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ABSTRACT

EXACT AND HEURISTIC METHODS FOR THE JOB SHOP SCHEDULING 

PROBLEM WITH EARLINESS AND TARDINESS OYER A COMMON DUE DATE

Leonardo Bedoya-Valencia 
Old Dominion University, 2007 
Director: Ghaith Rabadi, Ph.D.

Scheduling has turned out to be a fundamental activity for both production and 

service organizations. As competitive markets emerge, Just-In-Time (JIT) production has 

obtained more importance as a way o f rapidly responding to continuously changing 

market forces. Due to their realistic assumptions, job shop production environments have 

gained much research effort among scheduling researchers. This research develops exact 

and heuristic methods and algorithms to solve the job shop scheduling problem when the 

objective is to minimize both earliness and tardiness costs over a common due date. The 

objective function o f minimizing earliness and tardiness costs captures the essence o f the 

JIT approach in job shops. A dynamic programming procedure is developed to solve 

smaller instances of the problem, and a Multi-Agent Systems approach is developed and 

implemented to solve the problem for larger instances since this problem is known to be 

NP-Hard in a strong sense. A combinational auction-based approach using a Mixed- 

Integer Linear Programming (MILP) model to construct and evaluate the bids is 

proposed. The results showed that the proposed combinational auction-based algorithm 

is able to find optimal solutions for problems that are balanced in processing times across 

machines. A price discrimination process is successfully implemented to deal with 

unbalanced problems. The exact and heuristic procedures developed in this research are
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the first steps to create a structured approach to handle this problem and as a result, a set 

o f benchmark problems will be available to the scheduling research community.
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CHAPTER I. 

INTRODUCTION

Business organizations produce goods and/or provide services, and even though 

their goals and products are quite different, their functions and ways o f operation are 

quite similar. Production/operation is one o f the essential functions o f virtually every 

business organization, and it overlaps with other functions, such as finance and 

marketing.

Scheduling has to interface with the productions/operations’ basic functions, 

ranging from the production planning, which handles medium to long-term decisions, to 

shop floor control that handles short-term decisions. As a result, scheduling has become 

a fundamental activity for organizations (Pinedo 2002)1.

Since the early 1970s, Just-in-time (JIT) management philosophy has been 

applied in manufacturing. JIT involves having the right items, in the right quality and 

quantity, at the right place and at the right time. Cheng and Podolsky (1996) reported 

that the proper use o f JIT has increased quality, productivity, efficiency and has reduced 

costs and waste. In this sense, productions/operations functions are the heart o f the JIT 

philosophy, and they focus on elements such as plants, equipment, and production 

planning and control. JIT orients the production planning to the customer as the main 

performance target by using “pull” rather than “push” planning and control activities.

Viewed as an operational activity, scheduling determines the sequence o f jobs or 

tasks on a particular machine or production line. It also determines the human resources

1 References in this dissertation follow  ACS style by author name and date.
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and materials required to perform such tasks. In order to carry out this activity, some 

basic scheduling functions involving timing and allocation of the necessary resources, as 

well as sequencing and control o f the jobs or tasks, need to be defined (Pinedo 2002).

By its very nature, scheduling in real environments very often considers 

multicriteria objectives, which involve time as well as cost related criteria (T’kindt and 

Billaut 2002). One o f the classical objectives in scheduling is linked to due dates, which 

focus on meeting customers’ delivery dates. As the term indicates, JIT is intended to 

avoid both earliness and tardiness, where the objective is to find a sequence o f tasks such 

that they are completed as close as possible to their due dates. In addition to the cost of 

maintaining inventories, earliness could count for the amount o f spoilage and the high 

investment cost(s) for special storage facilities required to keep perishable goods such as 

food and chemical products. On the other hand, tardiness is the most common measure 

to assess how well customer due dates are met.

Due dates can be determined as a result o f a choice made by the decision maker or 

negotiation between the decision maker and the customer. Therefore, at least one 

criterion related to the tardiness of jobs and one criterion related to their earliness must be 

considered in the objective function, which turns the JIT scheduling problems into 

multicriteria optimization problems. Besides their applicability to some real situations, 

these problems are interesting because, in general, it is very difficult to find a schedule in 

which all jobs will be completed on time, and therefore, the decision maker must face a 

trade off between earliness and tardiness.

The central purpose o f this research is to develop both exact and heuristic 

algorithms to find optimal or near optimal solutions for this bi-objective problem. The

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3

exact algorithms are developed using and extending some o f the existing properties o f 

simpler versions o f the problem in order to reach optimal solutions in polynomial or 

pseudo-polynomial time. Heuristic algorithms are developed and used when it is not 

possible to use exact algorithms, especially for large problems. General-purpose methods 

are considered in this research by developing a Multi-Agent System to find optimal or 

near optimal solutions in polynomial time.
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Problem Statement

The problem addressed in this research is the job shop scheduling problem 

(JSSP), where a set o f n available jobs must be scheduled on m machines. In the most 

general case, each job consists o f m operations -on each machine. Each job i may have a 

different route, processing time p tJ on machine j ,  and a due date dj. Because o f its 

difficulty to be solved, the JSSP has been a challenge for researchers in the Operations 

Research area for a few decades (Conway et al 1967). Besides, in a job shop 

environment, the quantities made o f one product are small, created typically according to 

specific customer requirements and, as a result, a wide variety o f products can be 

produced. These features bring the job shop environment close to practical real 

scheduling problems.

In this research, the objective in the JSSP is to minimize both earliness and 

tardiness for all jobs. Let Ch E, and T, represent the completion time, earliness, and 

tardiness o f job i respectively, E, and T, can be defined as:

each job there is an earliness penalty a* > 0 and a tardiness penalty Pi > 0 per time unit. 

Assuming that the penalty functions are linear, the basic earliness and tardiness (E/T) 

objective function for a schedule S  can be written as f(S) as follows:

Et = Max(0, di -  Ci) = (dt -  C) + Equation 1

Ti = Max(0, Q  -  di) =(Q -d ,)+ Equation 2

where (.)+ represents the positive difference from the due date. Associated with

n

Equation 3
/=]
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The JSSP E/T problem addressed in this research is the one with a common due 

date (CDD) where all jobs have the same due date (i.e. dt = d  V/ = 1, . . n). CDD 

becomes important when a set of components must be assembled into a finished product, 

or when several jobs must be shipped together to a certain customer. In a JIT 

environment, these jobs should be finished as close to the CDD as possible. An early job 

completion results in inventory and handling costs, and a tardy job completion results in 

customer penalties. As can be seen from Figure 1, each job in a job shop has its own 

route that defines that sequence o f operations on the machines.

Job 1

♦  Job 1 
+ Job 2 

Job n

Job 2

Job n

Machine

Machine

Machine
m

Machine

Restrictive
CDD

Figure 1 The Job Shop Scheduling Problem Considering Earliness and 
Tardiness over a Common Due Date (JSSP E/T CDD).

The CDD considered here is restricted, which means that it could be small 

enough to restrict the scheduling decision and it has influence on the optimal sequence. 

The restricted version o f the problem is much harder than the unrestricted version (Lauff 

and Werner 2004a). As Baker (1997) stated, for the single machine E/T problem over a
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CDD, it would be desirable to construct a schedule in which half of the jobs are 

completed before the CDD. If  the CDD was too tight, then not enough jobs would be 

scheduled before the CDD, as they cannot start before time zero. In this case, this 

problem is known as Restricted as shown in Figure 2; otherwise, when the CDD is not 

too tight, it is known as the Unrestricted Case. The latter case can be solved by using 

polynomial algorithms for both the single machine and the JSSP E/T CDD (Lauff and 

Werner 2004a).

Formally, there is a quantitative procedure to define whether a CDD is restricted 

or unrestricted for the single machine problem, which is explained in detail in the 

methodological approach section. In this research, such a procedure will be extended to 

the two machines JSSP E/T CDD.

M l

Time

Unrestricted CDD

> k

J3 J1 J2 J4 J5

Time
--------------------------------------------------- >

Restricted CDD

Figure 2 Unrestricted and Restricted Case of the Common Due Date
(CDD).
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The performance criterion used in this research (earliness and tardiness) is known 

to be a non-regular one. A performance criterion is considered regular if  the objective 

function to be minimized increases as the completion times o f the jobs increase (Pinedo 

2002).

The search process aimed to look for optimal solutions for regular measures of 

performance has to be carried out in a defined search space. However, there are some 

scheduling problems, like the ones with non-regular measures o f performance, including 

earliness and tardiness, where optimal solutions could be found in a larger search space. 

Figure 3 shows a Venn diagram of the search space for both regular and non-regular 

measures o f performance.

Search space for non
regular measures o f 

performance

Search space for 
regular measures 
o f  performance

All schedules

Figure 3 Venn Diagram of Classes of Schedules for JSSP.
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Complexity of the Problem

A scheduling problem can be described by a triplet a  / P / y (Pinedo 1995) where 

a  describes the machine environment and contains a single entry, p provides details of 

processing characteristics and constraints and can contain no entries, a single entry, or 

multiple entries, and finally, y contains the objective to be minimized and usually only 

has a single entry. This description and the complexity hierarchy proposed by Pinedo 

(2002) are used to establish the complexity o f the JSSP E/T CDD.

The scheduling problem Jm / /  Cmax is known to be NP-Hard (Garey et al, 1976), 

where Jm refers to a Job Shop environment and Cmax is the objective o f minimizing the 

makespan (i.e., the time needed to complete all jobs). This problem is NP-hard even if 

the number of machines is greater than or equal to two. Though this problem deals with a 

regular measure o f performance, simpler problems dealing with non-regular measures of 

performance are also known to be NP-Hard, such as the single machine E/T scheduling 

problem over a restricted CDD (Hall et al, 1991).

By using a complexity hierarchy of objective functions Pinedo (2002), regular 

measures o f performance related to tardiness and lateness are more complex than the one 

related to the makespan (Cmax)- Therefore, as a conjecture, it is possible to state that the 

scheduling problem Jm/d j  = restricted CDD /  £ ( 0CjEj+$Tj) is NP-Hard.

Given that this problem is NP-Hard, heuristic approaches might be used to find a 

good, near-optimal solution. However, properties o f some particular instances o f the 

problem that could be exploited to develop polynomial or pseudo-polynomial algorithms 

to find optimal solutions will be proposed in the methodological approach section.
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Methodological Approach

Figure 4 shows the general framework for the proposed research method to deal 

with the problem at hand. Based on both real production environment, and scheduling 

theory and concepts, a problem has been stated. Generally speaking, most o f the 

problems to be solved in scheduling are a branch o f optimization and are classified as 

NP-Hard. That is, there are no efficient algorithms that can find optimal solutions in a 

polynomial or pseudo-polynomial time to solve a NP-Hard problem. Instead, for a small 

number o f optimization problems, there are exponential-based algorithms; although not 

considered efficient, they can solve these small problems, which are labeled as “well-

solved” problems (Garey and Johnson 1979).

ProductionTheories and
EnvironmentConcepts

Problem
Statement

Data
Generation

Solution
Approaches

Heuristic Exact
Methods Methods

SmallPerformance
ProblemsEvaluation

Figure 4 General Framework for the Proposed Research Method.
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The most efficient method to find optimal solutions for scheduling problems is to 

intensively exploit properties and features o f problems to be solved. The shortest 

processing time (SPT) rule to find an optimal solution for a single machine problem 

considering the mean flow time, and the earliest due date (EDD) rule to find an optimal 

solution for a single machine problem considering the maximum lateness when all jobs 

are available at time zero are among the examples o f this approach (Baker 1997). 

According to Garey and Johnson (1979), some algorithms can capture important 

properties o f the problems, and based on these properties, algorithms can be refined in 

order to lead to better methods to solve the problem. The main objective o f this research 

is to study the basic properties o f the JSSP E/T with a restricted CDD to incorporate in an 

efficient algorithm (polynomial, pseudo-polynomial or exponential) to solve the problem. 

A set of properties, already applied to some problems, will be generalized to a bigger set. 

Some of these properties have been derived for a less complicated machine-scheduling 

environment (single machine). In addition, some o f the properties required to improve 

the algorithms are not derived from the single machine environment and need to be 

developed by using an inductive approach. Based on the patterns observed in optimal 

solution for small problems, optimal properties will be defined and proven for the more 

general JSSP E/T with m machines, n jobs, and a restricted CDD. After :Chapter II: 

Literature Review”, properties o f both the two-machine and multi-machine job shop 

scheduling problems over a CDD will be derived, in addition, exact and heuristic 

methods will be developed.
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CHAPTER II 

LITERATURE REVIEW

The literature review is structured in the following manner. Initially, papers 

dealing with the general properties o f the earliness and tardiness (E/T) problems are 

reviewed. Exact methods to find optimal solutions for simpler problems, and their 

complexity are especially analyzed. Next, heuristic methods for similar problems are 

studied, emphasizing those related to Multi Agent Systems (MAS). Finally, and based on 

the review, a final statement related to the research gap for the proposed problem will be 

identified.

E/T Research on Optimal Properties and Solutions

Many o f the published scheduling papers dealing with earliness and tardiness 

addressed the single-machine E/T problem. Baker and Scudder (1990) published a 

comprehensive state-of-the-art review for different variations o f the E/T problem, 

including the problem with a CDD for all jobs. Gordon et al. (2002) have recently 

reviewed the literature of the E/T problem with CDD where the focus o f their review was 

mainly on single and parallel machine scheduling problems as there is little research on 

open, flow and job shop E/T problems. Similarly, Lauff and Werner (2004a, 2004b) 

confirmed that there are only a few papers dealing with multi-stage systems involving 

earliness and tardiness problems with CDD.
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Kanet (1981) developed an algorithm to find an optimal solution for the single 

machine E/T problem with an unrestricted CDD. In his work, some properties o f optimal 

solutions were stated and proved and then used to construct a polynomial algorithm. 

Sundararaghavan and Ahmed (1984) developed a heuristic algorithm for the same 

problem, but with an arbitrary (restricted or unrestricted ) CDD. They used some o f the 

properties defined for the unrestricted case by Kanet (1981) when the CDD is small 

enough to constrain the schedule. Bagchi et al. (1986) extended Kanet’s idea o f an 

unrestricted CDD and developed an exact algorithm to generate alternate optimal 

solutions. They also developed an implicit enumeration procedure for the restricted case 

in a single machine environment. Raghavachari (1986) extended the V-shape property of 

optimal schedules established by Kanet (1981) to any CDD. Later, Szwarc (1989) 

studied a variation o f this problem considering a fixed starting time for the first job in the 

schedule and a restricted CDD. He developed a Branch and Bound (B&B) procedure to 

find optimal solutions for problems with up to 25 jobs.

Hoogeven and Van de Velde (1991) developed a dynamic programming 

algorithm to solve the single machine scheduling problem considering a CDD and a 

positive weight for each job. In their work, they did not define the nature of the CDD 

(restricted or unrestricted). However, they found out that the problem with equal 

processing times for all the jobs and the problem with equal weight to processing time 

rates are polynomially solvable cases. Also, Hall and Posner (1991) developed a 

dynamic programming algorithm for the single machine problem considering an 

unrestricted CDD and different weights for the jobs. Hall et al. (1991) constructed an 

exact algorithm based on dynamic programming to find an optimal solution for the single

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



13

machine unweighted E/T problem with a restricted CDD. Rabadi et al (2004) developed 

a B&B procedure to find optimal solutions for single machine problems with an 

unrestricted CDD and considering sequence-dependent setup times.

As for multi-machine environments, Emmons (1987) developed an algorithm that 

is able to solve scheduling problems considering identical parallel machines when all jobs 

have a CDD, and when earliness and tardiness have different cost rates. His algorithm 

finds optimal solutions for problems where the number o f jobs is less than or equal to 

four times the number o f machines and finds good solutions in the rest o f the cases. 

Federgruen and Mosheiov (1996) studied the identical parallel machines scheduling 

problem considering an unrestricted CDD and non-decreasing convex earliness and 

tardiness cost functions. They developed a lower bound for the cost, as well as a 

heuristic procedure to solve the problem. The heuristic was also generalized to include 

problems with a restricted CDD and general asymmetric, and possibly non-convex, 

earliness and tardiness cost functions. Bank and Werner (2001) studied the unrelated 

parallel machine scheduling problem with release dates and a CDD. The objective was to 

minimize the weighted sum of linear earliness and tardiness penalties. They derived 

some structural properties and used them to develop approximate constructive and 

iterative heuristic algorithms to solve the problem. Sun and Wang (2003) studied the 

problem of scheduling n jobs with a CDD and proportional earliness and tardiness 

penalties on m identical parallel machines. They showed that the problem is NP-Hard 

and proposed a dynamic programming algorithm to solve it. They also proposed two 

heuristics to deal with the problem and analyzed their worst-case error bounds.
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Sarper (1995) developed a mixed integer linear programming formulation for the 

two-machine Flow Shop Scheduling Problems (FSSP) considering the unweighted 

earliness and tardiness cost over a CDD. In his approach, he used an arbitrary CDD and 

developed three heuristic procedures to solve the problem, which he compared with 

optimal solutions for problems. Sung and Min (2001) studied the two-machine FSSP 

with batch processing machines and a CDD. They defined some properties o f three 

special cases and developed exact methods to find optimal solutions. Although they did 

not explicitly say that the CDD was unrestricted, they assumed that the CDD is greater 

than or equal to the time required for processing all jobs on the first machine. Recently, 

Gupta et al. (2004) defined some properties o f optimal schedules for the two-machine 

FSSP with non-regular criteria (earliness and tardiness). Also, they developed lower and 

upper bounds, derived dominance criteria, and proposed an enumerative algorithm for 

finding an optimal schedule. Finally, Lauff and Werner (2004c) developed heuristic 

algorithms, both constructive and enumerative, to solve the two-machine FSSP with a 

given CDD considering asymmetric linear and quadratic penalty functions. Their 

algorithms were based on some structural properties o f the problem. So far, there is no 

reported research on the JSSP considering E/T over a CDD.

Heuristic Methods for the E/T Problem

Feldmann and Biskup (2003) developed three meta-heuristic approaches to solve 

the single machine scheduling problem considering weighted earliness and tardiness 

penalties over a restricted CDD. Hino et al. (2005) developed a heuristic exploiting some
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of the properties o f the single machine problem considering earliness and tardiness 

penalties with a CDD; then they used some meta-heuristics and hybrid meta-heuristics to 

improve the solution. Rabadi et al. (2007) introduced a constructive heuristic for the 

single machine EAT with unrestricted CDD and sequence dependent-setup times and 

compared the heuristic’s performance to a simulated annealing algorithm for the same 

problem. As mentioned earlier, Sarper (1995) worked on three heuristics to solve the 

FSSP with two machines and a CDD. Finally, Zegordi et al. (1995) applied simulated 

annealing to the FSSP considering early/tardy costs. Although each job has its own due 

date, the objective function considered in their work is still a non-regular measure of 

performance. Table 1 shows the literature review summary.

Table 1 Literature Review about the Problem Definition.

Reference Environment Constraints
Method

Heuristic Exact
Kanet (1981) Single machine Unrestricted

CDD X

Sundararaghavan and 
Ahmed (1984)

Single machine Arbitrary CDD X

Bagchi et al. (1986) Single machine Unrestricted
CDD

X

Raghavachari (1986) Single machine Arbitrary CDD X
Szwarc (1989) Single machine Fixed starting 

time, Restricted 
CDD

X

Hoogeven and Van 
de Velde (1991)

Single machine Arbitrary CDD, 
Different weight 
for each job

X

Hall and Posner 
(1991)

Single machine Arbitrary CDD, 
Different weight 
for each job

X

Hall etal. (1991) Single machine Restricted CDD, 
unweighted case

X

Feldmann and 
Biskup (2003)

Single machine Restricted CDD, 
weighted case X
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Reference Environment Constraints
Method

Heuristic Exact
Rabadi et al (2004) Single machine Unrestricted

CDD,
unweighted 
case, setup 
times

X

Rabadi et al (2007) Single machine Unrestricted
CDD,
unweighted 
case, setup 
times

X

Hino et al. (2005) Single machine Arbitrary CDD, 
weighted case

Emmons (1987) Identical Parallel 
Machines

Arbitrary CDD, 
early and tardy 
costs different

X X

Federgruen and 
Mosheiov (1996)

Identical Parallel 
Machines

Unrestricted and 
restricted CDD, 
weighted case

X

Bank and Werner 
(2001)

Unrelated Parallel 
Machines

Release dates, 
Arbitrary CDD X

Sun and Wang 
(2003)

Identical Parallel 
Machines

Arbitrary CDD, 
weighted case X X

Sarper (1995) Two-machine Flow 
Shop Problem

Arbitrary CDD, 
unweighted case X X

Zegordi et al. (1995) Flow Shop Problem Multiple due 
date X

Sung and Min (2001) Two-machine Flow 
Shop Problem

Unrestricted
CDD,
unweighted 
case, Batching 
possibility

X

Gupta et al. (2004) Two-machine Flow 
Shop Problem

Arbitrary CDD, 
weighted case X

Lauff and Wemer 
(2004c)

Two-machine Flow 
Shop Problem

Arbitrary CDD, 
linear and 
quadratic cost 
functions

X

Among the more recent approaches for solving large problems is the use o f Multi- 

Agent Systems (MAS), which seems to have good potential for solving complex 

problems.
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Lin and Solberg (1992) designed a multi-agent based approach for shop floor 

control and scheduling, which was a market-like model for the control strategies where 

parts Gobs) and resource agents negotiated in a heterarchical environment Gust one level 

o f hierarchy as shown in Figure 9). Wellner and Dilger (1999) developed a negotiation 

control strategy where two types of agents were created: job and resource agents, which 

used a quasi heterarchical control process to minimize the makespan for a JSSP.

Fabiunke and Kock (2000) used a sequencing control strategy by considering each 

operation in a JSSP as an agent with a heterarchical control process to minimize the 

makespan. Dang and Frankovic (2002) developed a negotiation control strategy and a 

heterarchical control process with jobs as agents to solve a flexible JSSP. Dewan and 

Joshi (2002) created a bidding control strategy to solve a dynamic JSSP where they 

considered machines as “auctioneer” agents and jobs as “bidder” agents in a heterarchical 

environment. Macchiaroli and Riemma (2002) proposed a multi-agent-based approach 

similar to the one proposed by Lin and Solberg (1992). In their research, they included 

the cooperation control strategy in order to reach a global optimal performance.

A few other papers have also addressed the total tardiness problem such as Biskup 

and Simons (1999) who developed a negotiation scheme with a heterarchical control 

process to solve the dynamic total tardiness problem in a job shop environment. They 

created different negotiation schemes using game theory. Kutanoglu and Wu (1999) 

developed a bidding control strategy and a heterarchical control process to minimize the 

tardiness for the JSSP. They used a combinational auction mechanism and a Lagrangean 

relaxation to efficiently allocate resources where the jobs were considered as agents in a 

heterarchical environment. Sabuncuoglu and Toptal (1999b, 1999c) developed a bidding
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and cooperation control strategy to solve the JSSP considering setup times. They used a 

quasi-heterarchical control process with tardiness-related measures o f performance.

Also, with regard to the tardiness problem, Aydin and Oztemel (2000) developed an 

agent-based approach where an agent learns from both past data and the current state of 

the system, and then dispatches jobs in a dynamic job shop environment. Wu and Weng 

(2005) created a multi-agent approach to solve the flexible JSSP considering earliness 

and tardiness as the measure o f performance. In their work, jobs and machines were 

considered as agents and bidding was used as a control strategy in a heterarchical fashion.

Combinational auctions, a control strategy that has been developed recently, has 

gained a lot o f attention for solving complex resource allocation problems. This type of 

auction has the advantage o f allowing bidders to express their synergistic values by 

submitting bids for combinations o f assets. This structure fits very well into the multi

machine scheduling environment where multiple resources need to be allocated among 

different bidders.

Rothkopf et al (1998) discussed different applications o f combinational auctions 

and identified different structures for combinational bidding where a computational 

implementation is feasible. More recently, Kutanoglu and Wu (1999) used a 

combinational auction to solve the JSSP involving total tardiness as measure o f 

performance. Reeves et al (2005) explored different bidding strategies specifically for 

scheduling problems involving multiple resources and pointed out that most o f the 

literature on auctions theory deals with a single resource. Consequently, using 

combinational auctions as a control strategy in the JSSP with a non-regular measure of
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performance will add to the body o f the knowledge on this topic. Table 2 shows the 

literature review with respect to different multi-agent approaches.

Table 2 Literature Review about Multi Agent Approaches.

Reference Environment Control Mechanism Agents Measure o f  
PerformanceJobs Machines

Lin and 
Solberg 
(1992)

Job/Open
Shop

Heterarchical Negotiation
X X

Regular

Wellner and 
Dilger (1999)

Job Shop Quasi-
heterarchical

Negotiation X X Regular

Fabiunke and 
Kock (2000)

Job Shop Heterarchical Sequencing X Regular

Dang and 
Frankovic 
(2002)

Flexible Job 
Shop

Heterarchical Negotiation
X X

Regular

Dewan and 
Joshi (2002)

Job Shop Heterarchical Bidding X X Regular

Macchiaroli 
and Riemma 
(2002)

Job/Open
Shop

Heterarchical Negotiation
and
Cooperation

X X
Regular

Biskup and
Simons
(1999)

Dynamic Job 
Shop

Heterarchical Negotiation
X X

Regular

Kutanoglu 
and Wu 
(1999)

Job Shop Heterarchical Bidding
X X

Regular

Sabuncuoglu 
and Toptal 
(1999b, 
1999c)

Job Shop 
with setup 
times

Quasi-
heterarchical

Bidding and 
Cooperation X X

Regular

Aydin and
Oztemel
(2000)

Dynamic Job 
Shop

Quasi-
heterarchical

Sequencing Regular

Wu and 
Weng (2005)

Flexible Job 
Shop

Heterarchical Bidding X X Non-Regular

Reeves et al 
(2005)

Single
machine

Heterarchical Bidding X Regular

Most o f the research involving JSSP and heuristic methods has dealt with regular 

measures o f performance, mainly the makespan. So far, we are unaware of any research
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addressing the JSSP E/T with a restricted CDD. Due to the clear lack o f research on the 

JSSP E/T with a restricted CDD, the development o f both exact and heuristic methods 

would be o f great importance and will represent a clear contribution to the body o f 

knowledge in the area o f job shop scheduling.
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CHAPTER III

EXACT METHODS

Two-machine Job Shop Scheduling Problem with a CDD

A common practice in the scheduling community addresses multi-stage problems 

by working either with a low number o f machines, two in general, and/or a low number 

o f jobs (Conway et al 1967, Sarper 1995, Sung and Min 2001, Gupta et al 2002, Gupta et 

al 2004, Lauff and Werner 2004c). By using the same approach, this research will 

address the JSSP E/T with a restricted CDD with two machines.

Formally, there is a quantitative procedure to define whether or not a CDD is 

restricted or unrestricted for the single machine problem. In this section, such procedures 

will be extended to the E/T JSSP over a CDD with two machines.

In order to define whether a CDD in a two-machine JSSP is restricted or 

unrestricted, we will first review the single machine problem. Initially, Kanet (1981)

assumed that for the E/T single machine problem, CDD > ^  p j  where pj is the
7=1

processing time for job j  so that the problem can be solved optimally by using his 

algorithm SCHED. Later Bagchi et al (1986) showed that Kanet’s algorithm was able to 

reach optimal solutions under the weaker assumption that the CDD > A, where:

n

+ jf?3 H b p n i f  n is odd
p 2 + p 4 + — b p n i f  n is even Equation 4

Pi < p 3 < — <p, Equation 5
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For a CDD in a two-machine JSSP to be unrestricted, two conditions must hold. 

First, the remaining time to process the final operations on each machine must be enough 

to apply the SCHED algorithm (Kanet 1981) as if  each machine were an unrestricted 

single machine problem. Second, the completion time of each job’s first operation on its 

corresponding machine has to be less than or equal to the starting time o f its subsequent 

last operation. This starting time is given by the SCHED algorithm. The second 

condition is equivalent to finding a schedule for each single machine problem where no 

jobs are tardy. By following the reasoning used by Kanet (1981) and Bagchi et al (1986) 

the restrictedness o f the CDD for the JSSP E/T with two machines can be extended. 

Generally, in order to minimize the deviation over the CDD for all the jobs, the first 

operations of each job should have priority on each machine in order to allow subsequent 

operations to be processed. The set o f first operations and the set containing the last 

operations to be scheduled on each machine before the CDD compete for the time 

available within the interval from t = 0 to t = CDD. If  the CDD is “loose enough,” say if 

the CDD > PT, where:

2 n

,=1 J=i , Equation 6

(pij is the processing time for the operation o f job j  to be performed on machine i 

with i = 1, 2), then, the SCHED algorithm can be applied to the two-machine problem 

and an optimal solution can be obtained. The closer the CDD to t = 0, the tighter (i.e. 

more restricted) the schedule is. This fact can be used to define whether the CDD is 

restricted or not. Let

Mi = Set with jobs to be finished on Machine 1, and
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M2 = Set with jobs to be finished on Machine 2.

\Mi\ = ri}= Number o f jobs to be finished on Machine 1. 

\M2\ = ri2 = Number of jobs to be finished on Machine 2. 

Also, let

Pn+ P n+ --- + Pin, i f  nx is odd
A, =<

Pn + Pu  + • • • + Pi* n\ is even

\P 2\ +P2 3+--- + Pln2 i f  n 2 is odd

2 1 Pll + Pl4 + ' • • + P2n, i f  n2 iS eVen

where:

Pn^Pu^- - -^Pin,

P 2 \  ”  P 2 2  —  * ’  * —  P 2 n ^  

Finally, let

F> = ' L pu

F2 = YsP l)
jeMf

where:

M f  is the complement o f Mi and M2°  is the complement of M2 .

Equation 7 

Equation 8

Equation 9 

Equation 10

Equation 11 

Equation 12

Definition 1

A CDD is unrestricted i f  CDD > Max {F 1 + Ai, F2 + A2} and the number 

o f  tardy jobs in sets M f  and M?C are equal to zero.
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Discussion. If  Max {Fj + A/, F2 + A2} = Fj + A j, let Bi = {i = 1, 1 < j  < n, j  e  

Mj | Cij < CDD}, where C|j is the completion time o f the jobs with their last operation on 

Machine 1 and to be completed on or before CDD. Similarly, let Ai = {i = 1, 1 < j  < n, j 

e  Mi | Cij > CDD}, where Cij is the completion time of the jobs with their last operation 

on Machine 1 and to be completed after CDD. Hence, A/ is the summation o f processing 

times of the jobs in Bi and by following the reasoning in Kanet (1981), the optimal 

schedule for the Machine 1 can be obtained by applying his SCHED algorithm to the jobs 

in sets Ai and Bi. The starting times o f the jobs in sets Aj and Bj provide the due dates 

for their first operations to be processed on Machine 2 (i.e. jobs in set M f) .  The jobs 

whose first operation must be performed on Machine 1, jobs in M f ,  are processed before 

the jobs in Bt without interfering with the optimal schedule since CDD > Ft + A/.

If  an earliest due date (EDD) sequence yields either zero or one tardy job, then it 

minimizes the number of tardy jobs (Baker 1974). Therefore, it is possible to find out if 

the number o f tardy jobs in M f  is equal to zero by applying the EDD rule to jobs in M jC.

Let B2 = {i = 2, 1 < j < n, j e  M2 | C2j < CDD}, where C2j is the completion time 

o f the jobs with their last operation on Machine 2 to be completed on or before the CDD 

and A2 is the summation o f processing times o f the jobs in B2. Since F2 + A2 < Fj + A/, 

jobs to be finished on Machine 2 can be optimally scheduled by applying Kanet’s 

SCHED algorithm to the jobs in sets A2 and B2, where A2 is defined similar to A i. In the 

same way, the starting times o f the jobs in sets A2 and B2 provide the due dates for their 

first operations to be processed on Machine 1 (i.e. jobs in set M f) .  The jobs whose first 

operation must be performed on Machine 2, jobs in M2C, are performed before the jobs in
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B2 without interfering with the optimal schedule. Also, it is possible to find whether the 

number o f tardy jobs in M2 is equal to zero by applying the EDD rule to jobs in M2 .

The same reasoning can be applied if  Max {Fj + A/, F2 + A2} = T 2 + A2. Table 3 

shows the processing times and the operation-machine assignment for a five-job example. 

Figure 5 illustrates the optimal solution for this example when the CDD is unrestricted 

and equal to 17. In this case Max {Fj + A/, F2 + A2} = Max {8 + 9, 9 + 4} = F} + zfi =

17. Note that if  the CDD > 17, the problem is still unrestricted.

Table 3 Job Shop Scheduling Example.

Job
Route (Machine 

Number) Processing Time

Oper. 1 Oper. 2 Oper. 1 Oper. 2
1 2 1 2 4
2 1 2 3 2
3 2 1 3 4
4 1 2 5 4
5 2 1 4 5

CDD
i

J4 1 J2 | J5 I J3 , J1 I
I 1 i i i i i ! i 1 i i i i

J 5  | J 3  | J i  I i I J4 A J2
! ! 1 s i •’ 1 1 1 1 1 : ; 1 i !i  1 1 i  I i I 5 * J t  ’ t i > ! i i I

5 10 15 17  2 0

Figure 5 An Example of an Optimal Schedule for the Unrestricted
Version.

D efinition 2
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A CDD is semi-restricted i f  CDD > Min {F/ + A], F2 + A2}  and CDD <

Max {F] + Ai, F2 + A2}  and the number o f  tardy jobs in the sets M f  and 

M f  are equal to zero.

Discussion. If  Max {Fj + A/, F2 + A2] = F2 + A2, then Min {F} + A/, F2 + A2) = 

Fj + Ay. Bi and B2 are the same as in Definition 1. Hence, A/ and A2 are the summation 

of processing times o f the jobs in B] and B2 respectively. Given CDD > F t + A/, in an 

optimal schedule, jobs in M f  are performed before the jobs in Bi without interference 

with the jobs in Bi. The optimal schedule for Machine 1 can be obtained by applying 

Kanet’s SCHED algorithm to the jobs in B] and Aj. The starting times o f the jobs in sets 

Ai and Bi provide the due dates for their first operations to be processed on Machine 2 

(i.e. jobs in the set M f) ,  which are processed before the jobs in B2. But given that CDD 

<F2 + A2, jobs in M2 cannot be optimally scheduled by using the SCHED algorithm; 

instead, this problem needs to be treated as a single machine problem with a restricted 

CDD, which can be optimally solved by using the dynamic programming (DP) 

procedures proposed by Hall et al (1991). The starting times o f the jobs in M? given by 

the optimal solution provide the due dates for their first operations to be processed on 

Machine 1 (i.e. jobs in the set M f) .  The jobs whose first operation must be performed on 

Machine 1, jobs in M f ,  are processed before the jobs in Bi without interfering with the 

optimal schedule since CDD >Fj + Ai. Similar to the unrestricted case, jobs in M f  and 

M f  need to be sequenced by using the EDD rule to check if the number o f tardy jobs is 

equal to zero. If  both sequences yield zero tardy jobs, then the problem is semi-restricted. 

Following the same numeric example, Figure 6 describes the case when the CDD is equal
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to 15, which is greater than Min {Fj + A/, F2 + A2} = F2 + A? = 13 and is less than Max 

{Fj + A;, F2 + A2} = Fj + Aj = 17.

CDD
Hf f  

i 1 I i T "  I”  F T  i T T T  T T T  ~ ! ! I i
J4  |  J2  | J3  | J1 |  J5  |

I i ! 1 1 1 ! I i I ! I I
J 3  |  J1 |  J5  | | J4 J2  j ! I s f

I \ \ I ! \ I I I  f § i ! i

Figure 6 An Example of Optimal Schedule for the Semi-restricted
Version.

In this sense, a CDD is semi-restricted when the optimal schedule o f either one of 

the machines can be obtained by using Kanet’s SCHED algorithm. The optimal schedule 

for the other machine has different features, so the SCHED algorithm will not be able to 

find it. Instead, the DP procedures developed by Hall et al (1991) needs to be used to 

find the optimal schedule. This procedure is extended to the problem studied here in the 

next section.

D efinition 3

A CDD is restricted when neither the conditions in Definition 1 nor in

Definition 2 hold.

Discussion. I f  CDD < Min {Fj + A j, F2 + A^}, let Min {Fj + A i ,  F2 + Â } = Fj 

+ A j, and Bi = {i = 1, 1 < j  < n, j  e  Mj [ C]j < CDD}, where Cij is the completion time of 

the jobs with their last operation on Machine 1. Hence, A j is the summation o f 

processing times o f the jobs in B i. Since CDD <Fj + A;, there is no way to optimally 

schedule jobs in M/ without modifying the starting times o f the jobs in M jC (the first
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operations o f jobs in Mi). Hence, a trade off between jobs in M f  and jobs in Bi must be 

made. The jobs in M f  (those with their first operation to be performed on Machine 1) 

interfere with the optimal schedule on this machine. On the other hand, if  at least one of 

the jobs in M f  is delayed, this delay interferes with the optimal schedule on Machine 2. 

The same reasoning can be applied if  Min {Fj + Ai ,F 2 + A2} = F2 + A2. Following the 

same numeric example, Figure 7 illustrates the case when the CDD is equal to 8, which is 

less than Min {Fj + A/, F2 + A2} = F2 + A2 = 13.

CDD
iT T T T T  ( i f f  I I

.'s. I ;■■■■■■ .■ J3 I J1 |  J5 I
I 1 i 1 I I i I I I i i I I I i
ji i r J 3 •VJ2-- • * J4 | J5.......I I I ! )
i i i i i i i I I I \ I f I I I \  \ I

5 10 15 20

Figure 7 Example of a Final Schedule for the Restricted Version.

Additionally, if  there is at least one tardy job in the cases given in Definition 1 or 

2, then the CDD is also considered restricted since precedence constraints for at least one 

job (i.e. the tardy job) do not hold.

Next, optimality conditions for the unrestricted and semi-restricted case are 

presented. Also, two properties o f the optimal solution for the restricted case are proven 

and used to construct approximate solutions.
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Optimality Conditions

Optimal solutions for the two-machine E/T JSSP with restricted CDD appear to 

be difficult to characterize. In this research, optimal solutions will be defined when the 

CDD is unrestricted and semi-restricted. Approximate solutions, obtained by a heuristic 

procedure, will be defined when the CDD is restricted.

Unrestricted CDD

If  the CDD is unrestricted as described in Definition 1, the optimal solution can 

be found by using Kanet’s SCHED procedure on each machine. The properties o f the 

optimal schedule as defined in Kanet (1981) will be extended for our use.

Property 1. There is no idle time between jobs in sets Mi and M 2.

Property 2. The jobs in both Bj and B2 are sequenced by longest processing

time first (LPT).

Property 3. The last jobs in B/ and B2 are completed at time t = CDD.

Property 4. Let A / and A2 represent an ordered set o f jobs pertaining

respectively to Mi and M2 to be scheduled without inserted idle 

time such that the first job in both A 1 and A2 starts at time t = CDD. 

In an optimal schedule, jobs in both A 1 and A2 are sequenced by the 

shortest processing time (SPT) first.

Property 5. I f «/ is even, then \Bi\ = \Ai\. If  ni is odd, then |i?y| = \Ai\ + 1. If  n2

is even then \B2\ = |A2\. I f  n2 is odd then \B2\ = \A2\ + 1.
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P roperty 6. There is a one-to-one mapping o f the jobs in both A / and A 2 onto 

the jobs in Bj and B2 such that k] e  A 1 and e  A 2 and j i  e  Bj and

j 2 e B2 ^> p Ui < PiJt and p 2h < p 2 ji.

The proofs o f these properties and the proof that SCHED yields optimal solutions 

can be easily extended from Kanet (1981) and Definition 1. Figure 5 shows the optimal 

schedule for the same numerical example when the CDD is unrestricted.

Semi-restricted CDD

If the CDD is semi-restricted as described in Definition 2, the optimal solution 

can be found by using Kanet’s SCHED procedure on the machine with Min {Fj + A}, F2 

+ A2}. The optimal solution in this machine preserves the properties given for the 

unrestricted case. For the other machine, some properties must be defined in order to 

characterize the optimal solution. The properties o f the optimal schedule as defined by 

Hall et al (1991) will be extended for our use.

Let tj* or t2* denote the starting times in an optimal schedule o f the first job 

processed on either M j or M2 respectively corresponding to the machine where Max {Fi 

+ Aj, F2 + A2} holds.

Also, define Ei(2) = (i = 1(2), 1 < j < n | C / ^  < CDD}, Ei(2)’ = {i = 1(2), 1 < j  < n 

I Ci(2)j < CDD }, T 1 (2) = {i = 1(2), 1 < j  < n | Ci(2) j-p i( 2)j > CDD}, and T )(2)’ = {i = 1(2),

1 < j  < n | Ci(2)j > CDD}

P roperty 1. There exists at least one o f the following:

An optimal schedule with either t/* = F/ or / = F2.
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An optimal schedule with Cjp)a = CDD, where a is a job with its 

last operation on Machine 1 (2) starting before CDD and 

completing at CDD or later.

Property 2. In an optimal schedule, the jobs in Ei(2)’ are in LPT order, and the 

jobs in Tj(2) are in SPT order.

Property 3. Each optimal schedule is weakly Y-shaped. A weakly V-shaped 

schedule means a job does not necessarily end at the CDD.

D efinition 4

On Machine 1(2) a schedule is early V-Shaped (EVS) i f  pi(2)a ^P i(2)min■

D efinition  5

On Machine 1(2) a schedule is tardy V-Shaped (TVS) i f  pi(2)a ^P i(2)emin- 

Where emin = Min {pipjj e  Ejp) ’}, and tmin = Min {pip)j e  Tip)}.

Property 4. If//*  = F/, then |Ej| > | Tj| - 1 or If t2 * = F2, then |E2| > | T2| - 1

Property 5. |Ei(2)| < | T1(2)| + 1

Property 6. I f  C1(2)a = CDD, then J ]  p m )j < p ](2)J + 2p ](2)s, where job s
JeE1(2) E T1(2)

is the first job scheduled on Machine 1(2).

The proofs o f these properties can be easily extended from Hall et al (1991) and 

Definition 2.
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Based on these properties, the DP procedure defined by Hall et al (1991) can be 

extended to find the optimal solution examining all EVS and TVS schedules if 

11(2 * = Fj(2) by using E V S  and TVS  procedures described by Hall et al (1991). If  

ti(2)*>  Ei(2), then it is possible to assume that Cj(2)a = CDD and the Nosplit procedure 

described by Hall and Posner (1991) can be extended to find an optimal schedule in 

which a job completes at CDD. By jointly using these procedures, an optimal solution 

can be found for the two-machine JSSP with a semi-restricted CDD. A more detailed 

presentation o f these procedures will be done in next section. Figure 6 shows the optimal 

schedule for the same previous numerical example when the CDD is semi-restricted.

Restricted CDD

To characterize the optimal solution when the CDD is restricted can be difficult. 

Hence, two properties are defined in order to develop a heuristic algorithm to obtain 

approximate solutions for the two-machine JSSP.

Define:

7/ = the set o f jobs to be finished on Machine 1 and to be scheduled around the 

restricted CDD.

I2 = the set o f jobs to be finished on Machine 2 and to be scheduled around the 

restricted CDD.

Clearly, Ii c  M t and h  c  M2.

Property 1. Jobs in 7/ and I2 are scheduled without idle time.
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Proof. By contradiction and similar to the approach by Baker (1997), assume that 

an optimal schedule S  exists with an idle interval o f length t between consecutive jobs a 

and b, with b following a ; a ,b e  7/ (I2), and the predecessors o f a and b already 

scheduled at Machine 2(1). If  job a is early (Ci(2)a < CDD), then the total penalty cost 

can be reduced by shifting job a (and any jobs that precede it) later by an amount At, 

where At < Min (/, CDD - C;^>) without affecting the feasibility of S. Denoting the 

values after the shift with primes, it follows that Ti(2)k’ = and Ei(2)k’ ^  Ei(2)k strictly 

for at least one job. Similarly, if  job b is tardy (Ci(2)b > CDD), then the total penalty cost 

can be reduced by shifting job b (and any jobs that follows it) earlier by an amount At, 

where At < Min (t, Ci(2)b - CDD) without affecting the feasibility of S. Hence, it follows 

that Ej(2)k’~ Ej(2)k and T j^ k ’ < Ti(2jk strictly for at least one job. Since any schedule must 

have either job a early or job b tardy, then schedule S  can be improved, and therefore, it 

cannot be optimal.

Property 2. The optimal schedule for the jobs in 7; and I2 is weakly V-shaped, 

where a schedule S  is weakly V-shaped if all jobs completed 

before the CDD are in decreasing order o f their last operation’s 

processing times (LPT), and all jobs that begin their processing 

after the CDD are in increasing order o f their last operation’s 

processing times (SPT).

Proof. By contradiction and similar to the approach in Baker (1997), assume S  

denotes an optimal schedule in which some adjacent pair o f early jobs in Ij(2) is not in
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LPT order. Then a pair-wise interchange o f these two jobs will reduce the total earliness 

penalty and leave the tardiness penalty unchanged on Machine 1 (2) without affecting the 

feasibility o f S. Similarly, if S  is an optimal schedule containing an adjacent pair o f jobs 

that starts late in I jq) and that violates the SPT order, then an adjacent pair-wise 

interchange will reduce the total tardiness penalty and leave the total earliness penalty 

unchanged on Machine 1(2). In either case, S  cannot be an optimal schedule.

Once the jobs to be included in 7/ and I2 have been defined, there are still two 

questions to be answered. First, in an optimal schedule, is there some job that must 

complete exactly at t = CDD? As shown by Hall et al (1991), in the single machine 

scheduling problem with a restricted CDD, it is not necessary that some job completes 

exactly at t = CDD. Second, which jobs are to be early, and which ones are to be tardy? 

Figure 7 shows an approximate schedule o f the numerical example when the CDD is 

restricted.
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Dynamic Programming Algorithm for the two-machine JSSP

The algorithm JSSPET presented here uses a DP algorithm to find optimal 

solutions for the two-machine E/T JSSP when the CDD is semi-restricted. This 

algorithm partitions the solution space into schedules with either tj* = Fj or t2* = F2, and 

those with either tj* > Fj or t2 * > F2 . In the first case, jobs either in Mi or M2 are 

scheduled in the interval [Fy, Fj + Pi] or [F2> F2 + P2], where Px = ^  p } j and
j e M ,

P2 = ^  p 2j ■ Based on property 3, any optimal schedule is either EVS or TVS, and so
j s M 2

E V S (TVS) procedure discussed next will find optimal EVS (TVS) schedules which 

completes at either F ; + P/ or F2 + P2 . In the second case, suppose that either tj* > Fi or 

t2 *> F2 and based on property 1, it is possible to assume that either Cya = CDD or C2a = 

CDD so that Nosplit procedure discussed later will find an optimal schedule in which a 

job completes at CDD. Finally, the lower cost offered by the three procedures is an 

optimal schedule. All three procedures make use o f properties 2 and 3 (V-shaped 

structure) and were extended from Hall et al (1991) who addressed the single machine 

version.

Procedures EVS and TVS consider jobs in non-increasing order. From property 

3, job ni (to be finished on Machine 1) either starts at Fy or ends at F / + P}, and job n2 (to 

be finished on Machine 2) either starts at F2 or ends F2 + P2. The total processing time o f 

previously scheduled jobs which finish before CDD in E V S  and after CDD in TVS  

procedures are stored. Nosplit procedure considers jobs in non-decreasing order based on 

their processing times.
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Procedure EVS

Let fk(ai) = the minimum cost to schedule jobs ni, m-1, rii-k+1 (similarly ti2, 

ri2-l, ri2-k+ l) provided that the latest job scheduled which finished at or before CDD, 

finishes at time CDD -  aj, a/>  0 (similarly CDD -  0 2 , a2> 0), and the earliest job

k
scheduled which finishes after CDD starts at time j  - a t +CDD (similarly

j =1

n2- k

^  p 2j - « 2 + CD D ). That is, the latest job finishes at Fj + Pj (similarly F2 + P 2.)
j =1

Recurrence relation:

rit-k
M in\ax + f k(a, + p x̂ ), E  p tJ - a x+ f k{ax)

n, - k
i f  E Pm > and a, + p u k < CDD

j=1

+ / * ( « ! + A Equation 13

i f  E P\j ^  < CDD

+ 00

otherwise

Boundary condition:

f 0{ax) = 0 fo r  ax = CDD Equation 14

f 0(ax) = +00 fo r  ax * CDD Equation 15

Minimum cost schedule defined by:

s ' )= Min /„(« ,) Equation 16
0 <a,<CDD
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Procedure TVS

Let gk(m})  = the minimum cost to schedule jobs nt, m-1, nj-k+1 (similarly ri2, 

m -l, ri2-k+I) provided that the earliest job scheduled which starts at or after CDD, 

starts at time CDD + m i,m j>  0 (similarly CDD -  m2, m2 > 0), and the latest job

rt\—k

scheduled which starts before CDD finishes at time CDD + ml -  ^  p Xj (similarly
7=1

n2- k

CDD + m2 -  ^  p 2j ). That is, the earliest such a job starts is at Fi (similarly F2.)
7=1

Recurrence relation:

gkJ mi) =

Mil
n\-k-1
S  P\ , ~ nh
7=1

+ ^ O iX  + /V *

nf—k
‘f  >ml andmi +Pi„_k <PX-C D D

j=1

n\  + Plnl-k +P]n,-k) Equation 17
n,—k

i f  YuP\! ~ nii andnh +Pinl-k < /j -C D D

-00

7=1

otherwise

Boundary condition:

go(w,) = 0 fo r  mx - P x-  CDD

g0(m,) = +00 fo r  mx ^ P x-  CDD 

Minimum cost schedule defined by:

z (<?irs )=  Min g f m f
0 <»),</>,-COD

Equation 18 

Equation 19

Equation 20
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Procedure Nosplit

Let hk(ei) = the minimum cost to schedule jobs I, 2, ..., k for either M i or M 2 

without the CDD splitting any job, given that the total processing time o f jobs scheduled 

early (or on time) is either e/ or e2.

Recurrence relation:

Jt+1
M in\e, - Pn+l + hk(e, + p u+l), YJp i] -<?, +hk(e,)

i f  et > p u
k+i
X p l]- e l +hk(el)
j=1

otherwise

Boundary condition:

/?o(e,) = 0 i f  ex = 0

/?<>(<?,) = i f  ex * 0

Minimum cost schedule defined by:

Equation 21

Equation 22 

Equation 23

Equation 24

In all o f the three procedures, the first alternative in the recurrence relation 

represents the cost o f scheduling the next job as early as possible, and the second one, 

similarly, as late as possible. Since in the TVS  procedure an early job may finish after 

the CDD, there is a need for the absolute value in the first equation on its recurrence 

relation.
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JSSPET Algorithm

In order to solve the two-machine E/T JSSP over a CDD, the three cases o f the 

due date must be considered: unrestricted, semi-restricted and restricted. When the CDD 

is unrestricted, the algorithm JSSPET uses the SCHED procedure (Kanet 1981) to find 

the optimal solution for both machines. Furthermore, if  the CDD is semi-restricted, the 

algorithm JSSPET jointly uses the SCHED procedure to find the optimal solution for one 

o f the machines (the one where Min {Fi + A/, F2 + A2} holds), and the EVS, TVS, and 

Nosplit procedures to find the optimal for the other machine. Finally, when the CDD is 

restricted, the algorithm uses a heuristic procedure called Restricted CDD to find 

approximate solutions. This procedure reduces a restricted problem to the semi-restricted 

version by iteratively removing one job at the time. Once the problem is reduced to its 

semi-restricted version, the SCHED, EVS, TVS, and Nosplit procedures are applied.

Since the jobs removed are going to be tardy anyway, the SPT rule is applied in order to 

minimize their tardiness. Each time a removed job is scheduled, an improvement 

procedure tries to look for early slots o f time in the current schedule in order to decrease 

the tardiness cost. The pseudo-code o f the algorithm JSSPET is given below.

Algorithm JSSPET

Calculate F], F2, A], A2 
Apply SCHED procedure to M]
Apply SCHED procedure to M2
Calculate Tj = Number o f  tardy jobs in M ,c
Calculate T2 = Number o f  tardy jobs in M2C
If CDD > Max {F A], F2 + A2} and Tj = 0 and T2 = 0 then

Optimal schedule is given by SCHED procedure on both machines 
Schedule first operations on Machine 1 and Machine 2 by using EDD rule. 
Stop.

Else
Apply SCHED to machine where Min (F |+  A,, F2 + A2} holds
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Apply EVS to the other machine
Apply TVS to the other machine
Apply Nosplit to the other machine
Solution for the other machine is Min {EVS, TVS, Nosplit}

Calculate T , = Number o f  tardy jobs on M,c 
Calculate T2 = Number o f  tardy jobs on M2C

If CDD <  Max {Fi+ Ai, F2+A2} and CDD >  Min {F |+ A |, F2+A2} and Tj=0 and T2=0 then 
Optimal schedule is given by SCHED and Min {EVS, TVS, Nosplit} 

Schedule first operations on Machine 1 and Machine 2 by using EDD rule.
Stop.

Else
Apply Restricted CDD  
End I f

End If  
End Algorithm
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Computational Experiments

The JSSPET algorithm was implemented in Basic language (version 6.0) and 

tested on a 3.00 GHz Pentium IV running Windows XP™.

Sets o f problems with 2 machines; 5, 6, 7, 8, 10, 20, 50, 100 and 500 jobs; with 30 

problem instances per problem size were generated. The processing times were 

generated from a discrete uniform distribution U (l, 100), and the jobs routes were 

obtained from another discrete uniform distribution U (l, m) where m is the number of 

machines (two in our case). Similar to most random numbers generators use today, the 

processing times and jobs routes were generated by using random numbers coming from 

a linear congruential generator (Law and Kelton 2000).

The CDD for the unrestricted case is given by equation 25:

CDD = Max{Fx + Aj, F2 + A2 ) Equation 25

For the semi-restricted case, the CDD is chosen to be in the middle o f the interval 

between Min(Fx + Al,F2 +A 2) and Max{Fx + AX,F2 + A2) as given by equation 26:

CDD -  Min(Fx + A,, F2 + A2 ) +
, , , , Equation 26

0.5 * [Max(F[ + A ,, F2 + A2 ) -  Min{Fx + Aj, F2 + A2 )]

Finally, for the restricted case, the CDD is given by equation 27:
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CDD = [h *Min(Fl + AUF2 +A2 )J Equation 27

where h is the tightness factor that takes four possible values, h = 0.7, 0.8, 0.9, 

0.95 and [xj is the largest integer less than or equal to x.

Considering the four cases o f the restricted version, the single case o f both the 

unrestricted and the semi-restricted version, a total o f 9 * 30 * 6 = 1620 problem 

instances were solved.

Results

The results in Table 4 show the average, standard deviation, and maximum 

computational solution times for each set o f instances. The times are in seconds and 

exclude input and output time. Computational solution times increase approximately 

linearly with n for the unrestricted case, and in proportion to n2 for the semi-restricted 

case. These results confirm that JSSPET  algorithm finds optimal solutions for both the 

unrestricted and the semi-restricted cases for large random instances o f the problem 

within an average o f at most 20 minutes. Such result is made possible by the new 

optimality conditions extended from the single machine problem provided in this 

research, which enable us to prove the optimality o f the dynamic programming 

procedure. Data and optimal solutions for instances o f unrestricted and semi-restricted 

problems up to 500 jobs will be made available at www.schedulingresearch.com.
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For restricted problems with 5, 6, 7, and 8 jobs, finding an optimal solution is not 

guaranteed, but when compared with optimal solutions obtained through a mixed integer 

linear programming (MILP) formulation, it turned out the JSSPET algorithm found 

optimal solutions for many instances by applying the Restricted CDD procedure. Table 

4 shows the Average Deviations {AD) from the optimal solutions and their Standard 

Deviations (SD) for 30 instances per job size. The deviation is calculated as follows:

AD  =  [(JSSPETSolution  — Optimal Solution)/Optimal Solution] X 100%. Equation 28

In Table 4, AD  ranges from 8% to 26% but in about 30% to 40% of all the 

instances AD  is less than 5% from the optimal value. Data and both optimal and heuristic 

solutions will be available at www.schedulingresearch.com.

For restricted problems with 10 or more jobs, the JSSPET algorithm is evaluated 

based on how far its solutions are from a lower bound (LB). The LB used in this case is 

the optimal solution for the same instances but with a semi-restricted CDD. Recall that a 

problem instance’s solution with a restricted CDD will always be larger than the same 

instance with unrestricted or semi-restricted CDD. Table 5 shows the Average 

Deviations (AD) from the LB (the semi-restricted version) and their Standard Deviation 

(SD). AD  is calculated as follows:

AD = [(JSSPETSolution — LB solution)/LB solution] X 100%. Equation 29
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As shown in Tables 5 and 6, as the tightness factor h decreases, the CDD becomes 

tighter (i.e. problem is more restricted), and so AD  increases. Since the behavior o f the 

optimal objective function value for the restricted version o f the problem is unknown, 

using the solution o f the semi-restricted version as an LB for the restricted one tends to 

underestimate the performance o f the JSSPET algorithm. Therefore, this LB needs to be 

used carefully, and a better LB can be pursued in future research. Note that in Table 5, 

for small problems with restricted CDD and when n = 6 jobs, the average deviation is 

higher than other problems, and this result was due to having 80% of the 30 random 

instances unbalanced and 20 % balanced. Therefore, the performance o f the heuristic was 

worse than other problem sizes.
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Table 4 Computational Times for the Unrestricted and Semi-restricted Cases.

Jobs
Unrestricted Semi-restricted

Average Deviation Maximum Average Deviation Maximum
(sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

n = 5 0.004 0.007 0.016 0.6230 1.1485 2.6698
n = 6 0.004 0.007 0.016 0.7674 1.2943 2.8778
n = 7 0.006 0.008 0.016 1.1335 1.5152 3.0914
n = 8 0.006 0.008 0.016 1.2123 1.6205 3.3062

n = 1 0 0.006 0.008 0.016 1.4929 1.8597 3.7322
n = 20 0.014 0.005 0.016 4.9724 1.9837 5.7373
n = 50 0.029 0.007 0.047 19.9488 5.5026 32.9513

3 1! O o 0.056 0.008 0.063 67.1799 9.2983 74.6444
11 = 500 0.294 0.014 0.359 1299.8607 63.9390 1590.2551

Table 5 AD and SD for the Small problems, Restricted Version.

Jobs
Restricted

h = 0.70 h 0.80 h = 0.90 h = 0.95

AD SD 11) SD AD SD AD SD

n = 5 11.72% 12.54% 11.02% 20.20% 12.79% 11.49% 19.49% 20.59%
n = 6 15.68% 17.29% 18.19% 19.30% 22.25% 21.84% 26.00% 32.43%
n = 7 13.10% 10.28% 12.88% 8.00% 17.82% 12.53% 21.89% 17.83%
n = 8 14.05% 11.30% 11.09% 12.43% 12.15% 12.75% 18.09% 20.89%
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Table 6 AD and SD for the Large problems, Restricted Version.

Jobs

Restricted
h = 0.70 h = 0.80 h = 0.90 h = 0.95

AD SD AD SD AD SD AD SD

n =  10 95.18% 18.27% 60.03% 12.83% 36.93% 15.13% 28.42% 10.81%
n = 20 77.45% 26.84% 49.82% 19.47% 28.11% 17.64% 20.83% 17.63%oVIIIC 55.22% 18.17% 34.18% 18.57% 18.78% 15.89% 12.98% 15.38%

n =  100 44.76% 14.29% 24.26% 10.19% 10.73% 9.93% 6.06% 7.28%
n = 500 34.52% 4.43% 17.07% 3.33% 6.06% 2.05% 2.73% 1.41%
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The Balance Ratio (BR) can be defined as the ratio between the summations o f the 

processing times o f the operations to be performed before the CDD in Machine 1 and in 

Machine 2 as shown in equation 30:

BR = (Fj + A, )/(F2 + A2 ) Equation 30

The closer BR is to one, the more balanced the problem is. In a balanced 

problem, the total amount of processing time before the CDD in both machines is similar, 

allowing for an even utilization o f both machines and then decreasing the value o f the 

objective function. For the restricted version o f the problem, the more compact the 

schedule is, the less the tardiness cost is, and hence, the less the objective function value. 

For balanced problems, the JSSPET algorithm is able to find compact schedules with less 

tardiness costs. On the other hand, the JSSPET algorithm underutilizes the machines 

when the problem is less balanced, increasing the tardiness costs. The relationship 

between BR and AD  is shown in Figure 8. Either Machine 1 or 2 is underutilized 

depending on the value o f BR. If BR > 1, then Machine 2 is underutilized, and if BR < 1, 

then Machine 1 is underutilized. Because o f this behavior, the relationship takes the form 

o f a quadratic trend line equation with correlation coefficients close to 90% for the sets 

with 50, 100 and 500 jobs.

Additionally, it can be seen that for 50, 100 and 500 jobs, the more balanced the 

problem is, i.e. the closer BR is to 1, the smaller AD  becomes, and as the number o f jobs 

increases, AD  decreases. Low A D values for larger number of jobs can be explained by
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the fact that the higher the numbers o f jobs, the higher the chances are to find processing 

times from the uniform distribution, and therefore, more balanced loads on both 

machines. For these problems, JSSPET  finds solutions closer to the LB.

21%
Average Deviation (AD)

18%

15%

12%

•  500 Jobs 

& 100 Jobs

* 50 Jobs

 Regression 50 Jobs

Regression 100 Jobs 

11 ' ““ Regression 500 Jobs

6%

3%

0%
0.80 0.90 1.00 1 .1 0 1.20 1.30

B alance R atio  (BR)

Figure 8 Relationship between AD and BR.
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CHAPTER IV 

MULTI-AGENT SYSTEMS

Distributed Computing (DC) has recently been used to solve complex scheduling 

problems that arose in both industry and theory. As stated by Sousa and Ramos (1999), 

scheduling of manufacturing systems matches a distributed problem from the physical 

and from the logical point o f view. In this sense, DC has already given some answers to 

the problem of how to efficiently implement communities o f interactive systems. A new 

research area has appeared to cover the problem posed by the integration o f Artificial 

Intelligence (AI) and (DC); this area is the Distributed Artificial Intelligence (DAI).

Davis and Smith (1983) suggested that DAI methodologies lead to two different 

approaches: Distributed Problem Solving (DPS) and Multi-Agent Systems (MAS). In 

DPS, there is a set o f modules or nodes co-operating to solve a specific problem. The 

knowledge about the problem and its solution is divided among all nodes o f the system. 

In MAS, however, the distinction between problem solving and co-operation is much 

clearer. The attention is on the coordination process between intelligent autonomous 

agents. The negotiation between different agents is one o f the most important problems 

to solve in DAI.

Two main processes can be considered as the most important in a DAI approach: 

control and communication (Decker 1987). Based on the characteristics o f the control 

process, Crowe and Stahlman (1995) defined three types o f controlling tasks: 

hierarchical, heterarchical and quasi heterarchical as described in Figure 9. They 

proposed the last one to combine many o f the advantages o f hierarchy and heterarchy,
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with few o f their disadvantages. In their approach, four categories o f distributed control 

strategies have been identified: sequencing, bidding, negotiation and cooperation.

Quasi Heterarchical

i  i  i  A Tft'

Heterarchical

A  i  4  A  4

Figure 9 Controlling tasks in DAI (Crowe and Stahlman 1995).

As was shown in Table 2, most of the research carried out concerning JSSP, 

solved by using a multi agents approach defines jobs and machines as agents, regardless 

o f which control strategy is executed. Pinedo (2002) proposed a general framework to 

describe what he named Market-based and Agent-based procedures for scheduling. In 

his framework, both jobs and machines are considered as agents interacting in a market, 

where Job Agents need specific tasks to be performed, and Machine Agents have the 

capacity to carry out those tasks.

The approach proposed in this research is based on a decomposition method, 

which uses an adapted version o f Lagrangean relaxation suitable to handle iterative 

auctions. The basic idea is to localize and distribute the operational scheduling decisions, 

leaving the complexity to local decision makers, while maintaining a simple and generic 

coordination mechanism at a central site. This approach is considered distributed since 

each local decision maker supports their decisions on a local utility, which is based on 

both local preferences and global constraints. Specifically, each decision maker has a

Hierarchical

f iu  A A 6

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



51

local problem to maximize their expected total reward which is subject to local 

constraints. This is then communicated to the central coordinator as a “bid.” The central 

coordinator (the auctioneer) is a bid processor that makes resource allocation based on an 

iterative auction process using the bidding information. Figure 10 shows the proposed 

approach with a job shop scheduling problem considering 5 jobs and 2 machines.

Global Objective Function

Job 1

Job 2

Job 3

Job 4

Job 5

Machine 1

Machine 2

Lagrangean Relaxation
Bidding
Process

Objective Function Job 3

Objective Function Job 4

Objective Function Job 2

Objective Function Job 1

Global Optimization Formulation Decentralized Formulation

Figure 10 Decomposition strategy for a job shop scheduling problem.

An integer linear programming formulation (ILPF) o f the job shop scheduling 

problem is used to schedule jobs by using combinatorial auctions in a distributed control 

fashion. Initially, the ILPF needs to be relaxed by an easier to solve and separable 

version. In general terms, relaxing a linear problem means to replace a set of 

complicated constraints with a penalty term in the objective function involving the 

amount o f the violation o f these constraints. Then, the relaxed problem can be solved, 

and it provides either upper or lower bounds on the optimal solution o f the original 

problem (Fisher 1985). This method is known as Lagrangean relaxation, and it is used to 

replace the machine constraints in the global formulation of the ILPF (See Figure 10)
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with a penalty term in the objective function. This new problem is separable in terms of 

jobs, and it is easier to solve. Once the original problem has been separated at the job- 

level, each one o f these problems can be optimally solved in an independent way. Based 

on this solution, each job agent bids for a specific subset o f resources in an auction 

procedure. As shown, the Lagrangean relaxation is used as a way to separate the 

problem, not only facilitating its solution, but also allowing for a parallel procedure to 

solve it. The combinational auctions procedure takes advantage o f this parallelization to 

find optimal or quasi-optimal solutions for the global job shop scheduling problem.

This approach can be classified as having a quasi-hierarchical control. There is an 

auctioneer who controls the pricing process, and jobs agents are bidding for the resources 

as shown in Figure 10. By using a bidding process, prices o f the resources are updated 

by the auctioneer in an iterative procedure.

Some auctions sell many assets simultaneously. As Rothkopf et al (1998) once 

pointed out, the assets and their bids are different, depending on which other assets the 

bidder wins. For instance, in the radio spectrum auctions, a license for the Philadelphia 

region may be much more valuable to a company if it also has a license for the New York 

and/or the Washington region (Rothkopf et al, 1998). In this situation, the value of an 

asset is increased if another group o f assets is won. Because of this fact, when 

simultaneous sales are designed, allowing single bids not only for individual assets but 

for combinations o f assets, the possibility o f synergy in values could increase. These 

kinds o f bids are called combinational bids, and the auction process is known as 

combinational auctions (Rothkopf et al, 1998).
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Likewise, in a job shop scheduling problem, job agents may demand a 

combination o f resources (most o f the times machines) to process their operations.

Hence, the proposed approach needs to deal with a situation in which job agents bid for 

multiple resources that have interdependent valuations. In a combinational auction, 

bidders demand a set o f indivisible objects with a single bid.

As an example, consider the job shop scheduling problem already presented in 

Table 3 with 2 machines, 5 jobs, and an unrestricted CDD equal to 17. In this problem, 

job 1 should bid for 2 continuous time slots from Machine 2 (t= 1 to t= 2), and 4 on 

Machine 1 (t= 14 to t= 17) in a single bid. For job 1 to be completed on the CDD (t= 17), 

time slots on Machine 1 and 2 have interdependent values. Also, job 1 is required to win 

both sets o f time slots in order to maintain the technological order and non-preemption 

constraints since its completion requires processing time on both machines in its given 

technological order. In a similar way, the remaining jobs have interdependent values for 

their time slots. Even more, jobs 1, 3, and 5 will compete for time slots on Machine 1 

close to the CDD, and Jobs 2 and 4 will compete for similar time slots on Machine 2.

In most o f the resource allocation problems, competitive equilibrium prices are 

known to exist and auction procedures are aimed to reach one of these equilibrium prices 

in an efficient manner. For assignment problems, Bertsekas (1988) had shown that the 

prices obtained at the end o f the bidding process are the approximate optimal dual ones of 

the primal problem. However, Wellman et al (2001) have shown that these prices may 

not exist in a general combinational auction when agents demand a bundle of 

interdependent and indivisible objects. A set o f conditions needs to be met for the
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equilibrium prices to exist. Wellman et al (2001) enumerated three general conditions for

a resource allocation problem to have equilibrium prices as follows:

• Agents (job-agents in this research) make their own decisions about how to bid based 

on the prices and their own relative valuations o f the goods (time slots). It means 

they can make effective decisions with local (private) information, without knowing 

the private information and strategies o f other agents.

•  Communication is limited to the exchange o f bids and prices between agents and the 

auctioneer.

• In specific cases, the auctioneer can reveal the information necessary to achieve the 

optimal or come within some tolerance o f the optimal.
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Methodological approach

In this chapter, the job shop scheduling problem with earliness and tardiness 

(JSSP E/T) over a common due date (CDD) will be addressed using an auction-based 

method. In this research, a dynamic or progressive mechanism is proposed (Demange et 

al 1986) since a number o f iterations are carried out before allocating objects to bidders. 

Objects are the discrete time slots on the machines, and bidders are the job agents. Also, 

an auctioneer is the coordinating agent or the seller who interactively updates the prices 

o f the resources. Based on the current prices, each job agent tries to find the best 

combination of time slots on the machines so as to maximize their own utility function. 

The auctioneer evaluates bids from all the jobs and updates the reservation prices (the 

maximum price job agents are willing to pay for the time slots) after resolving the 

conflicts among their requests. This process is repeated in an iterative way until a 

conflict-free allocation is found. As expected, job agents have inter-dependent values, 

and different combinations o f time slots present different values. Further, note that in a 

JSSP, precedence and non-preemption constraints restrict the combinations o f time slots 

on which each job can bid.

In the worst case, an auctioneer offering n assets could receive bids on 2" -1  

different combinations o f assets (this follows from the fact that the total number of

n /  \
vM ndistinct subsets on a set o f n elements is given by the binomial sum 2_, = 2", and the

empty set is not considered). Bid evaluation could present a computational problem 

when n is large. Moreover, it has been shown that finding the revenue-maximizing set of 

non-conflicting bids is a NP-Hard problem by itself (Rothkopf et al 1998).
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Problem Formulation:

In order to implement the auction approach, first, the integer linear programming 

formulation needs to be presented. The following formulation was modified from 

Pritsker et al (1969) to incorporate earliness and tardiness within the problem. The 

notation listed below is adopted:

/ = j o b  agent (bidder) index, i = 1,..., n, where n is number of jobs 

j  = operation index, j  — 1,..., nh where nt is the number o f operations o f job i 

t = time slot index, t=  I,..., T, where T  represents the length of the planning 

horizon during which all the jobs can be completed 

k  = machine index, k  = 1, . . ., m, where m is number of machines (therefore there 

are T*m time slots for bidding)

CDD = Common due date

one = the operation o f job i that requires machine k

my = machine required for operation j  o f job /, olk = j  if m,j = k

Pij = processing time for operation j  o f job i

r, = release time o f job i

Bij;a,b = operation bid, a combination o f time slots from time slot a to time slot b 

for operation j  o f job i 

Bt = job bid, a collection o f operations bids (a combination o f time slots 

demanded by job i)

The time slots available from the machines can be defined as a set o f pairs 

(machine, time slot). Therefore, each possible bid B, from job agent i is a subset o f the 

following object set:
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O = {(k, t): \ < k  < m, l< t < T]

Also, each operation bid is a subset o f machine my s object set:

Omij={{rnipt) - \< t< T }

Since preemption o f operations is not allowed, the operation bid is restricted as 

follows:

Bij a.b = {(my, t): l< a < t< b < T ,b - a + p i j - l }

Thus, job f  s overall bid is a limited combination o f allowed operation bids:

Bi =  u  . B, E q u a t i o n  31
J-ai j +i> * , j  1 " J

Precedence constraints between consecutive operations are defined in the 

condition o f the set definition.

For example, using the JSSP presented in Table 3 and with the same CDD, job 1 

needs to send two bids to the auctioneer as follows:

BU:1,2 =  {(m„ = 2 , t): 1<  1 <  t <  2 < T, b =  1+  (pn  =  2) - 1}

Bi,2:i4j7 = {(mi2 =1, t): 1 < 14 < t < 17 <T, b = 14+ (pn = 4) - 1}

Note that the bid itself guarantees both the precedence constraint and the non

preemption constraint for job 1.

Recall that in this research, a job incurs in a tardiness cost if  its completion time is 

after the CDD and in an earliness cost when its completion time is before the CDD. 

Therefore, job f s  utility function can be defined as follows:
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U,(B,) = ~ (caEtfBO + f i T , m - P W Equation 32

where Pi(Bj) is the total payment if  the demanded time slots in bid B, were 

awarded to job i. The first two terms account for the total unweighted earliness and 

tardiness cost attributed to job i by demanding B, (in our case, a, and /? equal to 1 for all 

jobs). Note that each job must trade off possible savings on CDD performance with 

payments due to resource usage. The best bid for job i is one that maximizes the utility 

function defined above, which in equation 32 could be better explained as a cost 

minimization problem as defined in Equation 33.

Based on the notation given, the decision variable X ijt is defined as:

Xyt = 1 if operation j  o f job / completes in time period t; 0 otherwise. Yl]m = 1 if 

operation j  of job i is processed on machine m. ET, is either the earliness or tardiness cost 

(a job cannot be early and tardy at the same time). The objective function and constraints 

are:

C,(B,) = (aiEi(Bi) + p,T,(B,)j + P,(B) Equation 33

Min ^  ETt
n Equation 34

T Equation 35

E I] > C D D -C ^ tX m̂ Piii)  V /
T Equation 36

r Equation 37
I X  = i v /.y

ik
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T T Equation 38
YjtXm + P>f - Z/Xr< v/> 7 + 1

Equation 39
ZZ 'ZZ Z V ^ 1 Vw-*
/=1 y=l /=! ;=1 /’=/+l
T Equation 40

Y j tXn>~Pix+ri V/

X ^e{0 ,l}  V i , j ,  t. Equation 41

Equation (33), the objective function, minimizes the penalty o f either earliness or 

tardiness cost based on the completion time o f the last operation n, for job i in a period t. 

Constraint sets (34) and (35) imply the minimization o f the absolute deviation from the 

CDD. Constraint set (36) implies that each operation for a job can be completed in only 

one time period. These are individual knapsack constraints, one for each operation o f 

each job. Constraint set (37) is the precedence constraints for each job, and these 

constraints ensure that the completion times o f the two consecutive operations are 

separated by the processing time o f the later operation. Constraint set (38) ensures that, 

for each machine, in each time period, the capacity of the machine is not violated. 

Constraint set (39) ensures that the first operation cannot be completed before the job has 

been in the shop for at least the processing time o f the first operation. Constraint set (40) 

defines the binary decision variables.

Bid construction. A useful computational idea from the 1970s is the 

observation that many hard combinatorial optimization problems can be viewed as easy 

problems complicated by a relatively small set o f constraints. Dualizing these constraints 

(i.e. adding them as penalty terms into the objective function) produces a Lagrangean 

problem that is easy to solve and whose optimal value is a lower bound, for minimization

Algorithm
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problems, on the optimal value o f the original problem (Fisher 1981). Here, this idea is 

used to relax the machine capacity constraints in order to obtain pricing information 

included in the penalty terms, as well as a decomposable set of jobs problems. This 

decomposition allows each job to act as an intelligent agent that attempts to find its way 

through a shop comprised o f machines. All job agents in the shop have the ability to 

communicate directly with a central coordinator, i.e., the auctioneer managing the set of 

machines. The goal o f each job agent is to maximize its own utility. The utility for the 

central coordinator is earned from the job agents’ demand on the machines. If  there were 

no conflicts in resource requirements for each job agent, then each one o f them could 

compute completion times on each machine, and putting together these individually 

created job schedules could create the entire schedule. However, in a heavily loaded 

system, there will always be resource competition; hence, it is unlikely to create a 

feasible schedule in this manner.

A mechanism that can align the actions of these job agents in a global direction is 

required. By relaxing the machine capacity constraints, a Lagrangean Dual (LR) problem 

is created and the price o f the time slot t on machine k  is recorded in a vector X kt- Once,

X kt, the prices vector, is given, the objective o f LR is separable for each job.

Furthermore, (4), (5), (6), (7), and (8) are already separable in terms o f jobs. Then, LR 

can be decomposed into sub-problems for each job containing a piece of objective o f LR 

(See Figure 1) and a subset o f constraints from the global sets (4), (5), (6), (7), and (8). 

Given X kt, the sub-problems can be solved independently since they do not interact. The 

best choice o f X kt would be the optimal solution to the dual problem.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



61

Bid calculation. Assume a price vector Xkt has been assigned to each 

machine k  for each time slot t. Each job needs to determine the minimum cost, as well as 

the time to be completed and to leave the shop, subject to precedence, non-preemption, 

and arrival time constraints. Once the solution o f the job sub-problem is found, it is used 

to compute bids. Time slots on a particular machine that the job requires are the objects 

desired in the auction; a bid is nothing but the objects desired and the amount each job 

agent is willing to pay for the objects. The objects requested by the job agent are 

intervals comprising start time and completion time on each machine that it requires to be 

completed. The amount the job is willing to pay is the minimum cost computed as the 

objective o f the job sub-problem. Thus, the bid can easily be constructed once the job 

sub-problem is solved.

Price calculation. The purpose of price adjustment is to ensure that the 

resource prices X kt are at an optimal level, beyond which a job agent finds it too 

expensive to use, while at the same time maximizing the revenue the auctioneer earns.

The revenue earned by the auctioneer is a function o f the amount the jobs are willing to 

pay for the objects’ bid. If  all the resource prices X kt are set to zero for each time slot on 

each machine, it implies that the cost o f increasing capacity on each one of them is zero, 

and the schedule generated will have a lot of overlaps. On the other hand, if the value o f 

Xut is increased sufficiently, then a schedule will be generated where the job completion 

times are spread out due to different cost structures for each job agent. The adjustment o f 

price for time slots also has an economic interpretation. I f  there are multiple bidders that 

desire the same object, then it is to sellers’ advantage to increase the price until it is equal
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to the highest valuation of the object among all bidders. However, the auctioneer does 

not have knowledge o f the highest valuation because o f asymmetry o f information 

imposed by the distributed architecture. This is where auctions are helpful to maximize 

the revenue earned from objects with unknown valuation. At each round o f bidding, 

checking the overlap for each time slot on each machine determines the direction in 

which the prices need to be adjusted. I f  more than one job demands the same object, the 

price o f the slot can be increased. On the other hand, if the price is increased too much 

and all the bidders find it too expensive to bid, then the price needs to be reduced. Using 

the direction o f surplus or deficit o f demand to adjust prices can result in reducing 

resource contention. A step size can be used for increasing or decreasing the prices in 

successive iterations in the direction o f surplus or deficit. The goal o f price updates is to 

reduce resource conflicts when the same time slot is demanded by more than one job 

agent. As it was explained, a bid defines a set o f objects (time slots) demanded for each 

job agent, so one way to update prices is to adjust them according to excess job demand,

i.e. number o f job agents that bid for a certain time slot minus the total capacity o f the 

machine. Generally, the auctioneer raises the prices in proportion to excess demand as 

follows:

Dt, _1 Equation 42
<=i

where is 1 if  job i demands time slot (k, t) in its optimal bid, 0 otherwise. 

Since excess demand can be negative, it is possible to reduce prices for time slots which
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do not have enough demand. Given that no object can be sold with a negative price, only 

nonnegative prices are considered and the strategy to adjust prices can be defined as 

follows:

where r is the iteration number, a n d /is  the price adjustment function increasing 

in current excess o f demand D j .  Based on the form off  different auction protocols that 

govern the progress can be defined.

When the function/is defined as a constant multiplier times the current excess 

demand,

where s is called the price adjustment factor or step parameter; the auction 

protocol is named the standard Walrasian tatonnement. This protocol, under a pure 

exchange economy with continuous demand is known to converge to an optimal 

(equilibrium) allocation. When the auctioneer makes aggressive price updates in early 

iterations to quickly assess the overall demand status among jobs agents, the protocol is 

named adaptive tatonnement. The protocol follows smaller adjustments (low s values) in 

later iterations to fine tune the quality o f allocation. On the other hand, when there is no 

price discrimination, the protocol is named regular tatonnement, otherwise (with price

Equation 43

Equation 44
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discrimination) named augmented tatonnement. Based on the definition o f the price 

adjustment function, there are two types o f auction protocols, standard and adaptive. 

Also, based on the payment function, there are two alternative utility functions, regular 

and augmented.

In order to use an augmented tatonnement, some properties o f the JSSP E/T 

CDD’s optimal solution need to be stated. To characterize the optimal solution when the 

CDD is restricted, two properties are defined. Let’s define Im as the set o f jobs to be 

finished on machine m, to be scheduled around the restricted CDD. Also, let Mm be the 

set o f jobs to be finished on machine m. Clearly, /„, c= Mm.

Property 1. Jobs in /„, are scheduled without idle time.

Proof. By contradiction and similar to the approach used by Baker (1997), and 

similar to the two-machine proof presented earlier in this dissertation, assume that there 

exists an optimal schedule S  with an idle interval o f length I between consecutive jobs a 

and b to be finished on machine m, with b following a ;a ,b c z  /„„ and all the predecessors 

o f a and b already scheduled at the first m — 1 machines. If  job a is early, its completion 

time on machine m is less than the CDD, i.e. Cma < CDD, then the total penalty cost can 

be reduced by shifting job a (and any jobs that precedes it) later by an amount At, where 

At < Min (/, CDD - Cma) without affecting the feasibility o f S. Denoting the values after 

the shift with primes, it follows that T„,k ■ = Tmk and Emk- < E„,k strictly for at least one job 

to be finished on machine m. Similarly, If job b is tardy (C,„/, > CDD), then the total
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penalty cost can be reduced by shifting job b (and any jobs that follows it) earlier by an 

amount At, where At < Min (t, Cmb - CDD), without affecting the feasibility o f S. Hence, 

it follows that Emk' = i w  and Tmr  < Tmk strictly for at least one job to be finished on 

machine m. Since any schedule must have either job a early or job b tardy, then schedule 

S  can be improved, and therefore, it cannot be optimal.

P roperty 2. The optimal schedule for the jobs in Im is weakly V-shaped, where 

a schedule S  is weakly V-shaped if  all jobs completed before the 

CDD are in decreasing order o f their last operation’s processing 

times (LPT), and all jobs that begin their processing after the CDD 

are in increasing order o f their last operation’s processing times 

(SPT).

Proof: By contradiction and similar to the approach in Baker (1997), and similar 

to the two-machine proof presented earlier in this dissertation, assume S  denotes an 

optimal schedule in which some adjacent pair o f early jobs in Im is not in LPT order.

Then, a pairwise interchange o f these two jobs will reduce the total earliness penalty and 

leave the tardiness penalty unchanged on machine m without affecting the feasibility o f S. 

Similarly, if  S' is an optimal schedule containing an adjacent pair o f jobs that starts late in 

Im and that violates the SPT order, then an adjacent pairwise interchange will reduce the 

total tardiness penalty and leave the total earliness penalty unchanged on machine m. In 

either case, S  cannot be an optimal schedule.
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Based on these two properties, a price discrimination process can be defined. It is 

easy to note that there will be more bids on slots closer to the CDD than on the others. 

Therefore, in order to prevent some jobs agents from competing for those time slots, a 

higher price could help to better allocate these time slots. Two facts should be 

considered. First, there is a zone on each machine k  [CCD -  wk, CDD + \\>k] where X kt ^  

0, and second, there will always be job agents willing to pay for being processed during 

that time interval. Job agents finishing on each machine k  with shorter processing times 

will find it more profitable to bid higher for time slots on that interval. Figure 11 shows 

different alternatives when two jobs, to be finished on machine k, are bidding for time 

slots close to the CDD. Note that the prices are given by the iterative price calculation 

step in the bidding process. The processing time o f Job /’ s last operation is 2 while for 

Job i+1 is 4. In this case, both o f them want to be finished on time; their costs (including 

the costs associated to their final operations and the earliness costs) are shown in the 

upper right part o f the graph. Clearly, job i will be willing to pay up to 3.6 more (1.8 per 

time slot) to win the two time slots before the CDD while job i+1 is willing to raise its 

bid 1.6 more (0.4 per time slot). Hence, it is to the auctioneer’s advantage to place a 

higher price for the time slots close to the CDD so that job agents with higher value can 

get the slots. The auctioneer might be willing to increase the prices placed for time slots 

on machine k  in the zone [CDD -  2, CDD + 2] to make additional profits.
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Machine k

CDD

Job / Job i+ 1

Job i + 1 Job i

0.1 0.1 0.1 0.3 0.3 0.3

Job i Job i + 1

Machine 
k Cost

ET
Cost Total Machine 

k Cost
ET

Cost Total

0.2 4.0 4.2 1.0 0.0 1.0

0.6 0.0 0.6 0.6 2.0 2.6

0.2 0.2 0.2 0.2 0.2 0.2

Figure 11 Example of the price discrimination process.

In order to define a price discrimination process, two parameters need to be 

defined, the value of w and the amount o f the increasing. The first parameter, w, needs to 

be a function o f the number o f job agents bidding for their last operation on each machine 

k. The largest the number of job agents bidding, the largest the value o f w for that 

machine. The amount o f the price increasing can be defined according to a non-linear 

function. Time slots closer to the CDD (i.e. those slots on the interval [CCD -  w, CDD + 

wj) have a higher, value and the price decreases as time slots are more distant from the 

CDD.

Let FPTk be

FPTk = ^  p m Equation 45
V( :.min.=k '

where FPTk is the total processing time for all the final operations to be processed 

on machine k. Based on that, Wk can be defined as:
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where q is an amplitude factor which is initially fixed at 0.2 (this value was 

obtained from the calibration process with the known optimal solutions o f small 

problems), and |_x j  means the integer lesser or equal to x.

Also, an exponential decay function shown in equation 46 is used to define the 

price increasing factor as follows:

Akl = 2 £'°-007lC£®-'l Equation 47

If the time slot is close to the CDD (i.e. t ~ CDD), then the value o f the increasing 

factor is 2, which means the price is doubled. As the time slot gets far from the CDD, the 

value o f the factor tends to 1 (i.e. the price for that slot stays the same). This factor is 

applied on the interval [CCD -  Wk, CDD + w*]. Based on this price discrimination, an 

augmented tdtonnement utility function is defined.

Even with price discrimination, this price updating process might oscillate and not 

achieve convergence o f the price vector. This is where the use o f mathematical 

programming tools can help in designing a price adjustment scheme, where each iteration 

brings the prices closer to optimal allocation. In general, given a feasible schedule, the 

auctioneer would be able to calculate the optimal prices for each machine. However, this 

is not a trivial problem, and the step parameter s on equation 43 needs to satisfy certain
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conditions in order to get a good convergence to the optimal Lagrangean dual prices, i.e. 

the optimal prices o f the time slots for each machine. Fisher (1985) shows that an 

effective value is:

where a r is a scalar value satisfying 0 < a r < 2, UB, and LB are upper and lower 

bounds to the problem, and D t  is the excess demand. The lower bound can be calculated 

by adding all the job sub-problem optimal solutions. The upper bound can be calculated 

either by using the objective function value of the capacity feasible schedule or by using 

the optimal solution o f the global problem. In the last case, the auction procedure reaches 

the equilibrium prices faster. Based on this price adjustment, an adaptive tatonnement 

auction protocol is defined.

The algorithm can be summarized as follows: during the progress o f the auction, 

each job agent i solves its locally constrained utility maximization problem to find the 

best combination o f resource-time slots (B *,•) given a resource price vector. All the job 

agents then submit their optimal bids to the auctioneer, who collects the new bids, 

computes and announces the updated resource prices, then proceeds with the next 

iteration. The optimal bids are B*, = B ) (Xm) computed from current machine time slot 

prices announced by the auctioneer.

/
U B -L B

Equation 48

V k I J
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Steps

1. Initialization: r  = 0 ,2ikt = 0, k= 1,..., m; t= 1,..., T; a r = 2.

2. With the prices (A,m) job agents solve their optimization problem. The

solution is a job-level schedule.

3. The auctioneer combines all the bids and generates a capacity infeasible 

schedule. Objective function value plus total payments eventually to be 

done by job agents are equal to the lower bound (LBr).

4. Capacity-feasible schedule done by the auctioneer (NP hard in general). 

Objective function value is equal to the upper bound (UBr).

5. Updating the upper bound UBr and ar if  necessary.

6. The auctioneer calculates the excess demand Dkt vector and updates the

prices (Akt).

7. The auctioneer checks if the stopping criterion is satisfied. If  not, the 

auctioneer starts the next iteration. Otherwise, he stops, and announces 

the best feasible schedule.

Example

In order to illustrate the proposed approach, the problem presented in Table 3 will 

be used. Recall that the problem had 2 machines, 5 jobs, and now the CDD is equal to 8, 

a restricted CDD. In this example, an adaptive price adjustment function, and a regular 

payment function will be used. A lower and upper bounds need to be defined in order to 

implement the adaptive version. Five job agents are created, the auctioneer will manage 

two machines (m = 2), and he will receive bids for 22 time slots (T=  22) on each
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machine, 44 slots in total. T  is defined based on an approximate value for the makespan, 

plus a value accounting for the processing time o f  the jobs expected to be late.

Initially, the iteration counter is set to zero, /I®,, the prices vector is also set to 

zero, and ao is set to 2. Next, the 5 job agents solve their optimization problem. In this 

case, they try to minimize the earliness and tardiness cost, as well as the payment for the 

utilization o f the two machines. Since the resource prices are all zero, only Jobs 4 and 5 

will be late with one time unit each. Jobs 1, 2 and 3 will all be on time.

Figure 12 shows the capacity-infeasible schedule constructed by the auctioneer 

after the first iteration. As shown, while the job level schedules satisfy non-preemption 

and precedence constraints, the machine capacity constraints are violated in some time 

slots. Based on this schedule, the auctioneer calculates the lower bound LBo, which is 

equal to 2 (earliness and tardiness penalties plus the payment for the two machines 

utilization).

CDD

J5

M 1
J3

J2

J5
M 2 J4

1 2  3  4  5 6  7  8  9  10 11 12 13 14 15 16 17  18 19 2 0  21 22

Figure 12 Capacity-infeasible schedule at first iteration.
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Figure 13 shows the schedule with restored feasibility found by using the ranking 

procedure. Also, based on this restored schedule, the auctioneer calculates the upper 

bound UBq, which is equal to 29.

CDD

Illllll illiiu Rill
—  | . J5

i l l
... : J 5  ' i l l  J4 1

1 2  3  4  5 6  7 8 9 10 11 12 13 14 15 16 17 18 19 2 0  21 22

Figure 13 Capacity-feasible schedule.

Figure 14 shows the prices o f the resources after the first iteration and at the final 

iteration. As shown in Figure 12, Jobs 1, 3, 4, and 5 are bidding for time slot 5 on 

Machine 1; Jobs 1, 3, and 5 are bidding for time slots 1 and 2 on Machine 2 and 6, 7, and 

8 on Machine 1. Based on their demand, the auctioneer updates their prices, which 

consequently, are the highest among all the time slots. This procedure effectively 

captures the desirability o f each time slot on each machine since the time slots that are 

highly demanded receive a higher value as shown in Figures 14a and 14b.
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(a). Price Profiles at the end o f the first 
iteration.

(b). Price Profiles at the end of the final 
iteration.

Figure 14 Price Profiles for the two machines.

a lT

Iterations

Figure 15 Price Profiles for Machine 1.
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Figure 15 shows the evolution o f prices for Machine 1. It can be noted how the 

auction procedure directs the job agents to bid for less attractive time slots, even if  they 

are far from the CDD. At iteration 30, when the stopping criterion is reached, the price 

profile shows higher prices for time slots closer to the CDD. These time slots are highly 

demanded since the job agents are willing to pay for them to avoid tardiness cost.
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Results

Sets o f problems with 2, 3, 4, 5, 10, 15 and 20 machines; 5, 6, 7, 8, 9, 10, 20, 50, 

100 and 500 jobs; with 30 problem instances per problem size were generated, in total 

1800 problem instances were created. The processing times were generated from a 

discrete uniform distribution U (l, 10), and the job routes were obtained from another 

discrete uniform distribution U (l, m). Similar to most random number generators use 

today, the processing times and job routes were generated by using random numbers 

coming from a linear congruential generator (Law and Kelton 2000).

Although defining whether a CDD in a JSSP is restricted or unrestricted is a NP- 

Hard problem by itself (Lauff and Werner 2004a), based on the optimal makespan or the 

lower bound for each JSSP instance, its CDD can be generated. Taillard (1993) describes 

a procedure to calculate a lower bound for the makespan as a function of the parameters 

o f the generated problem. Also, he conjectured that the lower bound found by using his 

procedure is tight enough if (n/m)—>oo and, therefore, can be used as an approximation of 

the optimal makespan.

After calculating the lower bound, the next step is to determine the CDD. Biskup 

and Feldmann (2001) proposed to use a more or less restricted CDD. A modification of 

their calculation can be used to generate each CDD as given in equation 49:

CDD = [h * LBj Equation 49
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where h = 0.7, 0.8, 0.9, 0.95; LB is the lower bound as described by Taillard 

(1993), and again [xj is the largest integer less than or equal to x. An unrestricted CDD

for a w-jobs m-machines job shop scheduling problem can be calculated as the sum of all 

processing times on all machines (Lauff and Werner 2004a). Then, with this value, the 

earliness and tardiness cost for the unrestricted problem can be calculated by using the

parameter to calculate the upper bound required in the auction procedure or as 

performance evaluation parameter.

Similar to the «-job 2-machins problem presented in Chapter 3, a Balance Ratio 

(BR) can be defined for larger problems. The BR for a «-jobs m-machines job shop 

scheduling problem can be defined as the ratio between the summations o f the processing 

times o f the operations to be performed on the machine, with the minimum summation 

and the machine with the maximum summation as shown in equation 50:

The closer BR is to one, the more balanced the problem is. In a balanced 

problem, the total amount o f processing time on each machine is similar (i.e. there is no a 

clear bottleneck machine), and in theory, an even utilization of all the machines could be 

reached, then reducing the value o f the objective function.

Kanet’s algorithm from Kanet (1981) on each machine. This cost can be used either as a

Equation 50
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For problems with a tight CDD (i.e. the CDD as defined in equation 18), the more 

compact the schedule, the less the tardiness cost and, hence, the less the objective 

function value is. For balanced problems, the auction procedure is able to find 

equilibrium prices, and for small problems (2 machines with 5, 6, 7, and 8 jobs; 3 

machines with 5 and 6 jobs), those prices correspond to the optimal dual solution when 

their known optimal solution is used as the upper bound in the auction procedure. Also, 

these optimal solutions were used to find a fit value o f the parameter a r in equation 47, 

which is required in the first step of the auction procedure. On the other hand, the 

auction procedure fails to find a feasible schedule with its corresponding equilibrium 

prices when the problem is less balanced (BR < 0.6), which accounts for 34% of the 

problems. For these problems, an augmented tatonnement utility function was used as 

defined in equations 44 to 46. Once this utility function was used, the improved auction 

procedure was able to find a feasible schedule and its corresponding equilibrium prices 

for 75% of the problems. Also, because o f computational limitations solutions for 

problems with 15 and 20 machines and 500 jobs were not found, these accounted for 3% 

o f the problems.
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Table 7 Performance of the auction procedure.
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Machines Jobs
CDD- 0.95*LB CDD- 0.9*LB CDD- 0.8*LB C D D -0.7* LB
AD SD AD SD AD SD AD SD

2 9 39.0% 19.7% 39.0% 25.9% 50.0% 14.0% 60.0% 39.2%
2 10 25.0% 22.9% 47.0% 19.6% 46.0% 22.9% 62.0% 11.5%
2 20 36.0% 13.1% 46.0% 34.9% 48.0% 30.1% 59.0% 41.1%
2 50 40.0% 5.7% 49.0% 12.4% 46.0% 20.5% 51.0% 40.4%
2 100 39.0% 4.9% 40.0% 22.7% 56.0% 15.2% 63.0% 15.6%
2 500 40.0% 22.0% 49.0% 12.7% 53.0% 38.7% 66.0% 32.9%
3 7 38.0% 5.4% 45.0% 24.1% 50.0% 39.4% 72.0% 16.0%
3 8 36.0% 20.6% 39.0% 11.6% 60.0% 29.5% 62.0% 28.4%
3 9 39.0% 9.2% 39.0% 21.4% 45.0% 22.5% 70.0% 13.6%
3 10 31.0% 14.7% 35.0% 15.8% 55.0% 32.4% 82.0% 16.5%
3 20 36.0% 11.0% 37.0% 30.8% 52.0% 31.0% 84.0% 28.7%
3 50 38.0% 22.1% 42.0% 26.1% 49.0% 16.2% 84.0% 17.7%
3 100 30.0% 7.8% 50.0% 28.0% 49.0% 16.8% 51.0% 34.4%
3 500 29.0% 14.3% 50.0% 27.3% 50.0% 14.2% 79.0% 17.0%
4 5 33.0% 17.5% 42.0% 28.7% 56.0% 22.6% 51.0% 12.6%
4 6 34.0% 16.1% 38.0% 18.4% 55.0% 14.2% 69.0% 37.2%
4 7 33.0% 14.8% 44.0% 17.1% 47.0% 21.2% 69.0% 23.0%
4 8 33.0% 11.3% 37.0% 33.3% 56.0% 22.7% 81.0% 35.5%
4 9 34.0% 14.4% 43.0% 31.4% 60.0% 11.6% 54.0% 19.4%
4 10 38.0% 23.6% 35.0% 27.7% 54.0% 19.7% 50.0% 33.8%
4 20 40.0% 10.9% 39.0% 28.1% 54.0% 27.1% 56.0% 23.5%
4 50 26.0% 15.3% 35.0% 16.1% 56.0% 13.3% 85.0% 22.7%
4 100 33.0% 15.2% 38.0% 12.3% 51.0% 22.5% 51.0% 21.4%
4 500 27.0% 21.5% 50.0% 22.2% 56.0% 17.6% 82.0% 37.6%
5 5 28.0% 8.0% 45.0% 33.1% 46.0% 37.0% 57.0% 15.7%
5 6 27.0% 18.5% 49.0% 29.6% 58.0% 15.1% 70.0% 14.5%
5 7 31.0% 5.3% 43.0% 11.3% 48.0% 21.3% 84.0% 30.9%
5 8 34.0% 14.7% 44.0% 27.9% 56.0% 36.6% 87.0% 24.3%
5 9 31.0% 12.7% 35.0% 11.1% 45.0% 11.9% 53.0% 12.3%
5 10 28.0% 21.7% 44.0% 28.5% 51.0% 38.1% 56.0% 30.2%
5 20 36.0% 19.9% 38.0% 17.4% 47.0% 29.5% 72.0% 41.3%
5 50 28.0% 5.1% 43.0% 26.0% 48.0% 21.3% 66.0% 11.9%
5 100 29.0% 5.1% 42.0% 23.7% 48.0% 21.9% 73.0% 17.8%
5 500 26.0% 23.4% 43.0% 22.6% 50.0% 16.1% 71.0% 41.9%
io 5 39.0% 8.9% 47.0% 20.9% 52.0% 18.0% 70.0% 44.0%
10 6 25.0% 7.0% 38.0% 24.1% 60.0% 18.1% 63.0% 26.5%
10 7 37.0% 16.8% 49.0% 30.0% 45.0% 25.2% 64.0% 19.6%
10 8 33.0% 8.9% 43.0% 34.6% 56.0% 14.4% 60.0% 13.3%
10 9 28.0% 21.4% 50.0% 27.4% 46.0% 29.2% 72.0% 35.9%
10 10 37.0% 23.8% 36.0% 23.0% 60.0% 31.0% 53.0% 31.1%
10 20 37.0% 22.9% 42.0% 24.0% 45.0% 28.8% 64.0% 13.4%
10 50 28.0% 13.8% 50.0% 12.2% 45.0% 27.1% 59.0% 30.1%
10 100 30.0% 11.6% 41.0% 21.0% 58.0% 37.5% 70.0% 32.9%
10 500 39.0% 19.2% 49.0% 30.2% 46,0% 17.7% 51.0% 41.9%
15 5 32.0% 16.8% 49.0% 10.1% 48.0% 16.2% 66.0% 33.4%
15 6 25.0% 12.5% 37.0% 12.2% 50.0% 20.6% 52.0% 22.9%
15 7 26.0% 17.0% 41.0% 30.6% 51.0% 31.5% 78.0% 16.9%
15 8 32.0% 22.6% 41.0% 20.1% 52.0% 18.1% 66.0% 44.7%
15 9 26.0% 20.3% 35.0% 11.6% 50.0% 27.9% 78.0% 25.5%
15 10 34.0% 19.2% 38.0% 24.1% 57.0% 28.8% 62.0% 40.5%
15 20 33.0% 6.0% 45.0% 28.0% 51.0% 34.2% 70.0% 29.3%
15 50 25.0% 20.5% 40.0% 29.3% 60.0% 33.4% 85.0% 13.8%
15 100 32.0% 4.5% 47.0% 19.5% 59.0% 19.9% 56.0% 20.4%
15 500 - - - - - - - -

20 5 31.0% 16.0% 37.0% 29.4% 54.0% 27.7% 61.0% 25.8%
20 6 40.0% 15.5% 38.0% 34.6% 60.0% 30.4% 69.0% 30.5%
20 7 37.0% 23.5% 48.0% 20.9% 45.0% 39.3% 52.0% 22.4%
20 8 36.0% 10.6% 37.0% 15.7% 58.0% 38.3% 71.0% 36.2%
20 9 38.0% 12.4% 47.0% 17.2% 47.0% 16.4% 63.0% 41.2%
20 10 39.0% 17.8% 48.0% 25.9% 55.0% 19.8% 61.0% 35.4%
20 20 36.0% 19.0% 50.0% 16.8% 52.0% 15.0% 57.0% 21.9%
20 50 39.0% 16.1% 41.0% 27.2% 48.0% 28.8% 81.0% 26.1%
20 100 30.0% 8.5% 36.0% 16.6% 52.0% 12.4% 84.0% 32.7%
20 500 - - - - - - - -
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For problems without optimal solution, the auction procedure is evaluated based 

on how far their solutions were from the earliness and tardiness cost for the unrestricted 

problem (ETURP). Recall that a problem instance’s solution with a restricted CDD will 

always be larger than the same instance with unrestricted CDD. Table 7 shows the 

Average Deviation (AD) from the unrestricted version and its Standard Deviation (SD). 

AD  is calculated as follows:

AD = [(Auction procedure Solution -  ETURP)/ ETURP] X 100%. Equation 51

Note that regardless o f the number of jobs and the number of machines, when the 

CDD is tighter in Table 7 (it gets tighter going from left to right), AD  increases because 

o f using the optimal solution o f their equivalent unrestricted problem to evaluate their 

performance. AD  does not seem to be affected when either the number o f jobs or number 

o f machines increases for the same tightness factor. In general, the bidding approach 

allows big problems to be decomposed in smaller problems and then be solved in 

parallel, and therefore, size (number o f jobs and number o f machines) does not seem to 

affect their performance. With better lower bounds or optimal solutions, a better result 

analysis can be carried out.

Figure 16 shows the behavior o f AD  for problems o f different sizes. In general, 

regardless o f the number o f jobs and machines, AD  increases as the CDD gets tighter. It 

does not change too much when the tightness factor decreases from 0.9 to 0.8, and in 

some cases, it even improves. However, when the factor decreases from 0.8 to 0.7, in 

most o f the cases, there is a big increase in AD.
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Figure 16 Results for m-machine «-job problems.
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Comparison between the two heuristic methods for small problems

Generally speaking, most of the problems to be solved in scheduling are classified 

as NP-complete. That is, there are no efficient algorithms to solve a NP-complete 

problem in a time that is expressed as a polynomial or pseudo polynomial function o f the 

size o f the problem (Garey and Johnson 1979). In the literature, there are different 

approaches to measure the effectiveness o f heuristic methods to solve NP-complete 

problems. For a heuristic procedure, it is important to evaluate how close the solution 

value is to the optimal value (Hall and Posner 2001), hence, finding the optimal values is 

decisive for this evaluation process. However, most o f the time, optimal solutions are not 

available, and different approaches need to be followed.

In this research, optimal solutions for small (up to 8 jobs) two-machine JSSP E/T 

problems with a restricted CDD were obtained earlier and used here to evaluate the 

performance o f the solutions o f the two proposed heuristic methods. For balanced 

problems (i.e. those problems with a BR greater than or equal to 0.95 and less than or 

equal to 1.05), both the JSSPET algorithm and the auction-based approach were able to 

find optimal or close to optimal solutions (within a 5% deviation from the optimal 

solution). The auction-based approach used an adaptive tatonnement protocol. In this 

approach, the known optimal solutions were used as the upper bound for the calculation 

o f the step parameter in the adjustment of the time slots’ prices during the iterative 

bidding process. This approach was able to find the equilibrium prices, i.e. the optimal 

solution for all the small problems and clearly outperforming the JSSPET  algorithm.
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Table 8 shows the Average Deviations (AD) from the optimal solutions and their 

Standard Deviations (SD) for the balanced problems per job size. AD  is calculated as in 

Equation 51, where Auction procedure Solution is replaced by either the JSSPET 

algorithm or the auction-based approach results.

For unbalanced problems, on the other hand, neither the JSSPET  algorithm nor 

the auction-based approach was able to find optimal or near optimal solutions when used 

with an adaptive tatonnement protocol. In the case o f the auction-based approach, 

equilibrium prices were not found for most o f the unbalanced problems. However, when 

the auction-based approach used the price discrimination process with 100 iterations as a 

stopping criterion, and the known optimal solutions as an upper bound, equilibrium prices 

and their corresponding optimal resources allocation were found for all the problems 

outperforming the JSSPET  algorithm. Table 9 shows the Average Deviations (AD) from 

the optimal solutions and their Standard Deviations (SD) for the unbalanced problems per 

job size.

It is clear that the auction-based approach did well because optimal solutions were 

used as an upper bound, and this will not be the case with large problems. Nevertheless, 

the benefit o f using the small problems with known optimal solutions in this section is to 

calibrate the algorithms, i.e., to manually and/or automatically alter the value o f the 

parameters in the auction-based approach in order to achieve a better performance for all 

the set of problems. The parameters to calibrate in the auction-based approach are q in
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Equation 46, the rate in the exponential decay presented in Equation 47 and ar 

Equation 48.
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Table 8 Performance of the auction procedure with small balanced problems.

Jobs

Balanced Problems Restricted CDD
h = 0.70 h =  0.80 h = 0.90 h = 0.95

JSSPET
algorithm

Auction-based JSSPET
algorithm Auction-based

JSSPET
algorithm Auction-based

JSSPET
algorithm Auction-based

AD SD AD SD AD SD AD SD AD SD AD SD AD SD AD SD
n =  5 2.56% 1.64% 0.00% 0.00% 2.00% 1.35% 0.00% 0.00% 1.95% 1.35% 0.00% 0.00% 1.71% 1.38% 0.00% 0.00%

n =  6 2.63% 1.47% 0.00% 0.00% 2.19% 1.65% 0.00% 0.00% 2.19% 1.58% 0.00% 0.00% 1.59% 0.99% 0.00% 0.00%

n =  7 2.76% 0.99% 0.00% 0.00% 2.21% 1.51% 0.00% 0.00% 2.25% 1.28% 0.00% 0.00% 1.85% 1.42% 0.00% 0.00%

n =  8 2 .88% 1.30% 0.00% 0.00% 2.44% 1.76% 0.00% 0.00% 2.27% 1.48% 0.00% 0.00% 2.01% 1.28% 0.00% 0.00%

Table 9 Performance of the auction procedure with small unbalanced problems.

Jobs

Unbalanced Problems Restricted CDD
h = 0.70 h = 0.80 h = 0.90 h = 0.95

JSSPET
algorithm

Auction-based
JSSPET

algorithm
Auction-based

JSSPET
algorithm Auction-based

JSSPET
algorithm Auction-based

AD SD AD SD AD SD AD SD AD SD AD SD AD SD AD SD
n = 5 20.22% 3.74% 0.00% 0.00% 19.71% 2.92% 0.00% 0.00% 20.77% 2.58% 0.00% 0.00% 20.36% 3.24% 0.00% 0.00%

n = 6 21.21% 3.34% 0.00% 0.00% 19.15% 2.86% 0.00% 0.00% 19.26% 3.40% 0.00% 0.00% 19.78% 3.24% 0.00% 0.00%

n = 7 21.07% 3.63% 0.00% 0.00% 20.18% 3,02% 0.00% 0.00% 20.16% 2.07% 0.00% 0.00% 18.85% 3.16% 0.00% 0.00%

n = 8 22.66% 2.88% 0.00% 0.00% 20.25% 3.08% 0.00% 0.00% 20.77% 2.74% 0.00% 0.00% 19.82% 3.70% 0.00% 0.00%
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CHAPTER V. 

CONCLUSIONS AND FURTHER RESEARCH

For many years, scheduling research focused on regular measures o f performance. 

Just recently, earliness and tardiness problems have become important with the new 

emphasis on just-in-time (JIT) production. Because o f that, scheduling problems for 

meeting due date requirements have been widely studied, and among such problems are 

the scheduling problems involving earliness and tardiness (E/T) penalties over a common 

due date (CDD). In this research, exact and heuristic methods for solving the job shop 

scheduling problem (JSSP) considering earliness and tardiness over a common due date 

are presented. Throughout this dissertation, this problem is referred as JSSP E/T, and as 

far as I know, there is not research addressing this problem. In this research, both exact 

and heuristic algorithms are developed to find optimal or near optimal solutions for this 

problem.

This chapter is divided into three sections; first, the contribution of this research is 

introduced. Next, the conclusions o f the exact and heuristic methods developed are 

presented, and finally, the future research is discussed in the last section.
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Contributions

The contributions of the proposed research can be summarized as follows:

• A theoretical contribution is achieved by introducing an analytical 

approach to deal with multi-stages scheduling problems involving non-regular measures 

o f performance. The JSSP E/T with restricted CDD, as a multi-stage scheduling 

problem, is known to be NP-Hard in the strong sense.

• A polynomial procedure to determine the restrictedness of the CDD for a 

two-machine JSSP E/T, which allows classifying these problems as restricted, semi

restricted, and unrestricted based on their processing times and how large the CDD is.

• Properties o f the JSSP E/T with restricted CDD, as well as some 

optimality conditions are derived and are used to derive heuristic methods to solve this 

problem.

The two-machine «-job problem is studied initially as a good point of 

reference to extend the findings to the m-machine, «-job environment. Optimal solutions 

for some cases o f the two-machine, n-job problem are derived by using dynamic 

programming.

An innovative application o f Multi-Agent Systems (MAS) using bidding 

with combinational auctions is developed to solve multi-stage scheduling problems 

considering earliness and tardiness as a measure o f performance.

A set o f benchmark problems is created in order to evaluate the 

performance o f the proposed exact and heuristic methods. These problems will be useful 

to the scheduling community to evaluate different approaches to solve the JSSP E/T 

considering a CDD.
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Conclusions

Initially, for a two-machine job shop scheduling problem, the CDD is classified as 

unrestricted, restricted and semi-restricted, depending on how large it is. Lauff and 

Werner (2004b) conjectured that the definition of the restrictedness of the CDD for a 

multi-machine JSSP E/T is a NP-Hard problem. Here, a polynomial procedure to define 

the class o f restrictedness for the two machines JSSP E/T over a CDD was presented.

Additionally, some properties for this problem, as well as optimality conditions 

for the unrestricted and semi-restricted case, were extended from the single machine 

problem. Optimal solutions for the unrestricted and semi-restricted case were obtained 

for problems with up to 500 jobs by using dynamic programming. Two properties for the 

restricted case were proved and used to come up with a heuristic algorithm for the two 

machines problem with restricted CDD.

Furthermore, through experiments, it has been shown that the developed 

algorithm for the two-machine problem can find optimal solutions for the unrestricted 

and semi-restricted version o f the problem. Also, the algorithm works well as a heuristic 

for the restricted case with large problems.

Regarding heuristic methods, price-directed auction mechanisms for distributed 

scheduling were introduced for the JSSP E/T over a CDD. Two auction protocols (non- 

adaptive Walrasian and adaptive tatonnement) and two payment functions (regular and 

augmented tatonnement) were investigated. Based on previous research, the well-known 

Lagrangean Relaxation for resource allocation problems using sub gradient search was 

used as a way to implement combinational auctions for resource allocation. A large set 

o f JSSP E/T instances over a CDD was solved using the proposed approach. As
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demonstrated in the computational experiments, the prices o f time slots (objects) depend 

heavily on the demand patterns o f job agents which, in turn, are based on their objective 

function value (i.e., minimizing earliness and tardiness costs over a CDD).

Through a set o f properties extended from the two-machine to the m-machine 

problem it was shown that, in general, the optimal schedule is V-shaped (strongly or 

weakly v-shaped). For the restricted case, this property holds for a subset o f jobs, not for 

all jobs, even in the two-machine problem. As the CDD gets tighter, the number o f jobs 

in this subset decreases as more jobs will be tardy. In such a case, it is better to schedule 

jobs with small total processing in all the machines around the CDD as the remaining 

jobs will be late anyway. Based on my observations, most optimal (or high quality) 

solutions exhibit a V-shape behavior; however, in a few cases, this pattern may not be 

easily detected and half V-shapes may exit.

Also, in this research, some recent questions concerning distributed scheduling 

were explored. By investigating different alternatives for implementation and their 

possible implications, a wide set o f problems was solved and interesting insights found. 

The computational experiments demonstrated that the adaptive price update with sub

gradient step might be superior to the non-adaptive auction protocol. Moreover, 

augmented tatonnement using a price discrimination scheme was effective in speeding up 

the convergence and in finding equilibrium prices for unbalanced problems (problems 

with bottleneck machines).

Additionally, the experiments demonstrated that when known optimal solutions 

are used as upper bounds in the auction procedure, it is possible to find the equilibrium 

prices faster. Also, parameters for the adaptive price update were better calibrated when
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using known optimal solutions for small problems; then, their best values were used for 

solving larger problems. In this way, when those larger problems were solved with the 

adaptive price updating and with the price discrimination scheme, the algorithm was able 

to find the equilibrium prices for both balanced and unbalanced problems. However, 

because o f the lack o f optimal solutions or good lower bounds for larger problems, this 

approach does not seem to perform that well (See Table 7). Although the existence of 

equilibrium prices does not guarantee an optimal allocation o f resources in a general 

combinational auction (Wellman et al 2001), the fact that the auction-based approach was 

able to find those prices is a good indication o f the potential of this approach.

A very clear and valuable finding o f this research is that when optimal solutions 

were available or lower bounds for those solutions were used, the computational 

experiments showed that the heuristic algorithms proposed in this research work well 

when the problem is balanced (i.e. there is no bottleneck machine). In this sense, the 

balance ratio defined in this research seems to be a good predictor o f the quality o f the 

solution when it is found by using the proposed heuristic algorithms. In other words, if 

the data for a certain instance shows that the problem will be balanced, then it is expected 

that the proposed algorithm will perform well; otherwise, the algorithm does not 

guarantee the quality o f the solution.
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Future Research

This research has defined an interesting scheduling problem involving a non

regular measure o f performance and has opened some new research problems. By 

defining a new problem and extending existing methods for solving it, both exact and 

heuristic methods can be developed. In particular, the following points are given as 

follow-up research directions:

1. Extend the definition o f the restrictedness o f the CDD for a multi-machine 

environment with more than two machines: By developing properties for a 

multi-machine JSSP E/T, the nature o f the restrictedness o f the CDD can 

be defined.

2. Develop optimality conditions and a dynamic programming algorithm(s) 

to solve the restricted case o f the two-machine JSSP E/T over a CDD: 

Some properties and optimality conditions were developed for the 

restricted case, but there is still room to develop an exact algorithm to find 

optimal solutions. In particular, an extension of the dynamic 

programming approach proposed in this research is a first step in this 

direction.

3. Improve the performance o f the JSSPET  algorithm by introducing better 

lower bounds for the two-machine E/T JSSP over a restricted CDD to 

better evaluate the performance o f the heuristic: By developing better 

lower bounds, not only for the proposed heuristic approaches, but also for 

any new heuristic, their performance can be evaluated in a more accurate
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way. Further, based on the new, improved lower bounds, information to 

find the “best” heuristic approach can be obtained.

4. Develop new heuristic methods for the multi-machine JSSP E/T over a 

restricted CDD: Novel heuristic methods, like Tabu Search (TS) and 

Simulated Annealing (SA), can be used as well to find solutions for the 

problem addressed in this research. Furthermore, a comparison o f the 

performance among all proposed heuristic could be conducted by using 

the set of benchmark problems proposed in this research.

5. Extend the auction-based approach from the static scheduling problems to 

a dynamic environment: Many real problems can be formulated as a job 

shop scheduling problem in a dynamic environment. In such an 

environment, jobs arrive to the shop by following a random distribution, 

so the scheduling process needs to be re-formulated every time a new job 

arrives. Since this approach shows a good performance, it can be 

extended without major variation to problems involving the same measure 

o f performance in a dynamic environment.

6. Find optimal solutions or good lower bounds for large problems: Either 

optimal solutions or good lower bounds are decisive for the performance 

evaluation not only o f the two heuristic methods proposed in this research, 

but also for future heuristics methods developed to deal with the JSSP E/T 

over a CDD.

7. Implement a different strategy o f distributed control: Bidding with 

combinational auctions was successfully implemented in this research for
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JSSPs. However, other strategies like negotiation and cooperation may be 

implemented and evaluated against the bidding strategy.

8. Relax some of the assumptions o f the problem: In this research, some

assumptions regarding the JSSP E/T were made. Specially, ai and $  were 

assumed to be equal to 1. In a more realistic environment, jobs might 

have different priorities, and therefore, their penalty function should vary 

accordingly. Also, earliness or tardiness might have different cost 

penalties based on the nature o f the jobs and the importance o f the 

customer. Therefore, having different values for them, will be an 

interesting, but more difficult problem to solve. Finally, rather than having 

common due date, a common due window within which no penalties are 

incurred, might be a more realistic assumption.
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