insert.
Furthermore, they suggested two metaheuristic algorithms;
namely, genetic and a particle swarm optimization, for large
job sizes and the obtained results indicated that the proposed
genetic algorithm was more efficient. Recently, a mixed
integer linear model for a single-machine scheduling problem
is presented by Benmansour et al. [49]. They studied the
problem in two particular cases. In the first case they
considered that the machine was always available, while in
the second one, availability constraints associated with peri-
odic maintenance are considered for the machine.

2.3. Variable neighborhood search in scheduling problems

During the past decade, solving complex optimization
problems with metaheuristic algorithms has received consider-
able attention among researchers [50,51]. Variable Neighbor-
hood Search (VNS) is of these metaheuristic algorithm that has
been widely used for solving a broad spectrum of combinatorial
and global optimization problems. Also, this algorithm provides
a framework for building heuristics, which applies the idea of
neighborhood change in order to avoid the trap of local minima
[52]. Reviewing the literature shows that the VNS is a common
solution approach in scheduling problems. For instance, Liao
and Chen [53] proposed a hybrid metaheuristic that uses tabu
search within VNS for minimizing the total weighted earliness
and tardiness in a single machine environment. Kirlik and Oguz
[54] presented a general VNS for minimizing the total weighted
tardiness with sequence dependent setup times in a single
machine scheduling problem. Liu and Zhou [55] elaborated a
hybrid metaheuristic, named as permutation-based harmony-
VNS, for solving the single-machine earliness/tardiness sche-
duling problem where the common due date is specified in
advance and imposed as restrictive to the schedule. Arroyo et al.
[56] applied VNS algorithm to solve the single machine
scheduling problem with sequence dependent setup times and
distinct due windows. They considered multiple objectives
including minimizing the total weighted earliness/tardiness and
minimizing the total flow time, simultaneously. Wang and Tang
[57] developed a population-based VNS to solve the problem of
single machine scheduling with the aim of minimizing total
weighted tardiness. Recently, Laalaoui and M’Hallah [4]
addressed a single machine scheduling problem where jobs
are weighted, machine is unavailable during one or more
maintenance periods, and all jobs share a common due date.
They proposed a VNS based heuristic that is dotted with two
mechanisms (a linked list data structure and a dynamic threshold
acceptance criterion) in order to speed up its convergence
toward optimal solution.



M. Yazdani et al. / Journal of Computational Design and Engineering 4 (2017) 46–59 49
3. Problem description and model formulation

The problem under study is described in this section. There
are n jobs which are processed on a single machine. The
machine is not continuously available for processing through-
out the scheduling horizon, and it has multiple fixed and
predefined unavailability periods. Mj is the jth unavailability
period. If jobs between any two consecutive unavailability
periods are considered as a batch, a schedule can be viewed as
batches of jobs separated by unavailability periods. The
objective of the problem is to find a schedule that minimizes
the sum of maximum earliness and tardiness of jobs. Assump-
tions made in this paper are as follows:

� Jobs are processed without error and preemption of the jobs
is not allowed.

� A machine can only process one job at a time.
� Setup times are included in the processing time.
� All data in this problem is deterministic.
� There is no precedence relationship between the jobs.
� Time intervals between two consecutive maintenance activ-

ities are identical.

Property 1. Problem 1jnr_ajETmax is strongly NP-hard.

Proof 1. Assume in especial case, all jobs have a common due
date and due dates equal to zero. So minimizing sum of
maximum earliness and tardiness become minimizing make-
span. Minimizing makespan subject to multiple unavailability
periods and non-resemable jobs (1jnr_pmjCmax) [58], is
strongly NP-hard. Clearly, minimizing the sum of maximum
earliness and tardiness is strongly NP-hard too.

Notations which are used in the developed model, are listed
as below:
Indices
i
 Index for jobs, i¼1,…, n.

r
 Index for positions, r¼1,…, n.

b
 Index for batches, b¼1… kþ1.

Parameters

N
 Number of jobs requiring processing at time zero.

pi
 Processing time of job i.

K
 Number of unavailability periods.

di
 Due date of job i.

Sb
 Start time of the bth unavailability period

Fb
 Finish time of the bth unavailability period

M
 A very large number.

Decision variables

c r½ �
 Completion time of job scheduled in position r.

xirb
 A binary variable that is equal to 1 if job i is scheduled in

position r and batch b in sequence, otherwise 0.

ei
 Earliness of job i.

Emax
 Maximum earliness of jobs.

ti
 Tardiness of job i.

Tmax
 Maximum tardiness of jobs.

yirb
 Completion time of job i if is placed in position r on

batch b (an auxiliary variable for linearizing the model).
wr
 A continues auxiliary variable for linearizing the model.

zr
 A binary auxiliary variable for linearizing the model.
Now, we present the model:

min z ¼ EmaxþTmax ð1Þ
S.t.

Xn
r ¼ 1

Xkþ1

b ¼ 1

xirb ¼ 1; 8 i¼ 1; 2;…; n ð2Þ

Xn
i ¼ 1

Xkþ1

b ¼ 1

xirb ¼ 1; 8r¼ 1; 2;…; n ð3Þ

Xn
i ¼ 1

Xn
r ¼ 1

xirbpir Sb�Fb�1ð Þ ; 8b¼ 1; 2;…; kþ1 ð4Þ

Xn
i ¼ 1

Xn
r ¼ 1

xirbrM �
Xn
i ¼ 1

Xn
r ¼ 1

xir b�1ð Þ:; 8b¼ 2;…; kþ1 ð5Þ

c r½ �Zc r�1½ � þ
Xn
i ¼ 1

Xkþ1

b ¼ 1

xirbpi ; 8r¼ 1; 2;…; n ð6Þ

c r½ �Z
Xn
i ¼ 1

Xkþ1

b ¼ 1

xirb: piþFb�1

� �
; 8r¼ 1; 2;…; n ð7Þ

c r½ �r
Xn
i ¼ 1

Xkþ1

b ¼ 1

xirb � piþMax c r½ �;
Xn
i ¼ 1

Xkþ1

b ¼ 1

xirb � Fb�1

( )
;

8r¼ 1; 2;…; n ð8Þ
Xn
r ¼ 1

c r½ � � xirbrSb; 8 i¼ 1; 2;…; n; b¼ 1; 2;…; kþ1 ð9Þ

ti�ei ¼
Xn
r ¼ 1

Xkþ1

b ¼ 1

c r½ � � xirb�di; 8 i¼ 1; 2;…; n ð10Þ

EmaxZei; 8 i¼ 1; 2;…; n ð11Þ
TmaxZ ti; 8 i¼ 1; 2;…; n ð12Þ
xirbA 0; 1f g; i¼ 1; 2;…;N; r¼ 1;…;N;

b¼ 1; 2;…; kþ1 ð13Þ
c r½ �Z0; r¼ 1; :::; n ð14Þ

eiZ0; i¼ 1;…; n ð15Þ
tiZ0; i¼ 1;…; n ð16Þ
The objective function (1) minimizes the sum of maximum

earliness and tardiness of jobs. Constraint (2) ensures that each
job must be scheduled to exactly one batch and one position.
Constraint (3) ensures that only one job can be scheduled to
position r. Processing time for each batch is restricted by
constraint (4). Constraint (5) specifies that if no job is located
into one batch, then no job could be placed into the next batch.
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Completion times of jobs are computed by constraints (6)–(9).
Constraint (10) determines the tardiness or earliness of each
job based on its completion time. Constraints (11) and (12)
calculate the maximum earliness and maximum tardiness of all
jobs respectively. Constraints (13)–(16) define the types of
variables. Also we assume that C [0] and F0 are zero.

The proposed model is a nonlinear mixed integer program-
ming model which its nonlinearity originates from constraints
(8), (9) and (10). Due to the complexities of solving nonlinear
mathematical models we propose the following constraints. To
remove the nonlinear term in constraint (8) we define:

wr ¼ c r�1½ � þ
Xn
i ¼ 1

Xkþ1

b ¼ 1

xirbpi

 !
�

Xn
i ¼ 1

Xkþ1

b ¼ 1

xirb: piþFb�1
� � !

;

8b¼ 1; 2;…; kþ1 ð17Þ
where wr is a free of sign variable. Then we should have:

wrþM � ð1�zrÞZ0; 8r¼ 1; 2;…; n ð18Þ

wrrM � zr; 8r¼ 1; 2;…; n ð19Þ
Similarly, to remove the nonlinear term in constraints (9)

and (10) we define:

yirb ¼ xirb � pi;

8 i¼ 1; 2;…; n; r¼ 1; 2;…; n; b¼ 1; 2;…; kþ1 ð20Þ
Then we should have:

yirb�M � ð1�xirbÞrc r½ �;
8 i¼ 1; 2;…; n; r¼ 1; 2;…; n; b¼ 1; 2;…; kþ1 ð21Þ

yirbþM � ð1�xirbÞZc r½ �; 8 i¼ 1; 2;…; n; r ¼ 1; 2;…; n;

b¼ 1; 2;…; kþ1 ð22Þ

yirbrM � xirb; 8 i¼ 1; 2;…; n;

r¼ 1; 2;…; n; b¼ 1; 2;…; kþ1 ð23Þ
So constraints (9) and (10) will be rewritten as (24) and (25),

respectively.

yirbrSb; 8 i¼ 1; 2;…; n; r¼ 1; 2;…; n; b¼ 1; 2;…; kþ1

ð24Þ
Fig. 1. Steps of th
ti�ei ¼
Xn
r ¼ 1

Xkþ1

b ¼ 1

yirb�di; 8 i¼ 1; 2;…; n ð25Þ

Finally the ultimate model contains (1)–(7), (11)–(19) and
(21)–(25). The ultimate model is a linear mixed integer
programming model which can be solved exactly by common
commercial software packages like GAMS. However due to
the NP-hard nature of the problem, the ultimate linear
programming model could hardly be solved in large cases.
So developing an appropriate solution algorithm to solve the
problem in large cases is essential which will be done in the
next section.
4. Proposed algorithm approach

Variable neighborhood search starts with an initial solution,
and manipulates it through a multi-nested loop in which the core
one alters and explores via two main functions so-called ‘shake’
and ‘local search’. The outer loop plays a role as a refresher
reiterating the inner loop, while the inner loop carries out the
major search. Local search searches for an improved solution
through the local neighborhood, while shake diversifies the
solution by switching to another local neighborhood. The inner
loop iterates as long as it keeps improving the solutions. Once
an inner loop is completed, the outer loop reiterates until the
termination condition is satisfied (see Fig. 1).
Since the neighborhood structures (NS) play a key role in

VNS, it should be chosen very rigorously to achieve an
efficient VNS. Here, we tried to propose several neighborhood
structures for generating diverse solutions in the quickest and
easiest way possible. The proposed neighborhood structures
are listed below. In the proposed VNS a knowledge module
has been added to algorithm to increase the efficiency of
basic VNS.
4.1. Solution representation

A good solution representation should be simple, reduce
redundancy, show an accurate solution to the problem, and
also allows algorithm to work effectively. Fig. 2 shows an
e basic VNS.
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example of a solution representation for the problem where
number of jobs is ten.

4.2. Knowledge module

Knowledge and heuristic search modules are integrated in
knowledge based optimization method where The task of first
one is to obtain the necessary information from the solutions
and feeds it back to the search module, and the task of second
one is to search through the wide solution space and find good
solutions. The idea behind implantation of knowledge module
in algorithm is to keep features of previous solutions and apply
them to find more appropriate solutions.

4.2.1. Memory
A sample of Memory array is shown in Fig. 3. The all rows

of memory are initialized by zero value. Within the searching
the knowledge module recognizes which solutions are best
solutions that are obtained so far. This knowledge is stored in
Memory and during search process back to VNS and guides it
to search in a space that contains better solutions. Memory
would be update if a new and improved solution is found. This
transaction between VNS and Memory continues until the
stopping condition is satisfied. The Memory initialization and
its updating are described in the next two subsections.

4.2.1.1. Memory initialization. At begin, there is no knowl-
edge and all blocks in Memory are set to 0. When an initial
solution is generated randomly and considered as the best
solution, this solution copy to memory completely, and the
remaining blocks are set to 0. Fig. 4 represents an initialized
Memory for the considered problem.
Fig. 2. A sample solution representation.

Fig. 3. A sample of memory.

Fig. 4. A sample of memory initialization.
4.2.1.2. Updating of memory. Memory is updated after local
search by the obtained best solution. Fig. 5 shows an example
of updating Memory. If the memory is full and a new and
improved solution is found by using searching procedure, the
improved solution is substituted for the worse best solution
existing in the memory. However if the memory has an empty
capacity, the improved solution is located in the empty row. As
shown in this figure the first two arrays are related to Memory
before updating and the third array is the improved solution
obtained by local search, so the worse solution existing in the
memory is replaced with the third array in order to update
Memory.
4.3. Neighborhood structures

Neighborhood structure, attempts to transform the current
solution into one of its neighbors to generating new solution
using previous one. Numerous structures are examined in our
algorithm and the best neighborhood structures are selected
through them. In this research six neighborhood structures LN1

to LN6 are used for the local search and three neighborhood
structures SN1 to SN3 are used for the shaking procedure. Two
of these neighborhood structures are knowledge-based and use
Memory to generate new solution. The details of these
procedures are provided in the following.
4.3.1. Neighborhood structure LN1

In this procedure, we look for possibility improvement of
objective function by exchanging the position of jobs. Two
jobs are selected at random, and then are swapped (see Fig. 6).
4.3.2. Neighborhood structure LN2

In this procedure, a job is removed at random, and then
relocated into another random selected position (see Fig. 7).
Fig. 5. A sample of memory updating.

Fig. 6. Procedure of LN1.

Fig. 7. Procedure of LN2.
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4.3.3. Neighborhood structure LN3

Three jobs are selected at random, and then their position
changed with each other randomly (see Fig. 8).
4.3.4. Neighborhood structure LN4

Job with highest earliness is selected, and then swap with
another random selected job (see Fig. 9).
4.3.5. Neighborhood structure LN5

Job with highest tardiness is selected, and then swap with
another random selected job (see Fig. 10).
4.3.6. Neighborhood structure LN6

The steps for generating neighbor solutions by LN6 are as
follows (see Fig. 11):

Step 1: A job is selected from a memory at random.
Step 2: Selected job is removed from current solution.
Step 3: The selected job at first step is inserted in same
position of the memory in current solution.

Step 4: Empty position that obtained in step 2 fills with job
that is not in current solution.
Fig. 8. Procedure of LN3.

2 5 3 6 10 9 1 8 4 7

Fig. 9. Procedure of LN4.

Fig. 10. Procedure of LN5.

Fig. 11. Procedure of LN6.
4.3.7. Neighborhood structure SN1

The steps for generating neighbor solutions by SN1 are as
follows (see Fig. 12):

Step 1: Create empty template and it is initialized by 0 and
1 randomly.
Step 2: Copy the blocks from the current solution corre-
sponding to the locations of the ‘‘1’’s in the binary string to
the same positions in new solution.
Step 3: Complete the remaining empty block locations with
the unselected jobs randomly.

4.3.8. Neighborhood structure SN2

This subsection uses Opposition-Based Learning (OBL)
concept for switching to another part of search space. The
basic concept of Opposition-Based Learning (OBL) was firstly
proposed as a machine intelligence scheme for reinforcement
learning by Tizhoosh [59] in 2005, after short time, it has been
utilized to enhance soft computing methods such as artificial
neural networks [60–64] and fuzzy systems [65,66]. In a short
period of time, some other kinds of opposition-based learning
were applied to different areas of science. In recent years, OBS
has been proven as an effective methodology to enhance
various metaheuristic optimization methods. The achieved
empirical results have shown good performance of the concept
of opposition in a wide range of learning and optimization
fields. OBL has been utilized to improve the success rate of
various metaheuristic algorithms such as ant colony optimiza-
tion [67,68], simulated annealing [69], harmony search [70],
biogeography-based optimization [71], differential evolution
[72–74], particle swarm optimization [75–77] and gravitational
search algorithm [78]. A comprehensive review of these
algorithms and also other opposition-based works can be find
in [79]. In opposition, the amount of each variable defined as
the mirror point of the solution from the center of the search
space as below [80].

Definition 1. If Xðx1; x2;…; xdÞ is a point in d-dimensional
search space, where x1; x2;…; xd are real numbers and xiA
ai; bi½ �; i¼ 1; 2;…; d, its opposite point X ̆ðx ̆1; x2̆;…; x ̆dÞ is
defined as follows (see Fig. 13):

xĭ ¼ aiþbi�xi; i¼ 1; 2;…; d:
To the best of authors’ knowledge, most published papers on

opposition-based learning are for solving problems in contin-
uous domains. Recently, it is gradually realized that
opposition-based learning can also be modified to be used
for solving discrete problems, including traveling salesman
Fig. 12. Procedure of SN1.



Fig. 14. Procedure of SN2.

Fig. 15. Procedure of SN3.

Fig. 13. Opposite point defined in domain [a, b].
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problem. It's clear that main problem is that how to define and
evaluate the opposite numbers in discrete domain [79]. For
example, the attempting to utilize opposition concept by
reversing an order in some problems such as TSP really is a
wasteful attempt. Ergezer et al. [71], define opposite path as :

Definition 2. Let n be the number of nodes in a graph and P
¼ [1, 2… n] is considered as an even node cycle. The
clockwise opposite path, PCW

o , is as follow:

PCW
o ¼ 1; 1þ n

2
; 2; 2þ n

2
;…;

n

2
�1; n�1; ;

n

2
; n

h i
According to above equation, opposite point cannot be used

if n is odd. If n is odd then an auxiliary node will be added to
the end of the original path. Next, the clockwise opposite path
of candidate solution is calculated by above equation, and then
the added number from the end of opposite path will be
removed final. According to aforementioned fact, Procedure of
SN2 is schematically as follow: (Fig. 14)
Fig. 16. The structure of Intensification phase.
4.3.9. Neighborhood structure SN3

The steps for generating neighbor solutions by SN3 are as
follows (see Fig. 15):

Step 1: Choose a sequence from memory.
Step 2: Create empty template and assign a randomly
generated number 0 and 1 to each cell.
Step 3: Copy the blocks from the selected sequence in step
1 corresponding to the locations of the ‘‘1’’s in the binary
string to the same positions in new solution.
Step 4: The blocks that have already been selected from the
memory are deleted from the current solution, so that the
repetition of a block in the new string is avoided.
Step 5: Complete the remaining empty block locations with
the undeleted blocks that remain in the step 4 by preserving
their block sequence.
4.4. Intensification phase

Intensification is the search in the current solution for construct-
ing better solutions closer to optimum. The proposed variable
neighborhood search uses a straightforward procedure as its
intensification sub-algorithm. In the intensification phase, the
algorithm exchanges the location of the first two adjacent jobs
and evaluates the fitness value of the new sequence. If the fitness
value of the new sequence has improved by this swap, algorithm
accepts this exchange and restarts the exchange sub-procedure.
However, if this exchange does not improve the objective function
of the solution, the two jobs will move back to their original
locations and exchange will be applied to the next two adjacent
jobs. Intensification phase is provided as follow: (Fig. 16)
4.5. Proposed algorithm

The structure of proposed VNS algorithm is shown in Fig. 17.
Proposed VNS is made of shaking and local search procedures. At
the first step, the required shaking, local search procedures and stop
condition are determined. Next, an initial solution y is randomly
generated through the search space and then is considered as the
best solution. Generate a neighbor solution y 0 from the best solution
y by shaking procedure SNk. Set initial value of k equal to 1. After
the y 0 is obtained, local search is applied to improve the quality of
obtained solution. At the each iteration a move is selected randomly
from all local searches. The probability of selection of each local
search is proportional to the number of iteration that it makes an
improvement in solutions. We apply this feature in the algorithm
using roulette wheel technique. After the local search, the current
best solution y is replaced with the local optimum y 0 if y 0 is equal
or better than y and then k is set to 1 and memory is updated.
Otherwise k is increased by one. When k reach to 3, k is reset to 1.



Fig. 17. The structure of proposed VNS.

Table 1
Test problem characteristics.
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Searching procedure is repeated for N times. The algorithm is
repeated until a stop condition is met.
Factor Level
Number of jobs 8,10,12,15,20,50,70 and 100
Number of batches 3
Processing times Uniform [1,50]
Duration of each unavailability for each
instance (UN)

Uniform [5,20]

Duration of each availability for each instance
(AV) Max

Pn
i ¼ 1

pi

3

0
B@

1
CA

8><
>: ,

TEF 0.2, 0.35 and 0.5
RDD 0.2, 0.5 and 0.8
5. Experimental design and data setting

5.1. Data generation

In this part of the paper, of the proposed mathematical model is
validated and the performance of the developed variable neighbor-
hood search is investigated. In this regard, a set of test problems are
produced randomly. It should be mentioned that each parameter of
test problems are generated randomly based on special distribution
function that are shown in Table 1. Basically, test problems are
adopted from the literature, and as mentioned in the assumptions,
no release dates are considered. Based on Table 1, the size of test
problems are varied from 8 to 100 jobs. The processing times are
generated by discrete uniform distribution within [1,50] [81].
Duration of availability (AV) and unavailability period (UN) for
each instance are constant and are generated based on Uniform
[150,200] and Uniform [5,20] for availability and unavailability
periods, respectively [81]. Due date is another parameter that is
generated for each job by Uniform [dmin�λ; dþdmax], where

dmin ¼ P 1�TEFð Þ;P¼ round

� Pn
i ¼ 1

piþ
Pn
i ¼ 1

pi=AV

� �
� UN

�
and λ¼ PðRDD=2Þ. TEF is the tardiness/earliness, and RDD is
relative range of due dates. RDD gets the values of 0.2, 0.5 and
0.8. Besides, TEF gets the values of 0.2, 0.35 and 0.5.
Seventy-two test problems based on aforementioned para-

meters are generated. For each size of test problems, nine
instances are considered. Name of generated instances with
their relevant parameters are introduced in Table 2.
5.2. Experimental results

Since no similar work has not been seen in the literature as
the benchmark for the considered problem, first of all the
proposed mathematical model is validated through some test



Table 2
Name of problems generated and their relevant parameters.

Number of jobs TEF¼0.2 TEF¼0.35 TEF¼0.5

RDD¼0.2 RDD¼0.5 RDD¼0.8 RDD¼0.2 RDD¼0.5 RDD¼0.8 RDD¼0.2 RDD¼0.5 RDD¼0.8

8 JG01 JG02 JG03 JG04 JG05 JG06 JG07 JG08 JG09
10 JG10 JG11 JG12 JG13 JG14 JG15 JG16 JG17 JG18
12 JG19 JG20 JG21 JG22 JG23 JG24 JG25 JG26 JG27
15 JG28 JG29 JG30 JG31 JG32 JG33 JG34 JG35 JG36
20 JG37 JG38 JG39 JG40 JG41 JG42 JG43 JG44 JG45
50 JG46 JG47 JG48 JG49 JG50 JG51 JG52 JG53 JG54
70 JG55 JG56 JG57 JG58 JG59 JG60 JG61 JG62 JG63
100 JG64 JG65 JG66 JG67 JG68 JG69 JG70 JG71 JG72
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problems. After that, the obtained results from the proposed
meta-heuristic algorithm are compared with the results
obtained from mathematical model. It should be remained that
the proposed mathematical model is solved exactly via GAMS
optimization software. As described in Section 3, the memory
module is used in the search process and the intensive phase
strategy is developed in the proposed algorithm to improve the
efficiency of the variable neighborhood search. In order to
examine neighborhood structures that are made based on
memory and intensive phase, we performed computational
experiment, and the obtained results are introduced in Table 3.
As we can see in this table, four different variable neighbor-
hood search approaches are considered, i.e. VNS I, VNS II,
VNS III and VNS IV. In VNS I intensive phase and both
neighborhood structures that are based on memory are
imbedded. In VNS II the proposed algorithm is run without
intensive phase. In neither VNS III nor VNS IV neighborhood
structures with memory are not considered. However in VNS
IV intensive phase is considered similar to VNS II.

Since stopping criteria can have effect on runtime and the
quality of the solutions, we have done some tests to reach good
value of them. To gain the best value of stopping condition
parameters, we utilized one-third of instances of different sizes
as test problems and evaluated the behavior of them. At first, in
order to tuned the stopping condition of inner loop, we have
considered fourth different values; namely, 1=2N, N, 3=2N,
2N, for it, where N is the number of jobs and also we have
used maximum number of function evaluation (3000�N
objective function evaluations, where N is the number of jobs)
as a stopping condition of algorithm. According to the
obtained results, N was the best value for stopping criteria of
inner loop. Moreover, results indicated that objective function
had not significant changes after 2000�N objective function
evaluations. In fact, algorithm converges into the optimal
solution or near the optimal solution after 2000�N iterations.
Therefore, we have considered 2000�N as the stopping
condition of algorithm in order to solve problem and obtain
best solution in a reasonable time. In order to conduct a fair
comparison, these criteria were used for all algorithms.

The proposed VNSs are coded using MATLAB. All of
experiments are run on Intel Core i7 processor running at
2 GHz with 4 GB of RAM. Each test was repeated for 10 times
and the average of these runs is reported. The results of the test
problems, including objective function and run times are
recorded in Table 3 for each algorithm. An index called the
“% error” is defined as follows:

%error¼ C�A

A

A is the best value that are obtained by metaheuristic
algorithms or GAMS, and C is the average of 10 runs value
obtained by respective solution method. Consider the “**” in
columns indicate that this solution is best among other solutions
obtained by other methods. Furthermore, “*” in column indicate
that this solution is the optimum solution. Also, Rank column
returns rank of a solution method among other methods.
As mentioned former, validation of the proposed variable

neighborhood search method is investigated via comparison of
results by the results of the exact solution of mathematical model
in GAMS. As far as Table 3 shows, error index is small for most
of test problems, and it seems reasonable to trust to the proposed
meta-heuristic algorithm. It should be mentioned that in medium-
size test problems (i.e. instances with 15 to 20 jobs) large-size test
problems (i.e. instances with more than 20 jobs) that GAMS fails
to obtain a solution in reasonable time, meta-heuristic algorithms
are applied to get solutions which can be trusted to be near
optimum. As seen in Table 3, the best performing algorithm
based on average error is VNS I with average error of 1.5%. The
second best is VNS II with average error of 5.2%. VNS III has
the worst performance with average error of 8.1% (see Fig. 18).
On the other hand, according to the rank of the proposed

algorithms among other methods, VNS I has best performance
in 51 out of 72 test problems. The second best is VNS II with
27 out of 72 test problems. VNS IV and VNS III stand on next
ranks with 25 and 25 out of 72 test problems, respectively.
Finally, based on the achieved results, it can be in inferred that
both of intensive phase and especially local searches that are
based on memory can increase performance of the proposed
variable neighborhood search significantly.

6. Conclusion

This paper deals with a single-machine scheduling problem
in which jobs have distinct due dates, and machine has some



Table 3
Comparison of results of the model solved by GAMS with the VNSs.

GAMS VNS I VNS II VNS III VNS IV

A T R %E A T R %E A T R %E A T R %E A T R %E

JG01 170** 4.4 1 0.0% 170** 2.304 1 0.0% 170** 2.664 1 0.0% 170** 2.499 1 0.00% 170** 2.482 1 0.0%
JG02 212** 9.3 1 0.0% 212** 2.352 1 0.0% 212** 2.336 1 0.0% 212** 2.397 1 0.00% 212** 2.499 1 0.0%
JG03 100** 2.9 1 0.0% 100** 2.175 1 0.0% 100** 2.1 1 0.0% 100** 2.431 1 0.00% 100** 2.397 1 0.0%
JG04 191** 6 1 0.0% 191** 2.288 1 0.0% 191** 2.256 1 0.0% 191** 2.465 1 0.00% 191** 2.448 1 0.0%
JG05 85** 0.8 1 0.0% 85** 2.288 1 0.0% 85** 2.16 1 0.0% 85** 2.431 1 0.00% 85** 2.55 1 0.0%
JG06 28** 0.2 1 0.0% 28** 2.235 1 0.0% 28** 2.25 1 0.0% 28** 2.414 1 0.00% 28** 2.499 1 0.0%
JG07 176** 8.9 1 0.0% 176** 2.272 1 0.0% 176** 2.175 1 0.0% 176** 2.533 1 0.00% 176** 2.397 1 0.0%
JG08 152** 4.7 1 0.0% 152** 2.384 1 0.0% 152** 2.205 1 0.0% 152** 2.397 1 0.00% 152** 2.55 1 0.0%
JG09 62** 1.8 1 0.0% 62** 2.205 1 0.0% 62** 2.19 1 0.0% 62** 2.38 1 0.00% 62** 2.465 1 0.0%
JG10 257** 29.3 1 0.0% 257** 2.84 1 0.0% 257** 2.774 1 0.0% 257** 2.982 1 0.00% 257** 3.087 1 0.0%
JG11 153** 2.2 1 0.0% 153** 2.755 1 0.0% 153** 2.831 1 0.0% 153** 2.961 1 0.00% 153** 2.982 1 0.0%
JG12 123** 12.8 1 0.0% 123** 2.793 1 0.0% 123** 2.812 1 0.0% 123** 3.15 1 0.00% 123** 2.982 1 0.0%
JG13 175** 24.5 1 0.0% 175** 2.98 1 0.0% 175** 2.831 1 0.0% 175** 3.129 1 0.00% 175** 3.087 1 0.0%
JG14 142** 15.3 1 0.0% 142** 2.755 1 0.0% 142** 2.66 1 0.0% 142** 3.024 1 0.00% 142** 3.108 1 0.0%
JG15 73** 21.2 1 0.0% 73** 2.717 1 0.0% 73** 2.682 1 0.0% 73** 3.129 1 0.00% 73** 3.129 1 0.0%
JG16 192** 18.9 1 0.0% 192** 3 1 0.0% 192** 2.812 1 0.0% 192** 3.108 1 0.00% 192** 3.003 1 0.0%
JG17 111** 5.5 1 0.0% 111** 2.755 1 0.0% 111** 2.85 1 0.0% 111** 3.003 1 0.00% 111** 2.961 1 0.0%
JG18 83** 4.2 1 0.0% 83** 2.793 1 0.0% 83** 2.812 1 0.0% 83** 2.94 1 0.00% 83** 3.045 1 0.0%
JG19 283** 339 1 0.0% 283** 3.408 1 0.0% 284.4 3.504 5 0.5% 283.8 3.9 4 0.30% 283** 3.77 1 0.0%
JG20 178** 10.5 1 0.0% 178** 3.45 1 0.0% 178.2 3.243 4 0.1% 178** 3.744 1 0.00% 178.7 3.744 5 0.4%
JG21 91** 2.3 1 0.0% 91** 3.266 1 0.0% 91.3 3.404 5 0.3% 91.2 3.848 3 0.20% 91.2 3.796 3 0.2%
JG22 252* 3600 1 0.0% 252.5 3.456 2 0.2% 253.5 3.528 4 0.6% 252.5 3.666 3 0.20% 255.5 3.9 5 1.4%
JG23 177** 163.1 1 0.0% 177** 3.552 1 0.0% 177.5 3.408 3 0.3% 177.9 3.666 5 0.50% 177.5 3.666 3 0.3%
JG24 135** 126.1 1 0.0% 135** 3.381 1 0.0% 135.4 3.212 4 0.3% 135.5 3.692 5 0.40% 135.1 3.874 3 0.1%
JG25 283** 1136 1 0.0% 283** 3.576 1 0.0% 283** 3.576 1 0.0% 283.6 3.718 5 0.20% 283.3 3.874 4 0.1%
JG26 211** 1684 1 0.0% 211.8 3.48 3 0.4% 212.8 3.243 5 0.9% 211.2 3.848 2 0.10% 211.8 3.744 4 0.4%
JG27 108** 110 1 0.0% 108.0 3.45 2 0.0% 108.4 3.45 4 0.4% 108.4 3.77 5 0.40% 108.2 3.64 3 0.2%
JG28 260.0 3600 2 2.2% 254.2* 4.38 1 0.0% 260.0 4.38 2 2.2% 260.3 4.736 4 2.40% 260.3 4.512 4 2.4%
JG29 206** 88.3 1 0.0% 206** 4.35 1 0.0% 208.0 4.06 5 1.0% 206** 4.672 1 0.00% 206.2 4.736 4 0.1%
JG30 251** 350.9 1 0.0% 251** 4.205 1 0.0% 252.0 4.321 5 0.4% 251.8 4.48 4 0.30% 251.3 4.672 3 0.1%
JG31 332.0 3600 5 16.0% 286.8 4.38 3 0.2% 286.2* 4.5 1 0.0% 286.6 4.768 2 0.10% 287.4 4.64 4 0.4%
JG32 284.0 3600 5 7.4% 264.5* 4.321 1 0.0% 274.4 4.35 4 3.7% 265.3 4.672 2 0.30% 271.5 4.512 3 2.7%
JG33 138** 340.5 1 0.0% 138.5 4.147 5 0.3% 138** 4.06 1 0.0% 138.3 4.828 4 0.20% 138** 4.672 1 0.0%
JG34 340.0 3600 2 1.5% 335* 4.2 1 0.0% 343.0 4.23 5 2.4% 340.3 4.851 3 1.60% 341.4 4.608 4 1.9%
JG35 275.0 3600 2 1.0% 272.2* 4.292 1 0.0% 296.0 4.06 5 8.7% 275 4.608 2 1.00% 275.3 4.704 4 1.1%
JG36 209.0 3600 2 8.6% 192.5* 4.118 1 0.0% 209.4 4.116 4 8.8% 209 4.64 2 8.60% 235.2 4.512 5 22.2%
JG37 275* 3600 1 0.0% 373.5 5.64 2 35.8% 406.2 5.85 5 47.7% 401.6 6.321 3 46.00% 402.0 6.106 4 46.2%
JG38 311.0 3600 3 0.2% 310.3* 5.616 1 0.0% 324.0 5.358 5 4.4% 310.3* 6.063 1 0.00% 311.6 6.45 4 0.4%
JG39 193.0 3600 5 23.9% 155.7* 5.513 1 0.0% 184.4 5.4 3 18.4% 184 6.106 2 18.20% 184.6 6.063 4 18.5%
JG40 406* 3600 1 0.0% 406.4 5.76 2 0.1% 415.1 5.577 5 2.2% 406.4 6.02 2 0.10% 412.2 6.235 4 1.5%
JG41 340* 3600 1 0.0% 351.0 5.85 3 3.2% 357.4 5.624 5 5.1% 341 6.278 2 0.30% 352.1 6.106 4 3.5%
JG42 278.0 3600 5 22.5% 238.5 5.32 3 5.0% 235.5 5.476 2 3.7% 227* 6.235 1 0.00% 252.3 6.278 4 11.1%
JG43 367.0 3600 5 1.0% 363.5* 5.8 1 0.0% 366.4 5.538 4 0.8% 365 6.321 2 0.40% 365.0 6.106 2 0.4%
JG44 358.0 3600 5 20.8% 296.2* 5.499 1 0.0% 322.3 5.472 4 8.8% 303.3 6.407 3 2.40% 296.2* 6.02 1 0.0%
JG45 203.0 3600 4 3.9% 195.3* 5.513 1 0.0% 195.3* 5.04 1 0.0% 202.6 6.106 3 3.70% 214.2 6.45 5 9.6%
JG46 – – – – 897.4* 14.6 1 0.0% 957.9 13.97 3 6.7% 946.9 16.5 2 5.50% 979.9 16.06 4 9.2%
JG47 – – – – 690.4 13.97 2 2.6% 695.8 13.34 3 3.4% 705.8 16.28 4 4.90% 673* 15.73 1 0.0%
JG48 – – – – 692.0 13.21 3 5.5% 656* 12.78 1 0.0% 699.8 15.7 4 6.70% 681.7 16.5 2 3.9%
JG49 – – – – 1143.7* 14.41 1 0.0% 1,170.5 13.73 4 2.3% 1166.60 15.84 3 2.00% 1159.5 15.84 2 1.4%
JG50 – – – – 850.2 13.25 2 3.2% 890.9 13.2 3 8.2% 823.6* 15.95 1 0.00% 904.0 16.06 4 9.8%
JG51 – – – – 521.2 13.44 2 3.2% 505.0* 12.96 1 0.0% 559 15.95 3 10.70% 566.3 15.73 4 12.1%
JG52 – – – – 1010.9* 14.45 1 0.0% 1129.1 14.3 3 11.7% 1134.10 15.51 4 12.20% 1123.2 15.73 2 11.1%
JG53 – – – – 946.5* 13.92 1 0.0% 965.8 13.49 2 2.0% 1022.10 15.84 4 8.00% 970.8 16.06 3 2.6%
JG54 – – – – 420.2* 13.52 1 0.0% 507.5 12.58 2 20.8% 624.1 16.39 4 48.50% 597.2 15.51 3 42.1%
JG55 – – – – 1100.6* 21.45 1 0.0% 1123.1 24.72 2 2.0% 1128.60 28.2 3 2.50% 1287.7 25.84 4 17.0%
JG56 – – – – 892.4 25.56 2 16.3% 896.0 21.14 3 16.8% 1039.00 24.84 4 35.40% 767.2* 29.21 1 0.0%
JG57 – – – – 759.2 21.22 3 4.2% 883.6 19.15 4 21.3% 728.3* 23.54 1 0.00% 740.2 24.79 2 1.6%
JG58 – – – – 1252.6 22.59 2 4.5% 1269.7 21.74 3 5.9% 1289.80 26.06 4 7.60% 1198.7* 29.23 1 0.0%
JG59 – – – – 917.9* 23.19 1 0.0% 1096.5 22.05 2 19.4% 1220.70 29.3 3 33.00% 1344.2 25.08 4 46.4%
JG60 – – – – 516.1* 21.25 1 0.0% 573.6 19.58 2 11.1% 648.4 29.59 4 25.60% 581.5 30.81 3 12.6%

M. Yazdani et al. / Journal of Computational Design and Engineering 4 (2017) 46–5956



Table 3 (continued )

GAMS VNS I VNS II VNS III VNS IV

A T R %E A T R %E A T R %E A T R %E A T R %E

JG61 – – – – 1065.7* 26.11 1 0.0% 1158.5 23.27 2 8.7% 1634.90 25.36 4 53.40% 1237.6 25.77 3 16.1%
JG62 – – – – 887.6* 24.67 1 0.0% 964.8 21.71 2 8.7% 1124.80 28.38 3 26.70% 1199.8 26.99 4 35.2%
JG63 – – – – 530.6* 22.93 1 0.0% 675.0 18.61 4 27.2% 634 30.44 2 19.50% 669.9 27.7 3 26.2%
JG64 – – – – 1340.1 35.53 2 2.8% 1367.9 45.02 3 5.0% 1399.40 46.8 4 7.40% 1303.1* 43.22 1 0.0%
JG65 – – – – 986.2* 45.81 1 0.0% 1310.0 37.31 3 32.8% 1378.80 41.02 4 39.80% 1070.3 47.76 2 8.5%
JG66 – – – – 921.1 39.07 2 3.2% 892.4* 36.73 1 0.0% 938.1 37.73 3 5.10% 939.4 43.57 4 5.3%
JG67 – – – – 1312.3* 42.04 1 0.0% 1316.7 33.84 2 0.3% 1798.00 45.02 4 37.00% 1431.3 44.28 3 9.1%
JG68 – – – – 1587.3 38.56 2 0.3% 1582.2* 31.72 1 0.0% 1702.80 49.29 3 7.60% 1844.3 37.79 4 16.6%
JG69 – – – – 562.1* 35.92 1 0.0% 617.7 34.37 2 9.9% 889 53.2 4 58.20% 711.7 48.68 3 26.6%
JG70 – – – – 1510.8 38.02 2 6.0% 1424.9* 39.65 1 0.0% 1888.30 47.85 4 32.50% 1832.9 44.64 3 28.6%
JG71 – – – – 1432.8 42.99 3 11.7% 1350.8 33.2 2 5.3% 1282.2* 45.18 1 0.00% 1672.5 46.42 4 30.4%
JG72 – – – – 671.5* 36.08 1 0.0% 831.6 34.92 4 23.8% 699.3 53.09 2 4.10% 746.9 46.13 3 11.2%

A¼Average of obtained solutions
T¼CPU time (second)
R¼rank among other obtained solutions
%E¼%error

Fig. 18. Average %error for each VNS.
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unavailability periods. The aim is to schedule jobs to minimize
the sum of maximum earliness and tardiness. A mathematical
formulation is developed to solve small size samples of the
considered problem exactly. In this research, a knowledge-
based variable neighborhood search algorithm is developed to
solve large size samples, too. In the proposed algorithm, two
knowledge module based local search is used to guide VNS.
Knowledge module extracts the knowledge from the best
solutions and feed it back to the local search throughout
searching process. It is shown through computational experi-
mentation that the proposed algorithm is able to obtain optimal
or near-optimal solutions within a reasonable amount of time.
The following suggestions are offered for future works:

I. Considering additional constrains, such as learning effects
or breakdowns, in scheduling problems.

II. Investigating scheduling problem with unavailability
constraints in the case of having parallel machines.

III. Developing other meta-heuristic algorithms to optimize
the considered problem, and making a comprehensive
comparison with the proposed solution method.

IV. Proposing other objective functions such as total comple-
tion time, total tardiness and total machine workloads to
conduct multi-objective scheduling problems with una-
vailability constraints.
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